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Effects of dipolar interactions  
on the sensitivity of nonlinear 
spinor-BEC interterometry
Qing-Shou Tan1,2,3, Qiong-Tao Xie1 & Le-Man Kuang2,3

We consider the effects of dipole-dipole interactions on a nonlinear interferometer with spin-1 Bose-
Einstein condensates. Compared with the traditional atomic SU(1,1) interferometer, the shot-noise 
phase sensitivity can be beaten with respect to the input total average number of particles; and the 
improved sensitivity depends on the effective strength of the dipolar interaction via modifying the 
trapping geometry. It indicates that the best performance of the interferometer is achieved with 
highly oblate trap potential. The Bayesian phase estimation strategy is explored to extract the phase 
information. We show that the Cramér-Rao phase uncertainly bound can saturate, when the ideal dis-
entangle scheme is applied. The phase average of the phase sensitivity is also discussed.

Interferometers as the extremely useful and flexible precise measuring tool, play a key role in the field of quantum 
metrology1–21. Recently, there are mainly two classes of interferometers2,3: passive [e.g., Mach-Zehnder interferome-
ter (MZI)] and active [e.g., SU(1,1)] interferometers. The ultimate goal of both these setups is to beyond the 
shot-noise limit (SNL) for phase estimation. It is well known that, for the MZI to beat SNL, i.e., N1/  with N being 
the total particles number, nonclassicality of the input states are necessary. While for SU(1,1) interferometer the sit-
uation is different, because it applies the nonlinear optical-parametric amplifier (OPA), which mixes the optical 
beams and then converts the classical input states into photon pairs2–4. A potential advantage of the SU(1,1) interfer-
ometer is that even for classical sources of the input states the SNL can also be surpassed.

Spinor Bose-Einstein condensates due to their unique coherence properties and the controlled nonlinearity are 
viewed as the ideal sources for an atomic interferometer. The coherent spin-mixing dynamics (SMD) in the spin-1 
BECs can generate entangled states22–26 by converting two atoms in the mf = 0 state into one atom in the mf = 1 state and 
the other in the mf = −1 state, which is the atomic analogue of OPA. Experimentally, ref.27 has used the spin-changing 
collisions in a spinor BEC as the nonlinear mechanism to realize a atomic SU(1,1) interferometer. In this scheme the 
interferometer operations belong to the SU(1,1) group and the phase sensitivity can be obtained analytically by using 
mean-field approximation, but the number of particles used for phase estimation inside the interferometer is very small. 
To obtain a relatively large number of particles for probe states, in ref.28, the authors considered a full quantum analysis 
and found that the sub-shot-noise(SSN) phase sensitivity can be obtained with respect to the total particles inside the 
interferometer.

Up to now, studies of nonlinear atomic interferometer with spinor BECs have focused mainly on s-wave con-
tact interaction27–29. According to the recent experimental and theoretical observation in 23Na and 87Rb atoms, 
the magnetic dipole-dipole interactions (MDDIs) are indeed not negligible for these spinor condensates26,30–39. 
For example, in 87Rb atoms, the magnitude of the dipolar energy can be as large as 10% of the spin-exchange 
energy35,36. In particular, the long-range and anisotropic nature of the dipolar interaction may further enhance 
its effects36,38,40. Thus, the effects of the MDDI should be considered in a reliable SSN sensitivity interferometer 
based on spinor BECs.

In this paper, we study the effects of MDDI on the phase sensitivity in a spin-mixing interferometer based 
on 87Rb condensates. In the quantum metrology field, the quantum Fisher information (QFI)41–43 has been 
widely used to characterize the phase sensitivity. In this work, we will also describe the phase sensitivity for our 
spin-mixing interferometer with the QFI. By calculating the QFI, we find that, the QFI depends on both the evo-
lution time of SMD and the trapping geometry. Our results indicate that, for certain evolution time the enhance-
ment SSN sensitivities can be reached with respect to the total input number of particles N by using the highly 
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oblate trap potential. Finally, we also explore the Bayesian phase estimation strategy to extract the optimal phase 
information and phase average sensitivity with different dis-entangle methods.

