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Clinical impacts of genomic copy number gains at Xq28
Toshiyuki Yamamoto1,2, Keiko Shimojima1, Shino Shimada1,2, Kenji Yokochi3, Shinsaku Yoshitomi4, Keiko Yanagihara5,
Katsumi Imai4 and Nobuhiko Okamoto6

Duplications of the Xq28 region are the most frequent chromosomal aberrations observed in patients with intellectual disability
(ID), especially in males. These duplications occur by variable mechanisms, including interstitial duplications mediated by segmental
duplications in this region and terminal duplications (functional disomy) derived from translocation with other chromosomes. The
most commonly duplicated region includes methyl CpG-binding protein 2 gene (MECP2), which has a minimal duplicated size of
0.2 Mb. Patients with MECP2 duplications show severe ID, intractable seizures and recurrent infections. Duplications in the telomeric
neighboring regions, which include GDP dissociation inhibitor 1 gene (GDI1) and ras-associated protein RAB39B gene (RAB39B), are
independently associated with ID, and many segmental duplications located in this region could mediate these frequently
observed interstitial duplications. In addition, large duplications, including MECP2 and GDI1, induce hypoplasia of the corpus
callosum. Abnormalities observed in the white matter, revealed by brain magnetic resonance imaging, are a common finding
in patients with MECP2 duplications. As primary sequence analysis cannot be used to determine the region responsible for
chromosomal duplication syndrome, finding this region relies on the collection of genotype–phenotype data from patients.
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INTRODUCTION
Widespread application of chromosomal microarray testing has
identified many new, contiguous gene syndromes.1 The accumu-
lation of genotype and phenotype data of patients has narrowed
the chromosomal regions responsible for common phenotypic
features, and detailed examinations have isolated the genes
responsible for certain human disorders. In particular, many
X-chromosomal regions have been analyzed to investigate their
relationship with X-linked intellectual disability (ID). For example,
Froyen et al.2 reported a de novo microdeletion of Xp11.4 in which
the calcium/calmodulin-dependent serine protein kinase (MAGUK
family) gene (CASK; MIM #300172) is located. Najm et al.3 identified
two additional deletions involving CASK in patients with mental
retardation and microcephaly with pontine and cerebellar
hypoplasia (MICPCH; MIM #300749). Furthermore, by screening
46 individuals with MICPCH, these authors identified two
nucleotide alterations. These data suggest that CASK is involved
in the pathogenesis of MICPCH, and mutations of this gene
suggest that CASK is clinically significant in X-linked human
disorders.4 Mutations in the Cdc42 guanine nucleotide exchange
factor (GEF) 9 gene (ARHGEF9; MIM #300429) have been identified
using the same strategy. Shimojima et al.5 identified a small
deletion on Xq11.2 in patients with severe ID and epilepsy. Among
the three deleted genes, ARHGEF9 was of particular interest, and
subsequent screening for nucleotide variations identified a
nonsense mutation in this gene in 23 male patients with similar
manifestations. Thus, it is now recognized that this gene is
involved in X-linked ID and epilepsy (early infantile epileptic
encephalopathy 8 (EIEE8); MIM #300607). This two-step approach,
which involves narrowing down the chromosomal region followed
by nucleotide screening, has identified multiple genes involved in

human disorders. Currently, the use of next-generation sequen-
cing has accelerated the identification of such genes.
This strategy has been applied to genes involved in pathogen-

esis in cases of haploinsufficiency because it is easy to confirm the
involvement of genes in a phenotype when loss-of-function
mutations are identified. In comparison, this strategy cannot be
applied to gene mutations with dominant negative (gain-of-
function) effects or to genes associated with pathogenesis in cases
of copy number gain. For example, one of the gene regions that
this strategy cannot be applied to is the Down syndrome-critical
region because the genes responsible for Down syndrome cannot
be identified through screening of nucleotide sequences.6,7 The
isolation of genes or gene regions responsible for human
disorders associated with gene-dosage-gain requires the collec-
tion of overlapping genotype and phenotype data from patients.
Experimental animals would also be helpful to confirm the
biological effects of the gene-dosage-gains.8

The most commonly reported chromosomal regions with copy
number gains are Xq28 regions involving the methyl CpG-binding
protein 2 gene (MECP2; MIM #300005).9 Indeed, we have
previously reported seven patients with Xq28 duplications.10,11

In this review, we will discuss recent advances in the research on
Xq28 genes that are responsible for ID when duplicated.

