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The detection of pulmonary nodules is one of the most studied problems in the field of medical image analysis due to the great
difficulty in the early detection of such nodules and their social impact. The traditional approach involves the development of a
multistage CAD system capable of informing the radiologist of the presence or absence of nodules. One stage in such systems is the
detection of ROI (regions of interest) that may be nodules in order to reduce the space of the problem. This paper evaluates fuzzy
clustering algorithms that employ different classification strategies to achieve this goal. After characterising these algorithms, the
authors propose a new algorithm and different variations to improve the results obtained initially. Finally it is shown as the most
recent developments in fuzzy clustering are able to detect regions that may be nodules in CT studies.The algorithms were evaluated
using helical thoracic CT scans obtained from the database of the LIDC (Lung Image Database Consortium).

1. Introduction

In the field ofmedical image analysis, the thorax area has been
the object of extensive investigation [1] due to the complexity
of the pulmonary structure itself, with approximately 23 gen-
erations of branching arteries, and the problems experienced
in the detection of elements of interest within this structure
(nodules, tumours, etc.) [2].

Themostwidely used images for diagnosis have tradition-
ally been chest X-rays because of their low cost. However,
images obtained using helical CTs are being used more and
more since they enable high-definition observation of lung
structures, allowing images to be acquired in intervals of
time shorter than a breath and with resolutions of less 1mm.
It is becoming increasingly possible to find multislice CTs
[3] which provide a more accurate image of the area under
examination, although they are rather costly and still not very
widespread.

Within this field, one of the problems that has received
most attention is the detection of pulmonary nodules due to
the high rates of lung cancer found in modern societies. This

disease has one of the highest mortality rates (Figure 1, [4])
and therefore early detection is fundamental [5].

The analysis of these types of studies is extremely time
consuming for the radiologist because of the huge amount
of data that has to be analyzed (more than 100 thin-section
images) [6] and also due to the difficulty in distinguishing
nodules in their initial phase because they are not clearly
defined and due to their similarity to other elements present
in the lungs. Clinically speaking, a solitary pulmonary nodule
is considered to be any isolated and intrapulmonary lesion,
rounded or oval in shape, surrounded by ventilated lung,
whose diameter according to arbitrarily established criteria is
less than 4 cm [7]. Furthermore, the contours of a nodule or
mass must also be sufficiently defined and clear in order to be
able to determine its approximate size with relative precision.

On the basis of the aforementioned information, multiple
CAD (Computer Aided Diagnosis) systems have been devel-
oped to perform this task with a wide variety of techniques
being used for this purpose: [8] proposed amultilevel thresh-
olding technique designed to identify connected components
of similar intensity and eliminate vessels present in the CT in
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Figure 1: Incidence and mortality of different types of cancer in men.

order to detect nodules; [9] divided the CT into grids using
a genetic algorithm that used a template to detect elements
which could correspond with nodules; [10] proposed a new
QCI filter as part of a CAD to detect nodules in CT; and
[11] used thresholding and morphological operators to detect
candidate nodules followed by the use of a Fisher Linear
Discriminant classifier to reduce false positives. Other papers
describing major systems within this area are [12–19].

Our research group is developing a CAD system to
perform this task automatically. This system uses fuzzy logic
as a basis for detecting lung nodule candidates and, in
particular, fuzzy clustering algorithms.

In Figure 2 we can see the phases of a typical CAD system.
The first task to be undertaken in pulmonary CAD systems
is a preprocessing stage to isolate the pulmonary lobes,
removing external elements that may affect classification.
The system we are developing also includes an initial stage
for this purpose [20, 21], Figure 3. In this process each of
the unwanted elements (e.g., the diaphragm) is isolated and
eliminated in a series of steps and when the only remaining
elements are the lungs themselves, a range of morphological
operations (opening, closing) are applied to eliminate any
defects that might have arisen during the process, such as the
recuperation of pixels previously eliminated from the juxta-
pleural nodules.

This work focuses on the following phase, the purpose of
which is to detect ROIswith a view to reducing the search area
and obtaining the lowest possible number of candidate zones
that may be nodules; the aim is to reduce the number of false
positives and increase that of true positives. The objective is
for this stage to be conducted automatically by the system
given its advantages: a significant reduction in the workload
of the specialist and the elimination of bias errors.

In this paper, we present and analyze the results of various
fuzzy clustering algorithms that use different strategies to
classify the pixels that make up an image. We also propose a
new algorithm, formulated by merging two of the algorithms
we have analyzed.

The FCM, KFCM, SFCM, and SKFCM algorithms were
studied and the MSKFCM algorithm is proposed. The algo-
rithms analyzed using spatial information were modified so
that 3D neighborhoods could be used in the classification
process (these algorithms were originally designed for use
with 2D neighborhoods) which should allow for a better
classification, working with further information, and offer a
better reflection of the authentic anatomical structure.

Section 2 on material discusses the characteristics of the
studies used in the tests and the tools employed to implement
the algorithms. A description is then provided of each algo-
rithm. Section 3 describes the methodology used in the tests.
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Figure 2: Phases of a CAD system.

Figure 3: Original CT image and the result after applying the
preprocessing stage to isolate the lungs.

In Section 4 we present and discuss the results obtained and
the metrics used to take measurements. Finally, the conclu-
sions will be considered.