Results
Model and Hamiltonian. Similar to the optical SU(1,1) interferometer, the spin-mixing interferometer can 
also divide into three steps: (I) entangled states preparation with spin-exchange collisions, (II) phase encoding, 
and (III) dis-entangling and measurement.

To realize the atom interferometer scheme as shown in Fig. 1, we consider N spin-1 Rb atoms confined in a 
three-dimensional potential with ferromagnetic spin-exchange collisional interaction. Assuming all spin com-
ponents share a common spatial mode φ(r), under the single-mode approximation, the Bose condensate can be 
described by following Hamiltonian
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The first term originates from the s-wave contact interaction, which contains the SMD and has been considered for 
atom SU(1,1) interferometers27,28. The last two terms are induced by the dipolar interaction. Notice, here we have used 
the absolute value of the spin exchange strength ∫ φ| | = | | |c c dr r( /2) ( )2

4 as energy unit (the corresponding unit for 
time is ħ/|c|), where c2 = 4πħ2(a2 − a0)/(3 M) with M being the mass of the atom and a0,2 the s-wave scattering length 
for two spin-1 atoms in the symmetric channel of the total spin 0 and 2, respectively. For a Gaussian mode function 
with characteristic lengths qx,y,z in x, y, z directions, the rescaled dipolar interaction strengths can be read as36
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where (κx, κy) ≡ (qx/qz, qy/qz) characterizes the shape of the condensate, μ μ π=c g /(4 )d B F0
2 2  is the strength of the MDDI 

with μB the Bohr magneton, and gF the Landé g-factor for 87Rb atoms, we have cd/|c2| ≈ 0.1. In the above equations, 
I0,1(x) is the modified Bessel functions of the first kind, and erfc(x) is the complementary error function. The value of 
ds,n can be positive, 0, or negative, depending on the values of κx,y. In particular, ds,n = 0 (dn = 0) if κx = κy = 1 (κx = κy).

In Eq. (1), the many-body angular momentum operators are given by
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Figure 1. Schematic representation of an optical SU(1,1) interferometer and its correspondent realization in 
atomic spin-mixing interferometer. For atomic interferometer the unknown phase θ = 2ΔEtPS.
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with α= ±â 0, 1 being the annihilation operator of the α-th spin state, and αN̂  is the number operator of the α spin 
component. The term + .−ˆ ˆ ˆ† †a a a h c( )1 1 0

2  include in Ŝ
2
 is identical to the OPA in nonlinear optics, which is the main 

factors influencing the spin-mix process.
As shown in step (I), we start with a source of N = N0 particles in the mf = 0 pure state, namely |Ψ(0)〉 = |0, N, 

0〉 with Fock basis |N1, N0, N−1〉. Governing by Hamiltonian (1), at time tevo we can obtain an entangled state 
|Ψ 〉 = ∑ | − + − 〉t g t k N k m k m( ) ( ) , 2 ,m k mkevo , evo , where g t( )mk evo  can be obtained numerically (see Methods).

And then the phase information is encoded into this probe state [step (II)]. To eliminate the effects of atomic 
nonlinear interaction on the phase accumulation and measurement, we need the accurately controllable 
spin-changing collisions. In the present of strong enough external magnetic field, the spin-mixing process would be 
stopped due to the so-called quadratic Zeeman effect. It shifts the the levels of the f = 1 down, and induces the energy 
difference between the mf = 0 and mf = ±1 modes via the supplemented Hamiltonian = + −

ˆ ˆH q N N( )B 1 12 27,28.  
In ref.27, the authors obtained energy difference q = (2π)72 Hz when B = 0.9 G. Note that the linear Zeeman effect 
does not affect the spin-changing collisions since the energy gained by one particle has to be spent by the other. 
Although spin-changing might be turned on by quenching the magnetic field down to zero, ramping up and 
down magnetic fields lacks the necessary control and speed. Experimentally, instead we can use microwave dress-
ing to compensate the magnetic field during tevo, by applying a far-off-resonate detuned π-polarized microwave 
field to coupe |1, 0〉 to |2, 0〉 with the Rabi frequency Ω and the detuning Δ27. Microwave dressing supplements 
the Hamiltonian with = +Ω

