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INTRODUCTION

The capacity of drugs to inhibit the bile salt export pump 
(BSEP) has been correlated with clinical drug–induced liver 
injury (DILI).1 Furthermore, known inhibitors of BSEP and 
other bile acid (BA) transporters have been implicated in the 
case studies of DILI. Glibenclamide has been associated 
with lobular liver injury in the clinic,2,3 bosentan has been 
associated with many cases of hepatotoxicity and carries a 
black-box warning for hepatotoxicity,4 and troglitazone was 
withdrawn from the market due to idiosyncratic DILI.5,6 Cur-
rently marketed BSEP inhibitors, such as lapatinib, have been 
given black-box warnings due to issues with liver toxicity.7  
Interestingly, BSEP inhibitors often have additional proposed 
mechanisms for hepatotoxicity,8–11 and this can often con-
found our understanding of how these drugs cause DILI. 
Understanding the effects of BSEP inhibitors on BA metabo-
lism and processing will prove crucial in understanding the 
importance of BSEP inhibition in clinical DILI.

BAs are molecules that aid digestion of triglycerides and 
other fat-soluble nutrients. They are synthesized in the liver and 
undergo highly efficient enterohepatic recirculation.12,13 While 
much is understood qualitatively about the basics of BA homeo-
stasis, there are still many aspects of BA transport about which 
little quantitative information exists. For example, regulation of 
transporter activity by the farnesoid-X receptor (FXR) and other 
nuclear receptors generally responsible for BA synthesis has 
been demonstrated,14–17 and chenodeoxycholic acid (CDCA) 
and its amide conjugates have been shown to decrease BA 
synthesis18 and trigger FXR.19 However, to our knowledge, FXR 
response and transporter activity have not been linked quan-
titatively to BA concentrations within hepatocytes. Second-
ary BAs, such as lithocholic acid (LCA) and deoxycholic acid 

(DCA), are synthesized in the gut by intestinal bacteria,20 but to 
our knowledge, the rates of synthesis and the population vari-
ability of this synthesis have not been quantified in any species. 
Transporter kinetic and inhibition studies have used (or focused 
on) taurocholic acid, a metabolically stable model BA, but simi-
lar studies rarely have been performed on other BAs. Further-
more, while certain BA species, such as LCA and CDCA, are 
more cytotoxic than other BAs,20–24 the effect that intrahepatic 
concentrations of these BAs have on hepatocytes remains to 
be elucidated. While BSEP transporter expression variability in 
humans has been quantified,25 and underlying diseases have 
been shown to affect transporter expression,26 the significance 
of this variability has not been explored fully.

The relative importance of these unknowns remains in 
question. The process of constructing a mathematical model 
of BA-induced DILI can be helpful in determining which 
data gaps should be filled first for maximum impact. While 
any mechanistic model of BA-induced DILI will be lacking 
in quantitative accuracy due to the significant data gaps, 
mechanistic modeling can be used to qualitatively describe 
elements of the system that would be more or less likely to 
contribute to BA-mediated DILI.