MECP2 DUPLICATION
Since its first description,12 Rett syndrome (MIM #312750) has
been known as a female-specific neurological disorder character-
ized by developmental regression, characteristic hand move-
ments, autistic features and post-natal microcephaly.13 In 1999,
the MECP2 gene was shown to be responsible for Rett syndrome.14

Multiple pathogenic mutations have been identified in patients
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with Rett syndrome,15 and de novo MECP2 mutations have been
observed in females with typical manifestations of this
syndrome.16 This finding indicates a dominant X-linked trait and
lethality in hemizygous males17 and excludes aneuploidy of the
X-chromosome in males (e.g., 47,XXY males)18,19 and specific
MECP2 nucleotide changes that lead to milder affects in females.20

Conversely, MECP2 duplication syndrome is a male-specific
disorder associated with severe ID, intractable seizures and
recurrent infections that lead to early death.21 This clinical
condition was first recognized as Lubs-type X-linked mental
retardation syndrome (MIM #300260),22 and its genetic etiology
was identified as chromosomal duplications in the MECP2
region.17,23 Varying sizes of the MECP2 duplications (0.2–4.0 Mb)
have been identified.24–26 Overlapping duplications narrowed
down the shortest region overlapped in which MECP2 and
interleukin-1 receptor-associated kinase 1 gene (IRAK1; MIM
#300283) were included (Figure 1).27 A twofold increase in MECP2
expression was identified in patients compared with normal
controls.23 Thus, MECP2, but no other contiguous genes in the
duplicated region, is thought to be responsible for the neurolo-
gical features of this condition.27 MECP2 duplication syndrome is
inherited as an X-linked recessive trait. Nearly all mothers of
MECP2 duplication patients are carriers of the duplication but do
not develop severe ID due to skewed X-chromosome inactivation
(XCI). Heterozygous females with random XCI, but not females
with functional Xq28 disomy derived from translocation between
autosomal chromosomes, show clinical manifestations of MECP2
duplication syndrome but with a milder phenotype.10,11 As
Ramocki et al.27 suggested that the majority of female carriers

display neuropsychiatric symptoms before the birth of an affected
son, careful follow-up of the families is required.
Although MECP2 is related to genetic causes, there is a

discrepancy in the XCI statuses of female patients carrying MECP2
mutations (Rett syndrome) and those with MECP2 duplications.
Nearly all female patients with Rett syndrome show de novo
mutations of MECP2 and do not show skewed XCI. Conversely,
MECP2 duplication syndrome is associated with the X-linked
recessive trait and skewed XCI in female carriers, which suggests
that overexpression of neighboring genes in the duplicated
region, rather than MECP2 itself, may induce negative selection in
the early embryo, leading to a preferential XCI.28 Alternatively,
embryonic damage may be more severe in cases of MECP2
duplication compared with MECP2 nucleotide changes, although
this remains controversial.

GDI1 DUPLICATIONS
The GDP dissociation inhibitor 1 gene (GDI1; MIM #300104) is
located on the telomeric neighboring region of the shortest
region overlapped of MECP2 duplication syndrome (Figure 1) and
was identified as a gene responsible for ID because it was mutated
in male patients.29 Heterozygous females manifested milder
phenotypes, indicating an X-linked, semidominant inheritance. In
2007, microduplications, including GDI1, were independently
reported with MECP2 duplication by Froyen et al.2 and Madrigal
et al.30 Vandewalle et al.31 reported the clinical entity associated
with microduplications, including GDI1 as a new duplication
syndrome, and concluded that increased levels of GDI1 are related
to ID. The more increased copy number of GDI1 correlated with

Figure 1. The genome map around Xq28. (a) A scheme of X chromosome downloaded from the UCSC genome browser. (b) Duplication
regions identified in 11 patients are integrated by custom track and shown by grey bars. (c) Xq28 region is expanded. Examples of relevant
genes are shown by black rectangles. Critical regions for distinct clinical features and segmental duplication regions are shown by red arrows
and blue hexagons.
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more severe clinical phenotypes, including a Dandy–Walker
malformation.31

IKBKG DUPLICATIONS
The kappa light polypeptide gene enhancer in B cells, inhibitor
kinase gamma (IKBKG; MIM #300248), is located in the telomeric
neighboring region of GDI1 (Figure 1). Mutations in this gene lead
to incontinentia pigmenti.32 A variety of distinct syndromes,
including immunodeficiency with or without hypohidrotic ecto-
dermal dysplasia, osteopetrosis, and lymphedema, are allelic
disorders.33 Van Asbeck et al.34 reported a female patient with a
de novo duplication of the IKBKG region in which GDI1 was not
included. This patient showed progressive macrocephaly, recur-
rent infections, ectodermal dysplasia, among others, but no ID.
The XCI pattern was random in this patient.

