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Abstract: Antibiotics have been extensively used to ensure the productivity of animals on intensive
livestock farms. Accordingly, antimicrobial-resistant organisms, which can be transmitted to humans
via the food chain, pose a threat to public health. The Enterobacterium antimicrobial resistance
gene, blaNDM-1, is a transmissible gene that has attracted widespread attention. Here, we aimed
to investigate the prevalence of Enterobacteriaceae carrying blaNDM-1 on an intensive pig farm. A
total of 190 samples were collected from a pig farm in Hunan Province, China. Resistant isolates
were selected using MacConkey agar with meropenem and PCR to screen for blaNDM-1-positive
isolates. Positive strains were tested for conjugation, antimicrobial susceptibility, and whole-genome
sequencing. Four blaNDM-1-positive Providencia strains were obtained, and multidrug resistance was
observed in these strains. The structure carrying blaNDM-1 did not conjugate to E. coli J53 after three
repeated conjugation assays. This suggests that, in intensive farming, attention should be focused
on animal health and welfare to reduce the frequency of antibiotic usage. Carbapenem-resistant
Enterobacteriaceae in the breeding industry should be included in systematic monitoring programs,
including animal, human, and environmental monitoring programs.

Keywords: antimicrobial resistance; blaNDM-1; carbapenem-resistant Enterobacteriaceae; Providencia;
pig farm

1. Introduction

Antimicrobial resistance (AMR) is recognized as one of the most serious threats to
human and animal health [1–3]. These concerns are amplified by the rapid increase in
carbapenem-resistant Enterobacteriaceae (CRE), which can carry and spread resistance
genes [4]. Infections by CRE are associated with significant morbidity and mortality [5], as
well as substantial economic loss.

The mechanisms underlying carbapenem resistance in CRE are complex and are known
to involve the production of the enzyme New Delhi metallo-beta-lactamase (NDM-1), a
carbapenemase encoded by the blaNDM-1 gene [6]. Since the first report of a strain of blaNDM-1-
positive Klebsiella pneumoniae from India in 2008 [7], many Enterobacteriaceae containing
blaNDM-1 have been reported worldwide [8–10]. Several blaNDM-1-positive isolates belong to
the Enterobacteriaceae genus Providencia, which consists of several gram-negative oppor-
tunistic pathogenic strains [11]. Providencia spp. have been reported to cause diarrhea in
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humans, especially in developing countries, and are a common cause of travel diarrhea [12].
Moreover, Providencia spp. have been found in a variety of organisms, including birds, fish,
and fruit flies, and can be isolated directly from water [13–17]. The discovery of blaNDM-1 in
Providencia is concerning because these bacteria are naturally resistant to tetracycline and
colistin, making the clinical treatment of these infections extremely difficult [18]. In the past
several years, blaNDM-1-positive Providencia spp. have been found in patients from Peru [19],
China [20], and Australia [21], most of whom were hospitalized. These strains are usually
isolated from samples of human urine, blood, and sputum [22].

Furthermore, expression of blaNDM-1 and the presence of its carrier bacteria have been
detected in non-clinical samples, such as chickens, pigs, cattle, dogs, cats, swallows, and
flies, and transmission of Enterobacteriaceae carrying blaNDM-1 along the food chain has
been reported [4,23]. Thus, there is a precedent for monitoring blaNDM-1-carrying bacteria
in livestock and poultry farms. While investigations on the presence of blaNDM-1-positive
Providencia in pigs are scarce [24], the monitoring of zoonotic indicators on pig farms has
shown that AMR is common [25]. Therefore, we collected 190 fecal and environmental
samples from a large-scale pig farm in Hunan Province, China, to investigate the prevalence
of blaNDM-1-positive bacterial strains. Here, we report the identification of four blaNDM-1-
positive Providencia isolates in pigs.