2. Material and Methods

For the purposes of this analysis we used a set of helical
thoracic CT scans from the LIDC (Lung Image Database
Consortium) [22], which can be accessed from the National
Biomedical Imaging Archive (NBIA).

The goal of this project is to develop a reference repository
of CT lung images for the development and evaluation of
CAD systems in the detection of lung nodules. Five North
American institutions have collaborated in its construction:
Cornell University; the University of California, Los Angeles;
the University of Chicago; the University of Iowa; and the
University of Michigan.

Each image was annotated by four experts, initially as a
blind review, so that any discrepancies between annotations
could then be forwarded to the corresponding experts, who
could then make the appropriate amendments. The images
are stored according to the DICOM standard, sized 512 × 512,
with a pixel size from0.5 to 0.8mmand a 12-bit grayscale of 12
bits in Hounsfield Units (HU).These CT scans were acquired
from a wide range of scanner manufacturers and models
under X-ray tube current ranging from 40 to 627mA (mean:
221.1mA) and tube voltage at either 120 or 140 kVp. The CT
studieswere reconstructedwith pixel resolution ranging from
0.461 to 0.977mm (mean: 0.688mm) and slice thickness
ranging from 0.45 to 5.0mm (mean: 1.74mm) [23].

Each analysis incorporates an XML file indicating the
presence of one or more nodules (or their absence), their
type, and their contour (specified by the coordinates of the
constituent pixels).

Figure 4 shows some of the slices used in the study with
the location of the nodule marked by a black rectangle.

Figure 4: Different helical thoracic CT scans used in the tests with
the nodule marked by a black rectangle.

Fuzzy clustering algorithms were used to detect ROIs due
to their capacity for handling multidimensional information,
making them easily adaptable for the classification of images,
their low sensitivity to noise, which should make it easier to
differentiate between nodules and other elements in images,
and their capacity for handling ambiguous information, a
common characteristic of medical images due to the low
signal/noise ratio [24].

In the last years, new algorithms have been developed in
order to resolve the problems associated with classical fuzzy
algorithms and to provide better results [25–27]. In this paper,
we selected some of the recent fuzzy algorithms that use ker-
nel functions (KFCM) to simulate calculation in larger spaces
or algorithms that use the pixel neighborhoods to calculate
their membership (SFCM), increasing their insensitivity to
noise. Moreover, those algorithms have been developed and
tested within the medical image analysis field, being suitable
to the problem described in this paper.

In this study, the two algorithms mentioned above were
combined to obtain a new spatial kernelized algorithm and to
determine whether the combination of these two techniques
yielded better results than each technique individually for the
problem addressed in this research. The SKFCM algorithm
was analyzed to estimate the improvement that the new algo-
rithm was expected to offer compared with the other algo-
rithms using the same strategy. This has also been used for
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medical imaging analysis and specifically for MRI (Magnetic
Resonance Imaging) in brain scans [28].

To enhance the quality and increase the scope of the
analysis, the spatial algorithms were modified so that 3D
neighborhoods could be used.These neighborhoods enabled
a better appreciation of the real structure of the element to
be defined and used more information in the classification
process. For this reason, we expected to obtain a better
classification than by using 2D neighborhoods.

We also analyzed the FCM algorithm which was the first
fuzzy clustering algorithm to be developed and is currently
used as a reference in the literature.

The ITK toolkit was used to implement the algorithms.
This is an open-source software toolkit for registering and
segmenting medical images, developed in C++ using the
generic programming paradigm.The algorithms were imple-
mented using base classes since there was no support for
fuzzy logic.

Details of the implementation of some algorithms used
in this analysis were published in Insight Journal [29] and
are freely available to any interested researchers to allow the
scientific community to confirm that the algorithms were
implemented correctly and facilitate their use.

2.1. FCM (Fuzzy C-Means). The FCM algorithm was devel-
oped by Bezdek et al. [30] and is the first fuzzy clustering
algorithm. It is a method for the division of sets based on
Picard iterations on the necessary conditions for calculating
the minimum square error of the objective function:
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The steps of this algorithm are as follows.
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where 𝑦(𝑖, 𝑗) represents each pixel of the initial image.
(2) Calculation of the new centroids of the image:
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(3) If the error stays below a certain threshold, stop. In
the contrary case, return to step (1). The parameters
that were varied in the analysis of the algorithm were
the samples provided and the value of𝑚.

2.2. KFCM (Kernelized Fuzzy C-Means). This algorithm was
proposed in Chen and Zhang [31] and is based on FCM,
integrated with a kernel function that allows the transfer of
the data to a space with more dimensionality, which makes it
easier to separate the clusters.

The purpose of the kernel function is to “simulate” the
distances that would be obtained by transferring the points
to a space with more dimensionality, which in most cases
would imply exaggerated computational costs. The proposed
objective function is
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The kernel functions used most often are polynomial
functions (5) and Gaussian radial basis functions (6). Con-
sider
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where 𝜎 is the sigma of the Gaussian function.
The algorithm consists of the following steps.

(1) Calculation of the membership function:
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(3) If the error stays below a determined threshold, stop.
In the contrary case, return to step (1).

The different parameters for the analysis of this algorithm
were the initial samples and number of clusters.