RAB39B DUPLICATIONS
Giannandrea et al.35 identified mutations in the ras-associated
protein RAB39B gene (RAB39B; MIM #300774) in patients with
X-linked mental retardation associated with autism, epilepsy and
macrocephaly. El-Hattab et al.36 identified recurrent microduplica-
tions involving RAB39B in male patients with cognitive impairment
and behavioral abnormalities, including hyperactivity and aggres-
siveness. The duplication sizes observed in four unrelated patients
were consistent at approximately 0.5 Mb and surrounded by
segmental duplications (Figure 1). In each case, the mother was a
non-symptomatic carrier with a skewed XCI. Vanmarsenille et al.37

identified a twofold increase in the expression level of RAB39B in
the lymphocytes of patients compared with controls and
confirmed decreased neuronal branching in Rab39b overexpres-
sing mice. Andersen et al.38 reported a family with ID associated
with an unbalanced inversion between Xp and Xq that resulted in
duplication of the terminal region of Xq28. The duplicated region
did not include MECP2 but included RAB39B and the chloride
intracellular channel 2 gene (CLIC2; MIM #300138). These results
suggest that RAB39B may be responsible for the microduplication
syndrome involving this region.

INCIDENCE OF XQ28 DUPLICATION
Currently, we have performed microarray-based comparative
genomic hybridization analysis on 1250 patients with ID with or
without other manifestations, such as congenital malformations,
epilepsy or autistic features, in accordance with the previously
described method.7 Two hundred thirteen patients showed one of
the pathogenic genomic copy number aberrations (detection ratio
of 17%). Among the identified aberrations, the most frequently
observed copy number gain was the Xq28 duplication. In addition
to the seven previously reported patients, four new patients
presented Xq28 duplications, including MECP2 (Table 1), resulting
in a frequency of Xq28 duplications of 0.9%, which is comparable
to the data reported by Lugtenberg et al.39 Furthermore, two of
the patients were female.10,11

Patient 3 was a 4-year-old boy born at 37 weeks gestation and
with a birth weight of 2268 g (10–50th centile). Generalized fetal
edema secondary to severe anemia was noted. The patient had
distinctive features, including synophrys, telecantus, flat nasal
bridge, tented mouth, cleft palate, absent right thumb, bilateral
radiohumeral synostosis and hypoplastic scrotum. This patient
was diagnosed with Diamond–Blackfan anemia. Owing to these
abnormalities, conventional chromosomal analysis was performed
and showed 46,XY,add(3)(q27). Finally, microarray-based com-
parative genomic hybridization analysis and subsequent fluores-
cence in situ hybridization analyses confirmed an unbalanced
translocation associated with functional disomy of Xq28. The
deleted region (chr3: 197 052 877–198 022 430) included the Ta
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ribosomal protein L35a gene (RPL35A; MIM #180468), which is
responsible for Diamond–Blackfan anemia (patient no. 71).40 The
developmental milestones were severely delayed in this patient:
no neck control, no rolling over and no meaningful words.
Neurological examination showed generalized hypotonia, and this
patient never experienced epilepsy.
Patient 5 was a 7-year-old boy with a birth weight of 2,450 g

(10–50th centile) at 37 weeks of gestation. Poor sucking due to
generalized hypotonia was noted from early infancy. This patient
had a history of multiple infections beginning from the first year of
life. He began to suffer epileptic seizures from 1 year of age.
Although he had been able to feed himself, he gradually lost the
ability to eat from the age of 4 years. Thereafter, he was fed
by tube, and a Nissen fundoplication was performed at the age of
5 years. At present, he is bedridden. He has never used
meaningful words.
Patient 8 was aged 2 years and 9 months and had a birth

weight of 2,422 g (3–10th centile), length of 46 cm (3–10th centile)
and an occipito-frontal circumference of 32.5 cm (10–25th centile).
His development was delayed, with head control and rolling over
observed at 5 months, sitting alone at 13 months, standing with
support at 24 months and walking with support at 33 months. He
has made no eye contact and has exhibited intractable epilepsy
since the first year of life.
Patient 11 was a 14-year-old male student at a school for

disabled children. His height was 164.9 cm (50–75th centile),
weight was 60.1 kg (75–90th centile) and occipito-frontal circum-
ference was 60.0 cm (497th centile), indicating macrocephaly. He
has intractable epilepsy associated with myoclonic seizures and
spasms. His gait is ataxic, there are no meaningful words, and he
requires support during his daily life.
The Xq28 duplication patterns of the 11 patients from our