In this study, we use DILIsym (www.dilisym.com), a mecha-
nistic mathematical model of DILI, to explore the nature of BA 
homeostasis and its disruption by BA transporter inhibitors. 
DILIsym has been used previously to assess the efficacy of 
different N-acetylcysteine treatment regimens in acetamin-
ophen-overdosed patients27 and to understand the species 
differences in methapyrilene toxicity using in vitro metabolism 
data.28 For this study, we have constructed a module of BA 
homeostasis within DILIsym for rats and humans; information 
on the data used to construct this module is available in the 
Supplementary Materials online.
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Bile salt export pump (BSEP) inhibition has been proposed to be an important mechanism for drug-induced liver injury 
(DILI). Modeling can prioritize knowledge gaps concerning bile acid (BA) homeostasis and thus help guide experimentation. 
A submodel of BA homeostasis in rats and humans was constructed within DILIsym, a mechanistic model of DILI. In vivo 
experiments in rats with glibenclamide were conducted, and data from these experiments were used to validate the model. 
The behavior of DILIsym was analyzed in the presence of a simulated theoretical BSEP inhibitor. BSEP inhibition in humans 
is predicted to increase liver concentrations of conjugated chenodeoxycholic acid (CDCA) and sulfate-conjugated lithocholic 
acid (LCA) while the concentration of other liver BAs remains constant or decreases. On the basis of a sensitivity analysis, the 
most important unknowns are the level of BSEP expression, the amount of intestinal synthesis of LCA, and the magnitude of 
farnesoid-X nuclear receptor (FXR)-mediated regulation.
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We have also collected novel in vivo data from the rats 
treated with the BSEP inhibitor glibenclamide and used these 
data to ensure the reasonability of the DILIsym model. We also 
compared the human representation in DILIsym to serum BA 
data in humans after acetaminophen overdose. This model 
was used to explore the changes in intrahepatic BA concen-
trations that are predicted to occur in humans when a BA 
transporter inhibitor is administered. Finally, a sample popu-
lation was used to determine which system parameters have 
the most influence on the magnitude of the intrahepatic BA 
changes that occur after dosing with a BA transporter inhibi-
tor and would thus be the system components that would be 
most useful to be illuminated by future experiments.

ReSULTS

The BSEP and Na+-taurocholate-cotransporting polypeptide 
inhibitor glibenclamide, when administered orally to rats, causes 
an increase in total plasma BAs; this increase in BA concen-
trations is associated with high systemic exposure to gliben-
clamide, but is not observed at lower exposure levels. Figure 1 
shows the results from the single-dose studies. There was no 
relationship between dose and exposure. Glibenclamide is 
notoriously poorly absorbed29; as such, the systemic exposure 
for each individual rat is more important than the dose admin-
istered. At concentrations below a Cmax of 10,000 ng/ml, there 
was little correspondence between glibenclamide concentra-
tions and serum BA fold change, suggesting that the variability 
in BA processing among rats exceeds the effects of transporter 
inhibition at these exposure levels. Rats with glibenclamide Cmax 

>10,000 ng/ml generally displayed a higher concentration of 
BAs, albeit over a wide range. As shown in Figure 1, the simu-
lated population (SimPops) covers the range of BA increases 
observed in the experimental rat data at each maximum simu-
lated concentration tested, validating our model.

Figure 2 summarizes the results of the multiple-dose (300, 
750, and 1,500 mg/kg) studies where individual BA spe-
cies were measured. Serum data from day 1 are plotted in 
 Figure 2; each data point represents an individual rat. Serum 
CDCA and LCA concentrations increased very soon after 
glibenclamide dosing with a return to the baseline predosing 
value by the end of 24 h; serum CDCA amide conjugates did 
not appear to change after glibenclamide dosing.

On day 7, plasma concentrations of glibenclamide did not 
vary widely in animals treated with the three different dose 
levels (data not shown); as a result, a single simulation was 
conducted on a rat SimPops at a simulated drug–exposure 
level similar to that observed in the rats in vivo. The results 
of this simulation were compared to the experimental data 
for LCA, CDCA, and CDCA–amide conjugates in Figure 2. 
The simulated population showed similar dynamics to those 
observed in vivo; the simulated rats exhibited a mild increase 
in BAs between 1 and 2 h after dosing and returned to base-
line values by 24 h. For unconjugated CDCA, the simulated 
rat population covered the range of observed responses; 
for LCA, the simulated responses covered the bulk of the 
experimental data but missed the highest BA concentrations, 
while for CDCA–amide, our simulated population covered a 
much wider range than the experimental data, likely due to 
a wider range of initial CDCA–amide concentrations in the 
rat SimPops. Figure 2 demonstrates that DILIsym provides a 
good approximation of the range of BA increases that were 
observed after administration of a transporter inhibitor.