2. Results
2.1. Identification of blaNDM-1-Positive Isolates

Ten strains were screened using meropenem (0.5 µg/mL): three strains were obtained
from environmental samples from three different rooms (breeding rooms, pregnancy rooms,
and delivery rooms), and six strains were obtained from fecal samples (three from the piglet
rooms and three from fattening rooms). PCR analysis of these 10 samples revealed four
blaNDM-1-positive bacterial strains. Three of the four blaNDM-1-positive strains (20Q122mw,
20Q124mw, and 20Q126mw) were obtained from pig fecal samples collected from the
piglet room. The other blaNDM-1-positive strain (20Q171mw) was obtained from a pig fecal
sample collected from a fattening room. Bacterial 16S rRNA sequencing identified strains
20Q122mw and 20Q124mw as Providencia rettgeri and strains 20Q126mw and 20Q171mw
as P. stuartii.

2.2. Antimicrobial Susceptibility Profiles and Conjugation Experiments

The multidrug resistance of the four blaNDM-1-positive Providencia strains was assessed
by performing drug sensitivity tests (Table 1). Multidrug-resistant bacteria were defined as
those resistant to three or more classes of antibiotics [26]. The minimum inhibitory concen-
trations (MICs) of florfenicol and colistin against the blaNDM-1-positive strains exceeded
128 µg/mL, which indicated high resistance. Resistance to florfenicol can be attributed
to the presence of the amphenicol resistance gene, floR, in both P. rettgeri and P. stuartii
(Table 2). Meanwhile, resistance to colistin likely corresponds to the natural antimicrobial
resistance of Providencia since no resistance genes against colistin have been previously
found [27]. Although all four blaNDM-1-positive strains exhibited multidrug resistance,
some differences in the resistance profiles between the P. rettgeri and P. stuartii strains
were observed. In particular, a difference was observed in the susceptibility to gentam-
icin, wherein the P. stuartii strains were resistant to gentamicin up to a concentration of
16 µg/mL, whereas the P. stuartii strains were sensitive to 0.25 µg/mL gentamicin.

No strains with successful conjugation were obtained after three repeat tests.
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Table 1. Susceptibility of blaNDM-1-positive Providencia strains to antimicrobial agents.

Strains Sites Species Source
MIC (µg/mL)

MEM AMK FFC CL TGC GEN CIP CTX CEF TCY PTZ

20Q122mw Piglet room P. rettgeri Pig feces 4 4 >128 >128 1 0.25 4 16 16 2 32
20Q124mw Piglet room P. rettgeri Pig feces 4 4 >128 >128 1 0.25 4 16 16 2 32
20Q126mw Piglet room P. stuartii Pig feces 4 4 >128 >128 2 16 4 16 32 4 32

20Q171mw Fattening
room P. stuartii Pig feces 4 4 >128 >128 2 16 4 16 32 4 32

MIC, minimum inhibitory concentration; MEM, meropenem; AMK, amikacin; FFC, florfenicol; CL, colistin;
TGC, tigecycline; GEN, gentamicin; CIP, ciprofloxacin; CTX, cefotaxime; CEF, ceftiofur; TCY, ceftiofur; PTZ,
piperacillin-tazobactam.

Table 2. Genetic characterization of carbapenem-resistant Providencia strains.

Strains Source Species Sequencing
Platforms Size GC

Content Antibiotic Resistance Genes

20Q122mw Pig feces P. rettgeri Illumina Hiseq 4,612,974 bp 40.3%

blaNDM-1, blaTEM-116, msr(E), aph(3′)-Ia,
aadA1, aac(6′)-Ib-cr, aadA2, dfrA1, dfrA12,
sul1, tet(D), mph(E), qnrA1, ARR-3, qacE,
floR, catB3

20Q124mw Pig feces P. rettgeri Illumina Hiseq 4,607,625 bp 40.3%
blaNDM-1, msr(E), aac(6′)-Ib-cr, aph(3′)-Ia,
aadA2, aadA1, tet(D), qnrA1, sul1, dfrA12,
dfrA1, ARR-3, mph(E), qacE, catB3, floR

20Q126mw Pig feces P. stuartii Nanopore
minION 4,712,152 bp 40.7%

blaNDM-1, blaOXA-10, dfrA1, sul1, sul2,
aph(6)-Id, aac(6′)-Ib3, aac(6′)-Ib-cr, aadA1,
ant(2′′)-Ia, aph(3′)-Ia, aph(3′′)-Ib, ARR-3,
mph(E), msr(E), qnrD1, tet(B), qacE, catB8,
floR, catB3, lnu(G)