Ω
Δ −

ˆ ˆH N N( )
4 1 1

2
, which can shift up and down the energy level by either red or blue 

detuning. Making Ω Δ = + −ˆd N/4 (1 )(2 1)s
2

0  during tPS, the effective interaction of linear phase shift reads:
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with phase shift θ = 2qtPS.
In step (III), to estimate the phase shift θ, we should first dis-entangling the mf = ±1 modes, and then measure 

the number of particles in them. An ideal method to dis-entangling is to make Htevo = −H′t′evo. Thanks to both 
the sign and the strength of the non-linear coupling are experimentally adjustable, which indicates that we maybe 
make − ′� �ct c tevo evo and −� �c t c td devo evo to realize time reversal read-out scheme.

We can see in all the above three steps, the MDDI plays a important role, later we shall study the effects of the 
MDDI on the precision of phase estimation in the dipolar atomics interferometer.

Quantum Fisher information in the present of dipolar interaction. Now, we investigate the effect 
of MDDI on the phase estimation by calculating the QFI. It gives a theoretically achievable limit on the precision 
of an unknown parameter θ by the quantum Cramér-Rao theorem Δ2θ ≥ Δ2θQCR = 1/(mFQ), where m represents 
the number of independent measurements. In our interferometer the QIF can be obtained as

=
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with = + −
ˆ ˆ ˆN N Ns 1 1. For convenience, we define the mean quantum Fisher information =F F N/Q Q , where =F 1 

means the SNL and >F 1Q  means the SSN phase sensitivity.
In Fig. 2(a), we have plotted the maximal mean QFI FQ

max with long enough evolution time for different κx, κy. 
As it is shown, we have >F 1Q

max , which depends on the trapping geometry (κx, κy); and the best QFI is appeared 
in the regimes of κx = κy, corresponding to the axial symmetry with dn = 0. It indicates that we can obtain the SSN 
sensitivity with respects to the total atom number N. However, in Fig. 2(a) the maximal QFI is attained for long 
enough evolution times, and hence the mechanism of decoherence in the condensate cannot be neglected. In fact, 
to reach the SSN sensitivities long evolution time is not necessary. In Fig. 2(b), we have shown the shortest evolu-
tion time to reach the SSN sensitivities as a function of κx, κy. It is clearly shown that the MDDI can reduce the 
evolution time to obtain the SSN.

To avoid the mechanism of decoherence and obtain the relatively large QFI, in the spin-mixing interferometer 
the maximum SSD evolution time we considered is mainly focus on the scale of ∼ | |c N/( ) , which is much 
shorter than the lifetime of a spin-1 BECs. And hence, for sufficiently large N and fast phase encoding the nonlin-
ear interferometer, we can safely neglect the decoherence processes of the condensate.

In Fig. 3(a), we have plotted the mean QFI as a function of evolution time for different κx, κy. As it is shown, we 
can find that for short time scale the QFI increase with time evolution, it means that proper period of evolution time 
can improve the QFI, and the values can surpass the SNL. Figure 3(a) indicates that due to the MDDI we can obtain 
better QFI than the case without it (i.e., κx = κy = 1). In particular, we can obtain the best QFI when 

κ κ= =log log 1x y10 10 , i.e., pancake-shaped condensate. In Fig. 3(b) we plot the dependence of the mean QFI on 
the trapping geometry (κx, κy) covering the parameter regime 0.1 ≤ κx,y ≤ 10 with evolution time | | =c N t / 1evo  . 
It is shown large QFI can find in the regime κx = κy, corresponding to the axial symmetry with dn = 0. The diagonal 
lines in Fig. 3 illustrate the changes of the QFI when the condensate changes from the elongated trap (cigar-shaped) 
to oblate trap (pancake-shaped). In both Fig. 3(a,b), the best QFIs are found in the region with highly oblate 

κ κ= =log log 1x y10 10 . This means that we can obtain the best SSN sensitivities with respect to the total input num-
ber of particles N, which is larger than the case without the MDDI, by initially setting the shape of the condensate.