As data detailing the effect of BA transporter inhibitors on 
BA concentrations in humans were scarce, the model was 
validated in humans by comparing the response of the system 
after acetaminophen dosing to serum BA data from the clinic.30 
Acetaminophen is not a BSEP inhibitor, so in this case, BA 
elevations are due to hepatocyte necrosis. The results of this 
validation are shown in Figure 3. Our baseline human model 
had a similar response to that demonstrated by James et al., 
that is, little to no BA elevations in serum when injury was mini-
mal, small but significant increases when there was moderate 
injury, and large elevations when the injury was severe. The 
small human SimPops also exhibited a similar range of BA con-
centration changes to the patients reported in the James study.

With the model structure validated using the rat and human 
experimental data, we proceeded to simulate a BSEP inhibi-
tor in our baseline human model. The difference in liver BA 
area under the curves (AUCs) over the course of simulated 
drug administration in the presence and absence of the theo-
retical inhibitor is given in Table 1. In all zones of the liver, 
increases were observed in the AUC of bulk BAs, CDCA–
amide conjugates, and LCA–sulfate conjugates. Meanwhile, 
the AUC of unconjugated CDCA and unconjugated LCA 
actually decreased, while the AUC of amide-conjugated LCA 
remained about the same.

The changes in BA concentrations with inhibitor as a func-
tion of the zonality of the liver were also examined using 
DILIsym (Table 1). In the periportal region, where most BAs 

Figure 1 Glibenclamide exposure (as measured by Cmax) vs. 
maximum total BA fold change over initial predose concentration 
for individual rats given a single oral dose of either 250 or 500 mg/kg 
glibenclamide (black points), and simulation results (red curves) are 
shown for different levels of glibenclamide exposure. BA, bile acid.

0.0
0 20,000 40,000 60,000

Maximum plasma glyburide (ng/ml)

80,000 100,000

Measured results

SimPops at 50 mg/kg

SimPops at 100 mg/kg

SimPops at 150 mg/kg

SimPops at 200 mg/kg

5.0

10.0

15.0

20.0

25.0

M
ax

im
um

 B
A

 fo
ld

 in
cr

ea
se

 o
ve

r 
pr

et
re

at
m

en
t

30.0

35.0

40.0



www.nature.com/psp

Mechanistic Modeling of Bile Acids
Woodhead et al.

3

are concentrated, the results were similar to those of the 
overall liver. However, in the centrilobular region, all BA spe-
cies except for unconjugated LCA increased significantly. For 
CDCA–amide and LCA–sulfate conjugates, the increases in 
AUC were far greater than those predicted in the periportal 
region. However, the absolute centrilobular AUC remained 
lower than the absolute periportal AUC for all BA species.

The large model human population was used to under-
stand the sensitivity of the model parameters to BA accu-
mulation. The most important variables for the accumulation 
of each BA species in simulated human liver are shown in 
Table 2. Since the baseline human model simulations sug-
gested that CDCA–amide and LCA–sulfate were the most 
likely BA species to accumulate in the liver, we assessed 
the correlation between changes in system parameters and 
increases in CDCA–amide and LCA–sulfate concentrations. 
The sensitivity analysis suggested that BSEP expression, as 
represented by CDCA–amide canalicular transport Vmax, was 
the most important variable for CDCA–amide accumulation, 
while the magnitude of LCA synthesis in the gut was the most 
important variable for LCA–sulfate accumulation.

The difference in hepatic CDCA–amide accumulation when 
CDCA–amide canalicular efflux Vmax changes compared 
to when the canalicular transport regulation scaling factor 