2.3. SFCM (Spatial Fuzzy C-Means). This is a spatial fuzzy
clustering algorithm [32] that uses a spatial function, which is
the sumof thememberships of the pixels in the neighborhood
of the pixel under consideration.The main advantages deriv-
ing from the use of a spatial function are the possibility of
obtaining more homogeneous regions and less sensitivity to
noise.

In the initial stage the algorithm applies the traditional
FCM (Fuzzy C-Means) algorithm to obtain the initial mem-
berships for each pixel, the iterative stage being omitted. It
then calculates the spatial function value for each pixel in the
image:
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where NB(𝑥
𝑗
) represents a square window centred around

the pixel under consideration, its size being a configurable
parameter of the algorithm.The greater the number of neigh-
boring pixels that belong to the same cluster, the higher the
value of the function.

The next step is to calculate the spatial membership
function:
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The error is calculated. When this is below a determined
threshold, the algorithm will stop; otherwise the FCMwill be
recalculated and a further iteration will commence.

2.4. SKFCM (Spatial Kernelized Fuzzy C-Means). This algo-
rithm [28] introduces a penalty factor that contains spatial
neighborhood information to the KFCM (Kernelized Fuzzy

C-Means) algorithm proposed in the same study. The paper
only considers the Gaussian radial basis function kernel:
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Therefore, modifying the objective function of the FCM
in order to introduce the kernel function and add the penalty
factor, we obtain the final objective function:

𝐽𝑆
𝜙

𝑚
=

𝑐

∑

𝑖=1

𝑁

∑

𝑘=1

𝑢
𝑚

𝑖𝑘
(1 − 𝐾 (𝑥

𝑘
, V
𝑖
))

+

𝛼

𝑁
𝑅

𝑐

∑

𝑖=1

𝑁

∑

𝑘=1

𝑢
𝑚

𝑖𝑘
∑

𝑟∈𝑁𝑘

(1 − 𝐾 (𝑥
𝑟
, V
𝑖
)) ,

(13)

where 𝑁
𝑘
represents the square window which includes the

neighbors of pixel 𝑥
𝑘
(without considering it), 𝑁

𝑅
is the

cardinality of 𝑁
𝑘
, and 𝛼 (0 < 𝛼 < 1) is a parameter that

controls the effect of the penalty term. Deriving the objective
function (see (13)) with respect to 𝑢
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obtained two conditions that minimize the objective func-
tion. Finally, an iterative algorithm can be derived from the
above conditions.

When initialising the algorithm, the parameters 𝑐, that
is, the number of clusters, the initial class centroids, and the
threshold epsilon, must be determined.

In the first step of the iterative process, the memberships
are calculated as follows:
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Finally, the centroids are updated as follows:
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As in the other algorithms, repeat these steps until
condition ‖V

𝑖−1
− V
𝑖
‖ ≤ 𝜖 is satisfied, where epsilon is a

determined threshold.

2.5. MSKFCM (Modified Spatial Kernelized Fuzzy C-Means).
The modification proposed in this study ([29]) is a combi-
nation of the algorithms described previously (KFCM and
SFCM) in order to combine their strengths. Thus, kernelized
algorithms simulate the calculation of distances in a space of
greater dimensionality, enabling better classification of ele-
ments. Spatial algorithms reduce sensitivity to noise and local
variations by using themembership of all the pixels belonging
to the neighborhood we wish to calculate.

The initial parameters required for the proposed modifi-
cation are the number of clusters into which the image is to
be divided, a sample of each cluster, and the values for the
parameters 𝑝, 𝑞 in order to calculate spatial membership.

The algorithm consists of the following steps.

(1) Calculation of the membership function:
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(2) Calculation of spatial memberships:
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(3) Calculation of the new centroids:
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(4) If the error stays below a determined threshold
‖V
𝑖−1

− V
𝑖
‖ ≤ 𝜖, stop. In the contrary case, return to

step (1).

By combining what are currently the two most widely
used techniques for developing fuzzy clustering algorithms,
we aimed to improve the classification of the pixels forming
the nodule, improve the detection of true positives using a
kernel function to improve cluster separation, and reduce
false positives using neighboring pixels to calculate member-
ship. Consequently, it was determined that, with the excep-
tion of very fuzzy nodules, the pixels forming it had neighbor-
hoods that allowed better differentiation from other areas of
the image with similar values for each pixel.

3. Methodology

To carry out the analysis, a moderate number of studies
were used to better determine the different features that
influence the outcome and detect any possible problems that
might arise. 1500 slices were used belonging to the nine
studies which contain the different cases in this type of
medical image: the initial stage, adherent to the pulmonary
membrane, clearly consolidated, and located in the different
thoracic zones: lower, middle, and upper.

In order to measure the success rate of the algorithms we
decided to calculate the number of true positives (TP) and
false positives (FP), sensitivity against sensibility, considering
the true positive as those pixels that are part of the nodule and
they are classified as nodule. Oppositely, false positives are
pixels classified as nodule but really they are part of another
element of the slice. An algorithm that correctly classifies the
nodules must assign a high number of true positives and a
low number of false positives. If other values were obtained,
this would indicate that the algorithm performed a poor
classification, either because the rate of success in terms of the
classification of the nodule pixels was low or because the algo-
rithm incorrectly classified a large number of pixels that were
not nodule as nodule pixels.