The mechanism of the MDDI improves the phase sensitivity in short time scales can be understood from 
Hamiltonian (1). After rescaling Eq. (1), we have
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Figure 2. (a) The maximal mean QFI and (b) the shortest time to obtain SSN for different κx, κy with total 
atomic number N = 20, for 87Rb one has cd/|c2| = 0.1.

Figure 3. (a) The mean QFI as a function of evolution time for different (κx, κy). (b) The dependence of the mean 
QFI on the trapping geometry (kx, ky) when = | |t c N/( )evo . The parameters are chosen as N = 30 and cd/|c2| = 0.1.
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which depend on the MDDI. The values of Ax(κx, κy), Ay(κx, κy) and E(κx, κy) covering the parameter regime 
0.1 ≤ κx,y ≤ 10 are shown in Fig. 4. According to Fig. 4, we have Ax ≥ 0 (Ay ≥ 0) if κx ≥ 1 (κy ≥ 1). In particular, if 
κx = κy we have E = 0 and Ax = Ay, then Eq. (1) further reduces to ′ = −ˆ ˆS A Sz

2
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2
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A d

d1
3

1
s

s
 and 

= − − −
ˆ ˆ ˆ ˆ ˆ† †S a a a az 1 1 1 1.

Now we will investigate the effects of anisotropic constants Ax(κx, κy), Ay(κx, κy), E(κx, κy) and A1(κx, κy) on 
the QFI with rescaled times, respectively. From Fig. 5, we can find that the values of the mean QFIs almost has no 
influence on the parameter E, but it significantly depends on the values of Ax,y. That is, the positive values of Ax,y 
can improve the QFI for short time scales, while decrease it for negative values of Ax,y. Figure 5(c) shows the QFI 
in an atomic interferometer based on axial-symmetry condensate, from it we can find that the term including Sz

2 
nearly do not affect the QFI within short time scales, but it can enhance the QFI for relatively long time time 
scales.

It is well known that the SNL of phase sensitivity can be surpassed using squeezed states. Later, we will inves-
tigate the effects of the condensate shape on the phase sensitivity by calculating the spin squeezing in the system 
considered. Unlike the spin-1/2 systems which can be uniquely specified by different components of the total spin 

Figure 4. Anisotropic constants Ax(κx, κy), Ay(κx, κy), E(κx, κy) and A1(κx, κy) for 87Rb, where cd/|c2| = 0.1.
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vector S ≡ (Sx, Sy, Sz), the state of spin-1 atomic Bose-Einstein condensates is specified in terms of both the spin 
vector and nematic tensor Qij = SiSj + SjSi − (4/3)δij which constitutes SU(3) Lie algebra, with δij being the 
Kronecker delta and ({i, j} ∈ {x, y, z})44,45. For the initial state we considered, we can always numerical check that 
〈 〉 S 0, but the quadrupole elements 〈Qii〉 ≠ 0. And in both of the subspaces, {Sx, Qyz, Q+} and {Sy, Qxz, Q–} that 
exhibit squeezing, where Q+ and Q− are defined Q+ = Qzz − Qyy and Q− = Qxx − Qzz, respectively. Then the two 
d i f fe re nt  s p i n - n e m at i c  s qu e e z i ng  p ar am e te rs  i n  an  SU ( 2 )  s u b s p a c e  are  d e f i n e d  by 
ξ θ θ= 〈 Δ + 〉 〈 〉θ ±S Q Qmin [ (cos sin )] / /2x y x y yz xz( )

2
( ) ( )

2 , with θ being the quadrature angle45. If ξ < 1x y( )
2  indicates 

spin-nematic squeezing.
In Fig. 6, we plot the evolution of spin-nematic squeezing parameter ξx

2 for different trapping geometry. From 
Fig. 6, we can see that the strong spin-nematic squeezing can be obtained in the regimes of κx = κy, which displays 
the same changing trend as the QFI. Figure 6 also shows that the highly oblate trap can shorten the optimal 
squeezing time before it “over squeezing”. In ref.45, the authors proposed a scheme to store the best spin-nematic 
squeezing for quantum metrology by applying periodic microwave pulses.