Figure 2 Time course of (a) CDCA, (b) LCA, and (c) CDCA–amide 
conjugate concentrations in rat serum after administration of the first 
dose of 300 (O), 750 (*), and 1,500 (X) mg/kg oral glibenclamide, 
as well as rats with no glibenclamide (•). Simulation results 
are for a single dose of oral glibenclamide at a model dose that 
reproduces an exposure similar to that of the rats in this study. Each 
point represents a single-individual experimental rat; each red line 
represents an individual simulated rat. CDCA, chenodeoxycholic 
acid; LCA, lithocholic acid.
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Figure 3 Comparison between DILIsym v2C and data reported in 
James et al.30 James et al. report their data in terms of histology 
grade, which was assumed to map to ~25, 50, and 75% hepatocyte 
loss for grades I, II, and III, respectively. The red line represents 
the behavior of the baseline human model; the red dots represent 
individuals in the small human SimPops.
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Table 1 Bile acid changes in a model of human bile acid inhibition in the 
periportal and centrilobular zones of the liver

BA species
AUC without 

drug (mol-h/ml)
AUC with drug 

(mol-h/ml)
Percentage 

change

Periportal zone

  Bulk BA 4.99  × 10−5 1.52  ×  10−4 205

  LCA 3.95  ×  10−10 1.12  ×  10−10 −72

  LCA–amide 7.01  ×  10−8 6.10  ×  10−8 −13

  LCA–sulfate 1.60  ×  10–6 6.59  ×  10−6 311

  CDCA 5.52  ×  10–10 4.42  ×  10−10 −20

  CDCA–amide 2.14  ×  10–5 5.01  ×  10−5 134

Centrilobular zone

  Bulk BA 1.02  ×  10−5 1.10  ×  10−4 980

  LCA 2.91  ×  10−11 1.52  ×  10−11 −48

  LCA–amide 1.20  ×  10−8 5.80  ×  10−8 382

  LCA–sulfate 1.56  ×  10−7 3.19  ×  10−6 1,947

  CDCA 4.54  ×  10−11 6.28  ×  10−11 38

  CDCA–amide 2.69  ×  10−6 2.94  ×  10−5 994

AUC refers to the total bile acid AUC over the course of the simulation.
AUC, area under the curve; BA, bile acid; CDCA, chenodeoxycholic acid; 
LCA, lithocholic acid.
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changes (which roughly corresponds to the magnitude of the 
response of BA transporter expression to FXR activation), 
as seen in Figure 4, is particularly instructive. When CDCA–
amide canalicular efflux Vmax was varied, the baseline CDCA–
amide concentration of the individual changed; however, the 
percentage increase in CDCA–amide concentration after 
administration of the inhibitor was approximately constant 
across the variable range. In contrast, when the canalicular 
regulation scaling factor was varied, the baseline concentra-
tion of CDCA–amide remained the same (although meal fluc-
tuations were more pronounced with less regulation), while 
the percentage increase in CDCA–amide concentration was 
much higher when canalicular transport regulation was lower.

DISCUSSION

The novel in vivo data included herein demonstrate the impor-
tance of considering population variability and individual char-
acteristics in any model of BA homeostasis and its disruption. 
The variability between rats shrouded the detection of changes 
in BA due to low concentrations of glibenclamide (Cmax: 500–
10,000 ng/ml) and the resultant transporter inhibition. The lack 
of an apparent exposure/response effect in the individual BA 
data is due to the population variability. Even with higher doses 
of glibenclamide, when an exposure/response relationship was 
observed, we found that there was a wide range of responses, 
as measured by a fold increase in BA concentrations, among 
the rats with glibenclamide Cmax higher than 10,000 ng/ml. Few 
rats reached the higher drug-exposure levels; further experi-
ments, perhaps using a more readily absorbed formulation of 

glibenclamide, could help illuminate this effect. The variability 
in the results also makes model validation difficult, as our abil-
ity to reproduce the experimental conditions (including indi-
vidual rats’ initial plasma and liver BA concentrations) within 
the context of a simulation is challenging; while our model is 
reasonably validated, further experimentation in this area will 
continue to improve our representation.