laboratory were classified into two patterns, interstitial and
terminal duplications, in 6 and 5 patients, respectively (Table 1).
Interstitial duplications including MECP2 were further classified
into two types: a pure MECP2 duplication in four patients and a
MECP2+GDI1 duplication in two patients. The terminal duplica-
tions were further classified into two types: functional Xq28
disomy derived from unbalanced translocations in four patients
and pure terminal duplications (no translocation) in one patient
(Table 1), which indicates the existence of variable patterns of
Xq28 duplications. In cases of interstitial duplications, the distal
ends overlap with segmental duplications (Figure 1), which
indicates that these interstitial duplications are mediated by
multiple segmental duplications in this region.25

Previously, we reported abnormal findings in the white matter
that were confirmed by brain magnetic resonance imaging) and
suggested this as a common manifestation among patients with
MECP2 duplications.10,11 This finding was supported by those of
Reardon et al.41 Four new patients with Xq28 also showed T2-
weighted high intensity in the white matter (Figure 2). Dilatation
of bilateral ventricles was also commonly observed.

GENOTYPE–PHENOTYPE CORRELATION
The shortest region overlapped observed in patients with MECP2
duplications associated with the typical phenotypic features of
MECP2 duplication syndrome included MECP2 and the neighbor-
ing IRAK1, with a size of 0.2 M,24 which was supported by our
study (Figure 1). Although Velinov et al.42 suggested that the distal
Xq28 region beyond MECP2 did not contribute to additional
features, Honda et al.43 suggested that duplications of the GDI1
region modified the clinical features in patients with MECP2
duplications associated with hypoplasia of the corpus callosum. In
this review, two new patients (patients 5 and 11) showed
interstitial duplications beyond the shortest region overlapped
of MECP2 duplication syndrome that included the GDI1 region.
Careful observation of the patients’ magnetic resonance images

showed hypoplasia of the corpus callosum, as suggested by
Honda et al.,43 although there were no definite differences in the
severity of clinical symptoms in patients with a MECP2+GDI1
duplication compared with patients with pure MECP2 duplications.
Patients with terminal duplication of Xq28 had significantly

more severe neurological manifestations compared with patients
with pure MECP2 duplications. Four patients with interstitial
duplications involving MECP2, but not RAB39B, could temporarily
walk. However, patients with terminal duplications of Xq28 were
immobile, which is a response derived from the integrated effects
of the RAB39B region.
The maximum interstitial duplications observed in patients

manifesting the phenotypic features of MECP2 duplication
syndrome involved a 4-Mb region.26 In comparison, some patients
showed large terminal Xq duplications beyond Xq27,44–47

although most of the analyzed duplications had conventional
G-banding levels. The largest duplication presented in this review
was observed in patient 1, and a 139-Mb region in Xq27.1 was at
the most proximal end. Furthermore, the neurological features in
patient 1 were the most severe among the 11 patients studied
because this patient showed severe hypotonia from early infancy
and required continuous tube feeding. There were many episodes
of life-threatening infection. In comparison with the second
largest duplication that was observed in patient 2, the Y-box 3
gene (SOX3; MIM #313430) in the sex-determining region was
located in the additional duplicated region in patient 1. This gene
is related to X-linked ID and hypopituitarism,48 and duplication of
this region is related to similar phenotypes, indicating dosage
sensitivity.49 Therefore, the involvement of SOX3 in the duplicated
region could affect clinical severity in patients with Xq terminal
duplications.

CONCLUSIONS
The chromosomal patterns of Xq28 duplications and their clinical
relevance have been discussed in this review. A review of the
scientific evidence indicates that duplicated regions of the Xq28
chromosome that are responsible for ID can be separated into
three distinct regions: MECP2, GDI1 and RAB39B. Furthermore,
SOX3 may have modifier effects for severe ID. To establish the
clinical significance of gene duplications, further analysis of
genotype–phenotype data from these patients is required.

Figure 2. Brain magnetic resonance imaging (MRI) findings of new
patients with Xq28 duplications. Sagittal T1 (up) and axial T2
(bottom)-weighted images are shown. All patients showed hypo-
plasia of the corpus callosum and T2 signal high intensities in the
deep white matter. Three patients (other than patient 8) showed
atrophies of the cerebellum and bilateral dilatations of the lateral
ventricles, indicating age-dependent progression. Patient 3 showed
a translucent septal defect, and patients 5 and 8 showed a verga
cavity.
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