The traditional method used to evaluate CAD systems is
to use the outcome for a series of cases for which the results
are known and to construct a ROC curve on the basis of TPF
(True-Positive Fraction) and FPR (False-Positive Fraction)
[33] so that the quality of the system can be observed as well
as the outcome through the variation of different parameters.
However, given the declared aim of this work, this is not the
most adequate focus, given that the objective of thismodule is
not to identify the ultimate outcome but to reduce the search
space to localize those zones that may be nodules.

For this reason, we decided to use the approximation pro-
posed by Bowyer [34] to evaluate edge detection algorithms.
In this framework, each set of parameter values for each
edge detector and image will produce a count of true-edge
pixels and false-edge pixels. By sampling broadly enough in
the parameter space for an edge detector, and at fine enough
intervals, it is possible to produce a representative range of
possible tradeoffs in true versus false positives.This results in
a graphical representation of possible “true positive/false pos-
itives” tradeoffs similar to a receiver operating characteristic
(ROC) curve. This provides a comparison of the behaviour
of the algorithm for different parameters and the selection of
the best combination, adapted and aligned to our aim.

Another factor that favored this solution for evaluating
these results from fuzzy clustering algorithms was that the
masks supplied by the LIDC for the different slices only
contain information about the nodules indicating the points
that constitute their edge and type, with no data on the other
elements that may exist in each slice. The use of other mea-
surementswould involve creatingmaskswith the correct clas-
sification for each pixel in each slice and for each study which
is beyond the capacity of our group. Even so, we had to create
an application using XML files that provides LIDC for each
study with the data of the nodules for each slice and translates
this information as a representation allowing for a rapid and
efficient evaluation.

In Figure 5 the steps followed to make the tests can be
seen. In first place, a preprocessing was applied to all the
studies with the objective of isolating the lungs. In the next
step, the relevant parameters were identified that influenced
the results obtained for each algorithm. In the fourth step, we
determine the test interval for each parameter of each algo-
rithm, in order to reduce the search space. In this sense, dif-
ferent values were tested based on a fixed space covering the
entire interval. Following that, we test each algorithm and the
different combination of parameters over the data set. Finally,
we evaluate the results obtained for each slice applying each
algorithm with its combinations of parameters.

Table 1 shows the parameters analyzed for each algorithm
and the ranges used for each parameter analyzed. The first
parameter analyzed was the number of clusters into which
the image was to be divided; the best results were obtained
with three and four clusters; a different set of test images
and different validity indices were used [35, 36]. The second
parameters were the number and initial samples used for
initialisation since these parameters could induce variations
in algorithm convergence speed and results [37]. We decided
to use samples that were obtained randomly and through an
operator for each slice. Finally, it was observed that for param-
eters 𝑝 and 𝑞 of the SFCM andMKSFCM algorithms the best
results were obtained in the interval [0, 2].

To illustrate the results we will use graphs that allow us
to see the conditions in which the best results were obtained
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Table 1: Parameters analyzed andmost relevant values identified for
each parameter.

FCM
Number of clusters [3, 4]

Set of initial samples Random
Operator

KFCM

Number of clusters [3, 4]

Set of initial samples Random
Operator

𝜎 [150, 750]

SFCM

Number of clusters [3, 4]

Set of initial samples Random
Operator

𝑝 [0, 2]

𝑞 [0, 2]

SKFCM

Number of clusters [3, 4]

Set of initial samples Random
Operator

𝜎 [150, 750]

MSKFCM

Number of clusters [3, 4]

Set of initial samples Random
Operator

𝑝 [0, 2]

𝑞 [0, 2]

𝜎 [150, 750]

for each algorithm. The aim is to estimate how stable they
are and to visualize their behaviour for our studies. In order
to improve the clarity in the presentation of the results, each
algorithm will be presented using a different subsection.

4. Results

The first algorithm analyzed was the FCM due to its current
status as a reference algorithm, as mentioned above.

4.1. FCM. Figure 6 shows the results obtained for this algo-
rithm in one study; the algorithm is used with samples
selected by an operator (a radiologist) with each result repre-
sented by a point. For this algorithm, it was decided to repre-
sent the TP against sensitivity to better observe its behaviour.
It can be observed in the graph that variability is quite high
for the different slices: there are cases were the success rate
is very low (below 40%) or very high (close to 100%); in
addition the number of false positives is also high increasing
with the success rate. The behaviour of the algorithm in the
rest of the studies was similar.

This result is due to the FCM algorithm classifying by
means of hyperspheres (if the Euclidean distance is used in
the calculation of the memberships); it is not possible to sep-
aratemixed classes that have different structures [38], as is the
present case, which impedes the algorithm from calculating
centroids of sufficient quality to produce a good partitioning
of the image. Further evidence that corroborates this fact
is the results obtained using random samples, in which the
values for TP and FP measurements were similar to those
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Figure 6: Results obtained for the FCM algorithm for one of the
analyzed studies.

obtained using samples selected by an operator (the differ-
encewas less than 1%), which shows that the result principally
depends on membership function used in the classification
rather than the samples used.

Figure 7 shows the result for the FCM algorithm for one
of the slices used in the tests in which it can be observed that
while the algorithm is able to detect a part of the nodule, there
are an elevated number of false positives. The same slice will
be used in the remainder of the paper to illustrate the results
of the different algorithms and to facilitate their comparison.