Optimal Fisher information in the presence of dipolar interaction. Below, we focus on the atomic 
interferometer with axial-symmetry condensate, κx = κy. To demonstrate the feasibility of SSN phase sensi-
tivity given by the QFI, we employ a protocol based on a Bayesian analysis of the measurement results with 
atom-number N±1 after step (III). Then the classical Fisher information (CFI) is14
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where θ| = |Ψ θ
± ±P N N( )1 1 out

( ) 2
 is the conditional probability that particle N±1 is measured for given phase shift 

θ. And |Ψ 〉 = |Ψ 〉θ − ′ ′ − −e e e (0)iH t iH t iHt
out
( ) evo PS PS evo . Then the saturable lower bound of phase sensitivity is given by the 

CR bound, θ θΔ = mF1/ ( )CR C , m denotes the number of independent measurements. Unlike the QFI, the CFI 
depends on the phase θ, and by this definition, we have ΔθQCR ≤ ΔθCR.

Figure 7 illustrates the optimal CFI θ≡ θF Fmax ( )C C
opt  as a function of trapping geometry κx,y. Here, we con-

sider κx = κy, then dn = 0. In Fig. 6, we compare the optimal CFI with two different dis-entangle methods. The first 
approach to dis-entangling, which considered in ref.28, is to apply a π/2 phase shift to the mf = 0 mode, namely 

Figure 5. Comparisons of mean QFI with and without the MDDI. (a) κ = − .log 0 8x10 , κ = − .log 0 5y10  
corresponding to Ax = −0.533, Ay = −0.228 and E = −0.153. (b) κ = .log 0 9x10 , κ = .log 0 5y10  corresponding to 
Ax = −1.64, Ay = 1.26 and E = 0.194. Here, N = 30.
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→ˆ ˆa ia0 0. After this operation, the many-body angular momentum operators in Eq. (1) become →
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The advantage of this scheme is that it experimentally implement easily. As shown in Fig. 7, we can see that the 
MDDI can induce better CFI. And we can obtain the SSN phase uncertainties with respect to the total input num-
ber of atoms N. However, under this scheme, the optical CFI cannot reach the values given by QFI, due to the 

Figure 6. Evolution of spin-nematic squeezing parameter ξx
2 for different trapping geometry (κx, κy) with 

N = 30.

Figure 7. Panels (a,b) Comparison of the optimal CFI with different dis-entangle methods under different 
evolution time. The blue solid line corresponds to the QFI. Panels (c,d) Comparison of the corresponding phase 
average of the CFI with different dis-entangle methods. Where FC1

opt corresponds to the optimal CFI obtained by 
the ideal dis-entangle scheme and FC2

opt stands for the imperfect dis-entangle. Other parameters are chosen as 
N = 30, κy = κx.
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imperfect dis-entangle. If one want to obtain the optimal phase sensitivity, we can implement the ideal 
dis-entangle method by changing the sign of c and cd, i.e., → − c c  and → − c cd d. The values of c can be controlled 
via Feshbach resonance, and the value of cd can be tuned from → ∈ −c c c[ 1/2, 1]d d d by using a rotating orienting 
field to the dipole moments46. Note that for perfected dis-entangle scheme, we can also apply the Loschmidt echo 
protocol to get the optimal phase sensitivity given by the QFI43.

To describe well the behaviors of phase estimation for different phase with θ ∈ [0, 2π], we use the phase aver-
age of the FI, which is given by

∫π
θ θ= .