20Q171mw Pig feces P. stuartii Illumina Hiseq 4,665,324 bp 40.6%

blaNDM-1, blaOXA-10, blaTEM-116,
ant(2′′)-Ia, aadA1, aph(3′)-Ia, aac(6′)-Ib-cr,
aph(3′′)-Ib, aph(6)-Id, aac(6’)-Ib3, dfrA1, sul1,
sul2, ARR-3, mph(E), msr(E), qnrD1, tet(B),
qacE, catB8, catB3, floR, lnu(G)

2.3. WGS Analysis

The distribution of drug resistance genes in the four Providencia strains was analyzed by
using whole genome sequencing. In addition to the beta-lactam resistance genes blaNDM-1,
blaOXA-10, and blaTEM-116, the four blaNDM-1-positive strains carried several common resis-
tance genes (Table 2). In the two P. rettgeri strains, resistance genes against aminoglycosides
(aph(3′)-Ia, aadA1, aac(6′)-Ib-cr, and aadA2), macrolides (msr(E) and mph(E)), trimethoprims
(dfrA1 and dfrA12), and sulfonamides (sul1) were identified. Interestingly, we detected
more resistance genes in the P. stuartii strains than in the P. rettgeri strains; these included
resistance genes against aminoglycosides (aph(6)-Id, aph(3′)-Ia, aadA1, aac(6′)-Ib3, aph(3′)-Ib,
aac(6′)-Ib-cr, and ant(2′′)-Ia), macrolides (msr(E) and mph(E)), trimethoprims (dfrA1), and
sulfonamides (sul1 and sul2). Some of these resistance genes were distributed around
blaNDM-1. BlaNDM-1 in all four strains were found on the same fragment containing the
QacE-sul1-IS91-trpF-ble-blaNDM-1-ISAba125-CatB-ARR-3-QacE-sul1 cassette (Figures 1 and 2),
suggesting that the transmission of this fragment occurred in the pig farm.



Antibiotics 2022, 11, 713 4 of 8

Figure 1. Genomic environment of blaNDM-1 in P. rettgeri and P. stuartii strains. Genes are represented
as arrows, which indicate their transcription orientations and relative lengths.

Figure 2. Comparison of the whole-genome sequences of Providencia spp. strains with the sequence
of plasmid pNDM-PM58 (GenBank accession number KP662515.1).

In order to facilitate the comparison between human and pig isolates, a Proteus mirabilis
plasmid isolated from the urine of a patient at the Zhengzhou University Hospital in
China was analyzed (Figure 2) [28]. The Proteus mirabilis’ plasmid, named pNDM-PM58
(GenBank accession number KP662515.1), was 12,146 bp in size. We found that the QacE-
sul1-IS91-trpF-ble-blaNDM-1-ISAba125-CatB-ARR-3-QacE-sul1 cassette array of Providencia
was the same as that of pNDM-PM58, except for the trpF gene, wherein the pNDM-PM58
had a complete trpF gene than Providencia. Moreover, similar to the blaNDM-1-positive
Providencia strains, P. mirabilis exhibited resistance to meropenem and some cephalosporins.
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However, pNDM-PM58 obtained from humans exhibited significant resistance to amikacin
(at >64 µg/mL), whereas the four blaNDM-1-positive Providencia strains were sensitive to
amikacin (at 4 µg/mL).

3. Discussion

To the best of our knowledge, this study is the first to identify blaNDM-1 in Providencia
spp. isolated from pigs. These strains were obtained from pig fecal samples from a pig farm
in China, specifically from piglet and fattening rooms. As members of the Enterobacteri-
aceae family, the discovery of blaNDM-1-positive Providencia in food-producing animals is of
concern. Enterobacteriaceae harboring blaNDM-1 are resistant to many antibacterial agents
and cause problems in the treatment of many bacterial infections in animals and humans.
Genetic segments containing blaNDM-1 can conjugate with different bacteria via mobile
genetic elements, leading to the spread of multidrug resistance [29–31]. Although the four
blaNDM-1-positive Providencia strains identified in this study had inserted sequences around
blaNDM-1, they did not conjugate with E. coli J53 after three repeated conjugation assays.
This might be due to preferential conjugation effects between bacteria; for example, the
insert sequences of the IS30 family were observed to preferentially insert into the inverted
repeat sequence of similar regions than with themselves [32]. It was possible that the
conditions of our conjugation tests did not meet the conditions for transfer or that transfer
to E. coli J53 was not compatible with the blaNDM-1-positive Providencia strains.