Our results suggest that due to the population variability 
inherent in the BA system, a baseline model is of limited utility 
for predicting the response of rats (or patients) to BA transporter 
inhibitors. A baseline model is useful for gleaning interesting 
information about the basic behavior of the system, but quan-
titative predictions of BA increases and decreases should not 
be based on the behavior of a baseline BA model. Constructing 
an appropriate population for the human model is, therefore, of 
the utmost importance for the prediction of BA-mediated DILI. 
To that end, we used the BA model to identify the most impor-
tant parameters that are likely to vary among individuals. These 
parameters should be included in the creation of a reasonable 
population for the prediction of BA toxicity.

The model suggests that the end-product BA conjugates 
are the BA species that are most likely to accumulate in the 
liver. This is likely due to the fact that the conjugation of BAs is 
fairly rapid in the liver, and these pathways do not easily satu-
rate. Previous research has placed the K

m for BA amidation 
in the 1 mmol/l range,31 which is several orders of magnitude 
higher than typical in vivo unconjugated BA concentrations. 
As a result of the predicted accumulation of BA conjugates 
in the liver, BA amide and sulfate conjugates are potential 
liver toxicophores; the toxicity of these molecules should be 
explored and quantified with future experimentation.

The model also suggests that an interesting zonal effect 
exists in BA accumulation. Centrilobular cells, which gen-
erally have a lower BA concentration than their periportal 
counterparts,32 have a much higher predicted relative accu-
mulation of all BA species. In fact, the AUC of unconjugated 
BAs was predicted to increase in the centrilobular zone, even 
though the same BAs’ AUC decreased in the periportal zone. 
Despite the differential BA changes in the two zones, the 
absolute AUC of BAs in the centrilobular zone was predicted 
to remain lower than the periportal zone. However, if centri-
lobular cells are more sensitive to BA toxicity than periportal 
cells, an increase in BA concentrations could lead to zonal 
centrilobular toxicity. Indeed, some case reports of liver injury 
due to glibenclamide demonstrate centrilobular injury.2,3 The 
investigation of the differential effects of BAs on centrilobular 
and periportal liver cell toxicity would be another interesting 
and worthwhile experiment.

Simulations using a model population provided further 
insight into the most valuable experiments that could be per-
formed to improve our understanding of BA-mediated DILI. 
Among the many system unknowns varied within the model 
population, the most important variables included LCA syn-
thesis in the gut and the regulatory response to BA accu-
mulation. Therefore, quantifying LCA synthesis in the gut in 
addition to changes in BSEP expression and activity with 
increasing hepatocyte BA concentrations would be important 
and impactful experiments. The importance of BSEP expres-
sion levels to BA accumulation in hepatocytes, for example, 
could be quantified using existing animal or in vitro models.

Table 2 Correlation coefficients for the 10 most correlated system param-
eters to hepatic CDCA–amide accumulation and LCA–sulfate accumulation

Variable
Correlation 
coefficient

Hepatic CDCA–amide accumulation

  CDCA–amide canalicular transport Vmax −0.2945

  Canalicular regulation scaling factor 0.1874

  CDCA–amide liver uptake Km −0.1811

  CDCA–amide basolateral transport Vmax −0.1579

  LCA synthesis Km 0.1478

  CDCA liver uptake Km −0.1379

  CDCA–amide regulatory response Km 0.1287

  LCA uptake Vmax −0.1237

  CDCA regulatory response Km −0.1231

  LCA synthesis Vmax −0.1056

Hepatic LCA–sulfate accumulation

  LCA synthesis Vmax 0.3040

  Fraction of LCA recirculated 0.2463

  CDCA–amide basolateral transport Vmax 0.2457

  LCA canalicular transport Km 0.2100

  LCA synthesis Km −0.2055

  LCA–amide sulfation Vmax 0.1463

  LCA–sulfate canalicular transport Vmax −0.1409

  Fraction of LCA–sulfate recirculated 0.1307

  CDCA basolateral transport Vmax 0.1299

  Bulk bile acid liver uptake Vmax 0.1278

CDCA, chenodeoxycholic acid; LCA, lithocholic acid.
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The modeling also revealed the importance of transporter 
expression levels on the behavior of the system; however, it 
is important to note a key difference between the behavior 
of the system when these expression levels are varied and 
its behavior when the regulatory response is varied. When 
transporter expression levels—especially canalicular trans-
porter levels—are decreased, the baseline BA concentration 
in the liver increases; the percentage increase in BAs after 
dosing the inhibitor remains somewhat constant. Varying the 
magnitude of the regulatory response (FXR activation), by 
contrast, does not have a large effect on baseline BA con-
centrations in the liver; however, the percentage increase 