π
I F d1

2
( ) (11)C

0

2

Figure 7(c,d) indicate that for these two dis-entangle methods the phase average of the CFI I  both can surpass 
the SQL. From Fig. 7, we can see that in the dipolar atomic spin-mixing interferometer, both the optimal and 
phase average CFI can reach the SNN limit as long as choose proper evolution time. The phase sensitivities 
depends on the trapping geometry, and highly oblate trap potential can further improve the average phase esti-
mation precision.

Discussion
In summary, we have studied a nonlinear interferometer with the dipolar spin-1 Bose-Einstein condensate. By 
calculating the QFI, we found that the phase sensitivity of the interferometer depends on both the SMD evolu-
tion time and the MDDI. It is indicated that proper period of evolution time can improve the QFI, and that the 
sub-shot-noise phase sensitivity with respect to the total input number of particles N can achieve, due to the high 
transfer rates of particles in the spin-changing process. Moreover, for fixed SSD evolution time, the optimal phase 
estimation precision is mainly determined by the strength and the sign of the effective dipolar interaction. Our 
results shown that, the enhancement phase sensitivity can be achieved by tuning the effective MDDI via modify-
ing the trapping geometry. It is indicated that the best performance of the interferometer is achieved with highly 
oblate trap potential. We also explored the Bayesian phase estimation strategy to extract the phase information. 
It is shown that the Cramér-Rao phase uncertainly bound can saturate, when the ideal dis-entangle scheme is 
applied within the time scales that the particle loss effects can be neglected28. The phase average uncertainly is 
discussed, which can also achieve the SSN sensitivity.

Finally, it should be pointed out that the results we have obtained in this paper are based on spin-1 87Rb 
Bose-Einstein condensate. Indeed, the larger the dipole moment is, the greater the effect is on the nonlinear 
interferometer. In experiments, dipolar BECs have been realized for atoms with large magnetic dipole moments, 
such as 164Dy with dipole moment 10 μB, which is much larger than 87Rb’s moment equal μB

47. Therefore, it will 
result in the strength of MDDI comparable with the s-wave contact interaction in Dy atomic condensate. In ref.48, 
we have investigated the improved spin squeezing induced by MDDI of scalar Dy atomic condensate trapped in 
a double-well potential, which is useful resource for quantum metrology. In its spinor counterpart, the ground 
state of Dy atom is 5I8 with zero nuclear spin, which is spin-8 dipolar condensate. Exploring such complex col-
lisional behavior of Dy atom requires further investigation, but it may be greatly aid attempts in spin-mixing 
interferometry.

Methods
The derivation of Hamiltonian (1). In the second quantized form, the total Hamiltonian of the system, 
including s-wave collisions and the MDDI, reads as

= +H H H , (12)d0

where


∫

∫
∫

ψ δ ψ

ψ ψ ψ ψ

ψ ψ ψ ψ

=




−

∇
+







+

+ ⋅

α αβ β

α β α β

α α αβ α β β β′ ′ ′ ′

†

† †

† †

H d
M

V

c d

c d

r r r r

r r r r r

r r r F F r r

( )
2

( ) ( )

2
( ) ( ) ( ) ( )

2
( ) ( ) ( ) ( )

(13)

ext0

2 2

0

2

is the Hamiltonian excluding MDDI. And the dipole-dipole interaction term is

∫ ψ ψ ψ ψ

ψ ψ ψ ψ

=
′

− ′
′ ⋅ ′

− ′ ⋅ ⋅ ′

α α αβ α β β β

α α αβ α β β β

′ ′ ′ ′

′ ′ ′ ′

† †

† †

H c d dr r
r r

r r F F r r

r r F e F e r r

2
[ ( ) ( ) ( ) ( )

3 ( ) ( ) ( ) ( ) ( ) ( )], (14)

d
d

3

with e = (r − r′)/|r − r′| an unit vector.
Substituting ψα(r) = aαφ(r) into the Hamiltonian, we get