4.2. KFCM. A Gaussian kernel was used in the testing pro-
cess for the KFCM algorithm. Figure 8 shows the results for
this algorithm in all the analysis studies. In the graph, it can
be observed that a high success rate for a significant number
of slices was achieved. Nevertheless, the results indicate that
this algorithm is not adequate for the automatic detection of
ROIs, the aim of this paper. Although the success rate for the
majority of slices is high (more than 65%), the noise level is
very high (more than 30% in almost all). This can be clearly
seen in the graph with the majority of points situated in the
upper right corner making them very difficult to eliminate.

Figure 9 shows the results obtained for 23 slices selected
from all the studies analyzed in order to obtain a clearer
insight into these results. This combination of slices was also
used to illustrate the behaviour of the rest of the algorithms to
allow for the comparison of the results and the performance
of each algorithm.The graph shows how false positives reach
70% in various slices and are not lower than 20–30% in almost
all.This implies that, evenwith the construction of an efficient
classifier for the following stage, it would be extremely diffi-
cult to eradicate these erroneous zones from the result. An
elevated number shows features that are very similar to those
of a nodule, such as midrange HU values, shape, and size,
which makes it very difficult to establish criteria that allow
for a good classification.

The kernelized function employed by this algorithm is
not able to discriminate between the pixels that belong to
each cluster because of the overlap existing between the pixels
in different clusters given that the only information that the
algorithmuses is the attenuation value, which for themajority
of pixels is very close for the nodule and the lung tissue.
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(a) (b) (c)

Figure 7: (a) Original image, (b) mask, and (c) result obtained for the FCM algorithm.
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Figure 8: Results obtained for the KFCM algorithm for the different
studies.

As such, this algorithm provides a good classification and a
quality result for each slice or, if there aremany serious errors,
a low quality result.There is a substantial range in the success
rate from 10 to 90%. Figure 10 shows a slice result typical of the
majority of cases. It can be seen that the algorithm correctly
classifies almost all the pixels of the nodule but the number
of false positives is very high complicating, to a large extent,
the analysis in subsequent stages.

4.3. SFCM. The next algorithm to be analyzed was SFCM
and Figure 11 shows the results of its application to the pool
of test studies. What is notable about this algorithm, and
clearly visible in the previous graph, is the low number of
false positives produced (10–15% in almost slices).The reason
for this result is the spatial character of the algorithm which
makes it easier to differentiate (compared with the previously
analyzed algorithms) the pixels which make up the nodule
and those pixels which are part of the tissue when using the
neighboring space to calculate membership. However this
algorithm is unable of achieving a high success rate in the
detection of the nodule in the majority of slices. It was only

able to achieve an adequate level of success in about 30% of
the slices which can be observed in Figure 12 in the distribu-
tion of points along the TP axis. This means that it is not a
good option for the aim we have in mind in this paper, given
that it cannot provide, with its high level of variability, a
consistent rate of success for all the test studies.

Figure 12 shows the results obtained for the selected slices
which are similar to those for the complete study: the number
of false positives is low with a high success rate but clear
variability depending on the slice. Selected samples were used
in these tests. The slices with a low success rate were 2, 11, 18,
and 7.Thebest resultswere obtained by partitioning the image
in 3 clusters with the number of false positives less than if it
was partitioned in 4 clusters without significantly reducing
the true positives. However, the differences in the results were
minimal when the only parameter varied was the samples:
random or operator-selected.

This, in our view, does not indicate a limitation in this
algorithm as it does in the FCM algorithm because, to obtain
good results, it is necessary that the spatial function is the
component with greater weight in the membership function.
It is used as an additional characteristic to calculate the value
of membership allowing the discrimination between pixels
of different clusters based on neighborhood; so the more the
importance it has, the less the number of false positives.This,
however, causes the initial samples to have much less weight
in the classification with the FCM membership much less
valued and its influence on the final resultmuch less. Figure 13
shows a result for one of the test slices.

4.4. SKFCM. The results obtained for the algorithm SKFCM
show a low level of false positives using selected samples.The
best results were obtained by dividing the image into three
clusters and using a spatial window 3 × 3; the success rate was
above 80% for the majority of slices with the false positives
lower than 20% for most of the study. Figure 14 shows the
results obtained for all the studies used in the analysis.

The figure of true positives, using random samples, is
grouped within the range of 60%–100%, although values of
below 20% can be observed in some slices as, for example,
slice numbered 2 (15% with random samples) (Figure 15). In
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Figure 9: Results for a set of slices selected for the KFCM algorithm: (a) random samples, (b) operator samples.

Figure 10: Image result for the KFCM algorithm.

the latter case, this results from the loss of pixels from the
nodule during the preprocessing stage of the lungs and, above
all, from the inability of the algorithm to divide the more
complicated slices for classification.

Themost critical entry parameter for this algorithm is the
sigma selection (Figure 16), obtaining significant variations
in the results for the false positives varying this parameter,
creating associated problems in the ROI classification at the
next stage, and making identification of nodules difficult
(Figure 16(b)).

In Figure 15, the results, using random and selected
samples, can be observed having good ratios of true positives
of around 100% for the greater part of the study using operator
samples, although they do present a greater number of false
positives with respect to using random samples. In the latter
case, it can be seen that the success rate decreases for some
images, to a range of between 50 and 100%.