in BAs after inhibitor dosing is highly variable. Both trans-
porter expression levels and the magnitude of the regulatory 
response are expected to vary within a population; however, 
only the variability in transporter expression levels may be 
apparent in untreated individuals. This result suggests both 
the promise and the limitations of prescreening individuals for 
certain risk factors before prescribing known BSEP inhibitors.

MeTHODS

The BA submodel in DILIsym comprises several compo-
nents. It includes (i) the synthesis and metabolism of BAs in 

Figure 4 Change in simulated liver CDCA–amide concentration over 50 days of administration of a model bile salt export pump (BSEP) 
inhibitor (described in detail in the Supplementary Materials online) at varying values of (a) CDCA–amide canalicular transport (BSEP) Vmax 
and (b) CDCA–amide regulatory response Km. CDCA, chenodeoxycholic acid.
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hepatocytes, (ii) the basolateral and canalicular active trans-
port of BAs, (iii) the release of BAs from the gallbladder in 
humans, (iv) the synthesis of secondary BAs and deconjuga-
tion of BAs in the gut, (v) the recirculation of BAs from the gut 
and subsequent active uptake by the liver, and (vi) the regula-
tory effects of BAs on transporter expression and BA synthe-
sis. The model contains representations of LCA and CDCA 
and its conjugates, the BA species most frequently linked to 
toxicity in in vitro experiments,20,21,33,34 and a “bulk” BA rep-
resentation that contains the other BAs. A more detailed 
description of the BA homeostasis model and its parameter-
ization is presented in the Supplementary Materials online.

To represent BA dynamics in humans, the model was opti-
mized to the known profile of BAs in serum published by Trot-
tier et al.,35 as well as to overall concentrations of BAs in the 
liver measured by Setchell36 and García-Cañaveras et al.37 
There were 47 system variables that were either unknown 
or expected to vary within the human population that were fit 
to the BA profile; a list of the variables used in the optimiza-
tion is provided in the Supplementary Materials online. The 
optimization of the model based on the published BA profile 
was performed in a manner similar to the SimPops method 
outlined in previous publications, wherein a genetic algorithm 
was used to generate values of variable parameters that lead 
to model outcomes (in this case, BA profiles) that are within 
the range of experimental data.27,28 Using this optimization 
method allowed the selection of a population of 2,400 indi-
viduals with reasonable baseline BA concentrations for the 
large human sample population. A smaller, 10-parameter, 
331-individual SimPops was also constructed for the pur-
pose of model validation. While the large population was 
given artificially wide parameter ranges for the purpose of the 
sensitivity analysis, the small human sample population was 
constructed with more constrained parameter ranges for the 
purpose of approximating a plausible population of humans. 
For example, the transporter Vmax ranges included four orders 
of magnitude in the large population, but were constrained 
to ranges suggested by transporter expression profiles from 
Meier et al.25 in the small population.

A smaller SimPops was constructed in rats for the valida-
tion against the experimental data. A population of 191 rats 
using a more limited 11 variable set (Supplementary Table 
S4 online) was generated. This population was intended to 
represent rats with both plausible serum BA concentrations 
and plausible values for the parameters that were varied. The 
baseline rat model was optimized to the BA profile from the 
control rats in the present experiment, and the SimPops was 
constructed around this baseline.

Details on the simulations performed for the model validation 
and for the model exploration can be found in the Supplemen-
tary Materials online. Multivariate analysis on the population 
sample was performed using JMP 9 from SAS (Cary, NC).