= −H c NS( 2 ), (15)0
2
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where ∫ φ= | |c c dr r( /2) ( )2
4 is the spin-exchange interaction strength, and = α αβ β

†a aS F  is the total many-body 
angular momentum operator. And the dipole-dipole interaction can reduce to

∫

∫

φ φ

φ φ

θ

θ θ

θ θ θ θ

θ θ θ θ

=
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r r

2
( ) ( )

[ 3( ) (2 3 )]

2
( ) ( ) 1

4
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2
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3
4

( sin ) 3
2
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3
2

( cos sin ) 3
2
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2

(cos sin ) 3
2
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d
d

d
z

e

e
i

e
i

z e e
i

z e e
i

e e
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2 2

3
2 2

2 2

3
2
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2
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1 1

2 2
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Here, we have used the relations e± = ex ± iey, θ= ϕ
±

±e esin e
i e, and ez = cos θe.

For the Gaussian mode function

φ
π

=







−






+ +













q q q

x
q

y
q

y
q

r( ) 1 exp 1
2

,
(17)x y z x y z

3/4
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2

2

2

2

2

the last two terms of Hd vanish. After introducing the two paramters

∫
φ φ θ

=
| |

′ ′ −

− ′
d c

c
d dr r r r

r r4
( ) ( ) (1 3cos )

(18)
s

d e
2 2 2

3

∫
φ φ θ

=
| |

′ ′

− ′

ϕ−

d c
c

d d er r r r
r r4

( ) ( ) sin
,

(19)
n

d e
i2 2 2 2

3

e

we obtain

= | | + − − +

+| | 
− − + + 

.

− −

− −

† † †

† †

H c d S a a a a a a

c d S S a a a a

S(3 2 ( ))

3( ) 3( ) (20)

d s z

n x y

2
0 0

2
1 1 1 1

2 2
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Then the total Hamiltonian reduces to

| | = − + − +

− − − − .− −

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ† †

H c S d S S N

d S S a a a a

/ (3 )

3 ( ) (21)

s z

n x y

2 2 2
0

2 2
1 1 1 1

Dynamics of spin. Hamiltonian H can be expanded in Fock state basis −N N N, ,1 0 1  with Nα ≥ 0 and N1 + N0 
+ N−1 = N. Numerically, it is more convenient to express Fock state basis as m k,  where m = N1 − N−1 and k = N1 
is the mumber of atoms in mF = 1 component. Since N−1 = k − m and N0 = N − 2k + m, we find

≤ ≤






+ 




.m k N mmax(0, )

2 (22)

Then the matrix elements of Hamiltonian H become ≡ ′ ′′ ′H m k H m k, ,mk m k, , and the dimension is D × D 
with D = (N + 1)(N + 2)/2. The index r of state m k,  i.e., r(m, k) is stored in a 1D array as

… −
− − + − + − + …  

.
r D

m k N N N N N
: 0, 1, 2, 3, , 1

, : , 0 , 1, 0 , 2, 0 , 2, 1 , , , 0 (23)

After diagonalizing H, we obtain the eigenstates as |ψs〉

ψ ψ=H E , (24)s s s

if we define φ ≡ m k,r  with r = r(m, k), we have ψ φ= ∑ us r r s r,  with φ ψ=ur s r s, .
Assuming that the initial state takes the form φΨ = ∑ f(0) r r r  which is a superposition of number states, it 

can be expanded in the ψ{ }s  basis as ψΨ = ∑ g(0) s s s , the time evolution of this state is
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∑ ∑ ∑ψ φΨ = =










 .− −t g e u g e( )

(25)s
s

iE t
s

r s
r s s

iE t
r,

s s

When the initial state is actually a number state φΨ = | 〉(0) r0
, i.e., δ=′ ′fr r r, 0

, therefore

∑ ∑ ∑φΨ =










 ≡ .−t g g e g t m k( ) ( ) ,

(26)r s
s r s

iE t
r

m k
mk,

,

s
0
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