The size of the neighboring window has not produced
significant variations with its best value as indicated previ-
ously.This is due to themembership function having a strong
dependence on the kernel function, which is strongly influ-
enced by the initially selected samples.
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Figure 11: Results obtained for the SFCM algorithm.
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Figure 12: Results obtained for the SFCM algorithm.

4.5. MSKFCM. Finally, we will analyze the results of the new
algorithmwe are proposingwhich combines the two previous
strategies, the objective of which is to improve classification
using a kernelized function and to decrease the false positives
taking into account the spatiality of each pixel. This is the
trend that the most recent algorithms follow.
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Figure 13: Resulting image for the SFCM algorithm.
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Figure 14: Results obtained for the SKFCM study set.

It can be observed in Figure 18 how the algorithm
achieves a good success rate for almost all images with a low
number of false positives (the worst result around 15%). This
behaviour can also be seen in Figure 17 where the number of
false positives has decreased substantially compared to other
algorithms analyzed, maintaining a high success rate (>60%)
for the majority of slices. It should be pointed out that
although the curve is similar to that of SKFCM, this is due,
not to the similar behaviour of the algorithm, but to the fitting
function used.

By analyzing more in detail the results of the selected set
of slices, the success rate deteriorated in the case of random
samples (≈10%); we can also see a low rate of false positives
was maintained, and in some cases improved results were
obtained (Figure 17). Individually examining each slice with
a low rate success, it can be seen that the lost part of the
nodule in the majority of the slices could later be recovered
using other techniques. Figure 19 shows an example of a result
applying this algorithm.

This algorithm also displays a more stable performance
than the others (Table 2). A problem observed with the other

Table 2: Results (%) for a subset of slices displaying the greatest
problems for the algorithms using spatial information.

SFCM SKFCM MSKFCM
3 × 3 5 × 5 7 × 7 3 × 3 5 × 5 7 × 7 3 × 3 5 × 5 7 × 7

1 TP 72.0 72.0 71.0 73.0 73.0 66.0 64.0 58.0 56.0
FP 5.9 5.5 5.1 9.1 9.7 12.6 9.5 9.7 9.4

2 TP 21.6 19.6 19.6 31.4 33.3 33.3 29.4 29.4 29.4
FP 11.9 11.7 11.6 14.3 17.3 18.5 21.2 21.3 21.1

7 TP 11.4 8.6 5.7 95.7 95.7 94.3 61.4 64.3 60.0
FP 6.4 5.9 5.4 14.0 12.4 10.3 9.9 10.2 9.7

13 TP 62.9 59.3 55.6 96.3 100.0 96.3 96.3 100.0 92.6
FP 5.5 4.9 4.6 11.8 11.2 10.2 8.9 10.1 8.9

17 TP 88.2 88.2 85.3 100.0 100.0 100.0 97.1 97.1 97.1
FP 5.1 4.8 4.6 10.4 10.7 9.8 6.6 6.8 7.0

21 TP 15.5 8.4 5.6 100.0 100.0 100.0 69.0 81.7 81.7
FP 5.5 4.9 4.5 14.4 11.3 9.0 8.5 9.9 9.4

algorithms is that when the sample set was modified in order
to improve the results, there was also a variation in the
cluster to which the nodule was assigned, depending on the
initialisation and the number of clusters into which the slice
had been divided. In the case of the new algorithm, however,
when the number of clusters is set at 3, it consistently classifies
the nodule in the same cluster, enabling, in addition to a good
and stable performance with random samples, automated
classification, which was the objective outlined at the begin-
ning of this paper.

4.6. 3D Neighborhood. From the analysis of the results, it can
be deduced that the algorithms which best address the prob-
lem presented in this paper are those which use spatial mem-
bership functions and, among these, those which combine
this technique with a kernelized membership. To improve
these results, we decided to modify the spatial kernelized
algorithms to use 3D instead of 2D neighborhoods in the
calculation of the memberships.

Helical thoracic CT scans allow for a 3D reconstruction
of the target zone that is very similar to the original, given
the high levels of resolution it is able to achieve. The use of
the 3D structure instead of 2D provides more information
when calculating memberships and avoids noise and loss of
information associated with projecting a 3D structure in 2D.

This modification was applied to those algorithms which
provided the best results and presentedmore stable behaviour
during the analysis: SKFCM and MKSFCM. Figure 20
presents the scheme followed to obtain 3D neighborhood
and the pixels that are used to calculate the spatial function
for a 3 × 3 × 3 neighborhood, formed by the slice that the
pixel belongs to; the previous and following in the form of a
rectangular prism. It should be noted that, in its implementa-
tion using ITK, any shape (spherical, rhomboid) can be used
to obtain the neighborhood.

The methodology, described for the test process in Sec-
tion 3, was applied and in order to allow a direct comparison
of the results, which were obtained in the same way from
the same set of images, the test unit was the study and not
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Figure 15: Results obtained for the SKFCM for the selected subset: (a) random samples, (b) operator samples.

(a) (b)

Figure 16: Results obtained for the algorithm SKFCM using different sigmas: (a) 𝜎 = 250, (b) 𝜎 = 500.

the slice. For the two algorithms, tridimensional neighbor-
hoods sized 3, 5, and 7 were used in rectangular prism. The
parameters modified for the MSKFCM algorithm were 𝜎 in
[150, 700] and 𝑝 and 𝑞 in [1, 2]. For the SKFCM the modified
parameters were 𝜎 in [150, 700] and 𝛼 in [0.1, 0.2].The analy-
sis of the results was conducted by slice for direct comparison
with those obtained in previous tests.