Multiple-dose glibenclamide study in rats 
For the BA-profiling experiments, 16 male 8- to 9-week-old 
CD-1 rats from Charles River Laboratories (Raleigh, NC) 
weighing between 200 and 300 g were randomized into four 
groups of four animals each. These groups were administered 
daily doses of either the vehicle control (0.5% hydroxypropyl-
methylcellulose /0.1% Tween 80 in water) or glibenclamide 

(Sigma-Aldrich, St Louis, MO) in vehicle via oral gavage 
for 7 days at three dose levels (300, 750, and 1,500 mg/kg/
day). Details on the treatment of the rats are available in the 
 Supplementary materials online.

Rats underwent a viability check twice per day, and detailed 
clinical observations were taken at least twice over the course 
of the study. Blood was drawn for serum BA profiles at 1, 3, 6, 
and 24 h after dosing on day 1 and day 7, and glibenclamide 
concentrations were measured for toxicokinetic analysis using 
the same blood samples from day 7. The animals were eutha-
nized under isoflourane anesthesia on day 8 and underwent 
necropsy. Clinical and anatomic pathology data were collected 
from the animals, and these results are reported in the Supple-
mentary Materials online. The serum BA concentrations from 
day 1 were used for comparison to the simulation results.

BA profiling in serum was performed using liquid 
 chromatography–tandem mass spectrometry analysis at 
GlaxoSmithKline (Ware, UK). BAs in liver tissue 24 h after 
the final dose also were profiled; results from this analysis, 
as well as the liquid chromatography–tandem mass spectrom-
etry analytical method, are presented in the Supplemental 
 Materials online. This study was conducted in accordance 
with the GlaxoSmithKline Policy on the Care, Welfare and 
Treatment of Laboratory Animals and was reviewed by the 
Institutional Animal Care and Use Committee.

For this experiment, doses of glibenclamide were admin-
istered every 24 h for 7 days. Systemic exposure data were 
compared to simulation results for day 7; day 1 BA data were 
compared to simulated BA concentrations on day 1.

Short-term glibenclamide studies in rats
For the short-term studies, male Han Wistar rats (substrain 
AlpkHsdBrlHan:WIST; AstraZeneca, Macclesfield, UK) of 10–
12-week age (300–400 g) were used. Details on the treatment 
of the rats used in this study are available in the Supplemental 
Materials online. All animals were treated in accordance with 
approved UK Home Office license requirements.

Two experiments were performed in which total plasma BA 
concentrations and glibenclamide plasma concentrations were 
determined. Glibenclamide (Sigma-Aldrich) was formulated 
as a solution or suspension in hydroxypropyl-β-cyclodextrin 
(Acros Organics, distributed by Fisher Scientific, Loughbor-
ough, UK) in aqueous 0.2 mol/l Na

2CO3/NaHCO3 buffer (pH 
10). In the first experiment (29 animals), four groups of five 
animals received a single dose via oral gavage of 50, 250, 
and 500 mg/kg glibenclamide or 10% (w/v) hydroxypropyl- 
β-cyclodextrin vehicle alone, and blood samples were taken 
at 1, 6, and 24 h after dosing; an additional three animals per 
glibenclamide-treated group received a single dose of 50, 250, 
and 500 mg/kg glibenclamide, and blood samples were taken 
at 1, 3, 6, 12, and 24 h after dosing. In the second experiment 
(20 animals), two groups of five animals each received two 
oral doses of 250 and 500 mg/kg glibenclamide in 20% (w/v) 
hydroxypropyl-β-cyclodextrin vehicle at 0 and 4 h, and blood 
samples were taken predose and at 0.5, 1, 2, and 4 h after 
dosing; blood samples from an additional five animals per 
glibenclamide-treated group were taken predose and 1 h after 
dosing to increase the dataset for this time point. Details on the 
blood-sampling procedure are located in the Supplementary 
Materials online. Animals were dosed 2 h into the light cycle.
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