The success rate, in the results obtained for the 3D version
ofMSKFCM,was close to 100% inmore than 90%of the slices
analyzed and the false positives did not exceed 18% in any
of the slices. The slices that had a low success rate were jux-
tapleural nodules with problems, at the initial preprocessing
stage, in maintaining all the points that belong to the nodule
and nodules marked with a single pixel and classified as
having an indefinite nature in the database. As such, and not
being able to identify them as a nodule or not, they were of no
interest to the present study.

It is worth noting in the results that using larger neighbor-
hoods reduced the number of TPs and FPs until, in extreme
cases, the algorithm does not detect any pixel as belonging
to the nodule. The best results for success rates and greater

stability were obtained using 3D neighborhoods sized 3 × 3 ×
3.

The success rate for 3D SKFCM was similar to the
previous algorithm at around 100%. However, the FP figure
was high exceeding 60% in the poorest results. In addition,
stability was low with a lot of variabilities in the results for
different slices and the same slice with different parameters.
The best results were obtained using small 𝛼, reducing the
weight of the spatial factor. The behaviour of this algorithm
is opposite to that of 3DMSKFCM: the greater the size of the
neighborhood, the more the TPs and FPs increased.

For both algorithms, it was proven that the greater the size
of the neighborhood, the greater the tendency of the algo-
rithms to classify all the points in one cluster; the 3D distri-
bution of the points does not correspond with the anticipated
shape by themembership function (themembership function
of the algorithms is based on FCM) resulting in an accumu-
lation of errors in the classification.

The SKFCM algorithm tends to group all the pixels in the
cluster identified as a nodule, because, with most important
factor being the initial samples or centroids (in this case,
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Figure 17: Results obtained in all studies for the MSKFCM algo-
rithm.

the pixels which have been identified as belonging to the
nodule are prioritized), the accumulation of errorsmeans that
more and more pixels associate with this cluster. MKFSCM,
for its part, groups all the pixels in one cluster, identified as
a lung, giving more weight to those pixels which form part
of the neighborhood than to the centroids in the calculation
of memberships, as the majority of the pixels in the slice are
lung owing to the preprocessing which seeks to eliminate all
elements of no interest; therefore, all of the pixels end up
being assigned to this cluster.

Table 3 shows the results for the two algorithms for a
combination of slices (for this table, different slices have been
used from those used in Tables 2 and 4), selected from the
nine studies using 2D and 3D neighborhoods; those that best
reflect the behaviour of all the set have been chosen.Themost
notable aspect of all the results obtained is that the two types
of neighborhoods are similar for the majority of cases. This
is due to the spatial functions having been designed for work
with 2Dneighborhoods, unable to benefit from the additional
information provided with the use of 3D neighborhoods.

As such, the algorithm which provides the best results
using 3Dneighborhoods isMKSFCM, the results ofwhich are
similar to the 2D algorithm with an improvement in results
in only some slices.

5. Discussion

The most complicated pixels to classify correctly are those
which belong to less well defined nodules, still at a very initial
stage or juxtapleural, which are very difficult to distinguish
from other pulmonary elements.

Thiswas confirmed using the first version of themasks for
the studies provided by the LIDC. Each pixel in these masks
was assigned a value between 0 and 1000, representing the
level of consensus among radiologists that the pixel under
consideration belonged to a nodule (1000 indicates that all
radiologists are in agreement with the membership of the
pixel to a nodule and 0 that all were in agreement that it did
not belong to a nodule). For those pixels, where there was

Table 3: Results for slices from different studies using 2D and 3D
neighborhoods.

3 × 3 5 × 5 7 × 7
2D 3D 2D 3D 2D 3D

1
MKSFCM VP 61.8 61.8 43.6 60 41.8 50.9

FP 6.9 7.3 3.8 6.3 3.6 5.9

SKFCM VP 49.1 63.6 49.1 63.6 60 63.6
FP 5 34.2 5.2 29.4 5.8 31.3

2
MKSFCM VP 30.9 49.4 27.2 45.7 23.5 42

FP 3.3 5.7 3.1 5 2.9 4.4

SKFCM VP 34.6 51.9 34.6 51.9 35.8 53.1
FP 3.7 26.3 3.7 29.6 3.70 31.1

3
MKSFCM VP 100 95.7 65.2 30.4 47.8 21.7

FP 4.8 3.6 3.8 1.9 1.8 1.7

SKFCM VP 95.7 100 100 100 100 100
FP 3.5 10.1 8 19.2 14.9 23.4

4
MKSFCM VP 100 95 95 95 90 95

FP 9.4 6.3 6 5.5 5 5.3

SKFCM VP 100 100 100 100 100 100
FP 30.8 23.8 32.8 26.6 34.3 41.7

5
MKSFCM VP 78.9 78.9 78.9 78.9 0 76.3

FP 13.6 13.7 9.5 13.9 3 14.5

SKFCM VP 89.5 89.5 89.5 89.5 89.5 92.1
FP 20.9 35.2 26.1 38.5 28.7 40.1

6
MKSFCM VP 96.9 90.70 93.8 88.7 85.6 67

FP 17.4 6.7 15.8 4.3 15.7 3.7

SKFCM VP 97.9 97.3 99 97.9 99 97.9
FP 31.1 21.3 33.5 27.5 35.3 30.2

7
MKSFCM VP 43.8 43.8 42.2 42.2 42.2 32.8

FP 7 6.8 6.2 5.5 5.3 4.7

SKFCM VP 43.8 43.8 43.8 43.8 43.8 43.8
FP 9.7 8.4 15.3 15.9 21 21.2

8
MKSFCM VP 98.8 97.6 97.6 84.5 100 84.5

FP 4.6 3.8 3.6 2.6 4.4 2.4

SKFCM VP 100 100 100 100 100 100
FP 6 5.2 8.6 10.1 11.7 14.2

9
MKSFCM VP 97.8 95.1 92.2 92.1 91.6 91.6

FP 5.5 1.7 1.1 1.1 0.9 0.9

SKFCM VP 97 97.8 100 100 100 100
FP 2.4 5.9 13 14.7 17.1 19.2

strong agreement among the radiologists over membership
to a nodule (with a punctuation equal to or above 800 points)
both SKFCM and MSKFCM were capable of detecting them
without any problems.

Figure 21 shows a section of a slice classified as a nodule
by radiologists and the different results provided by the
algorithms which have been considered in this study. The
majority of classification errors correspond to pixels with a
low punctuation (100–200) especially those at the edge of the
nodule.

The best results and performance of the MKSFCM algo-
rithm were obtained by dividing the slices into three clusters.
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Figure 18: Results obtained for the MSKFCM for the selected subset: (a) random samples, (b) operator samples.

Figure 19: Results obtained for the algorithm MSKFCM for one of
the slices using random samples.

Figure 20: 2D and 3D neighborhoods.

This was because the membership function with a larger
number of classes is unable to divide the space of the problem
in which the nodule pixels are clearly separated from the
pixels belonging to other clusters; the cluster to which they
are assigned depends on the distribution of coefficients in the
image and the number of clusters intowhich the image is to be
divided. Amuchmore powerful membership function, capa-
ble of performing a better classification, would be required
to obtain better results with a larger number of clusters.

Table 4: Results (%) for a subset of slices which present greater
problems for the different algorithms.

FCM SFCM KFCM SKFCM MKSFCM

1 TP 72 72 73 73 64
FP 6.4 5.9 15.4 9.7 9.5

2 TP 23.5 21.6 35.3 33.3 29.4
FP 12.2 11.9 25.7 17.3 21.2

7 TP 27.1 11.4 98.6 95.7 61.4
FP 7.9 6.4 19.5 12.4 9.9

13 TP 77.8 62.9 100 100 96.3
FP 7.1 5.5 18.4 11.2 8.9

17 TP 94.1 88.2 100 100 97.1
FP 5.9 5.1 13.2 10.7 6.6

21 TP 38 15.5 100 100 69
FP 7.5 5.5 23.9 11.3 8.5

This conclusion is corroborated by the fact that when
using 3D neighborhoods which use more information and
better reflect the structure of the element, the results do not
present an improvement (Table 3) and maintain their level of
success and, in some cases, increase the false positives. The
best results were also obtained by dividing the image into
three clusters.

6. Conclusions

This paper presents an extensive and thorough analysis of
the use of traditional and state-of-the-art (Table 4) fuzzy
clustering algorithms for detecting ROIs in helical thoracic
CT slices, with the aim of incorporating this method into a
CAD system that will help professionals to detect pulmonary
nodules, tested using a set of studies selected from a public
database.

Traditional algorithms have been shown not to be the
most appropriate solution due to the limitations of the mem-
bership functions they use; they are unable to achieve good
quality results with large sets of slices.
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Figure 21: The best classification obtained for one of the images analyzed: mask (a), KFCM ((b), value 2 represents the nodule), SFCM ((c),
value 4 represents the nodule), and MKSFCM ((d), value 3 represents the nodule).

To resolve this limitation, algorithms which incorporate
differentmodifications to themembership functionwere also
analyzed: kernelized and spatial.The former improve the clas-
sification but continue to produce an elevated number of false
positives, complicating the next stage of classification. Spatial
algorithms also improve results but are very sensitive to noise
(in the present case) and quite unstable given the significant
variations, depending on the parameters and slice, in the
results.

The next step was to analyze if by combining both
techniques we could improve the results. We analyzed an
algorithmwhich uses this strategy SKFCM and created a new
algorithm combining two of the algorithms already analyzed:
MSKFCM. Only by combining the two classification tech-
niques (kernelized and spatial) was it possible to consistently
classify the pixels as belonging to a nodule and therefore use
it for the automatic detection of nodules in helical thoracic
CT scans.

Both the SKFCM and MSKFCM algorithms provided an
adequate rate of success for this task, with better results being
obtained in some slices with the SKFCMalgorithm.However,
the MKSFCM algorithm presented more stable behaviour
than the SKFCM algorithm with a much smaller number of
false positives, allowing quality results to be obtained with a
fixed set of input parameters and using samples not selected
by an operator. This characteristic makes it more suitable for
our objective: the automatic detection of ROIs that may be
classified as a nodule.
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