Among the various bacterial genera present in the samples collected in this study,
blaNDM-1 was only detected in Providencia strains. Therefore, Providencia strains were
probably the dominant population for blaNDM-1 transmission in this pig farm. These isolates
were collected from different rooms (piglet and fattening rooms) and identified as different
species (P. rettgeri and P. stuartii); however, all isolates harbored the same blaNDM-1 segment.
This suggests that horizontal gene transfer is a probable route of transmission in this farm.
Furthermore, whole genome sequencing analyses identified consistent clusters of highly
genetically-related isolates (20Q122mw and 20Q124mw; 20Q126mw and 20Q171mw),
suggesting the possibility of blaNDM-1 vertical transmission.

On intensive pig farms, personnel disinfection is usually strictly enforced to ensure
the health of animals, and meropenem use is not allowed. However, blaNDM-1-positive
Providencia strains were detected. Thus, it is possible that the presence of blaNDM-1 on this
pig farm might have originated from Providencia harboring blaNDM-1 in wild hosts, such as
wild birds, flies, and mice. Preventing exposure to wild host species may help prevent the
transfer of blaNDM-1-carrying strains to pigs.

In addition, we noted some interesting observations while analyzing the genetic
environment near blaNDM-1. Compared to the pNDM-PM58 plasmid of P. mirabilis isolated
from a human sample, a similar segment (QacE-sul1-IS91-trpF-ble-blaNDM-1-ISAba125) was
found in the blaNDM-1-positive Providencia strains. While a similar segment shared by
different bacteria is not necessarily proof of horizontal gene transfer as they might originate
from different sources [33], this segment that contains blaNDM-1 has the potential to spread
between humans and animals.

4. Materials and Methods

In December 2020, 190 fecal (n = 137) or environmental (n = 53) samples were collected
from a pig farm in Hunan Province, China. Pig fecal samples were collected from the
following areas: breeding rooms (n = 28), pregnancy rooms (n = 27), delivery rooms (n = 44),
piglet rooms (n = 26), and fattening rooms (n = 12). Environmental samples, including from
pig drinking water, sewage, and dirt, were collected from the following areas: breeding
rooms (n = 9), pregnancy rooms (n = 11), delivery rooms (n = 18), piglet rooms (n = 9),
and fattening rooms (n = 6). All samples were collected using sterile swabs and were then
suspended in 1 mL phosphate-buffered saline. These samples were stored in iceboxes
and transported to the laboratory at the end of sampling. MacConkey agar (Landbridge,
Beijing, China) supplemented with 0.5 µg/mL meropenem (Meilun Biotechnology Co.,
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Ltd., Dalian, China) and vancomycin (30 µg/mL, Meilun Biotechnology Co. Ltd., Dalian,
China) was used to screen for antibiotic-resistant bacterial strains in the samples. PCR and
electrophoresis assays were performed to verify whether the filtered isolates contained
blaNDM-1 [34]. The 16S rRNA sequencing was performed to confirm the presence of the
bacterial species by Tsingke Biotechnology Company (Changsha, China).

The antimicrobial sensitivity of blaNDM-1-positive isolates for 11 antibiotics was as-
sessed. The agar dilution method was used for meropenem, amikacin, florfenicol, tige-
cycline, gentamicin, ciprofloxacin, cefotaxime, ceftiofur, tetracycline, and piperacillin-
tazobactam (Meilun Biotechnology Co. Ltd., Dalian, China), whereas the broth microdilu-
tion method was used for colistin (Meilun Biotechnology Co. Ltd., Dalian, China), according
to the guidelines of the Clinical and Laboratory Standards Institute (CLSI) (https://clsi.org,
1 October 2021). Escherichia coli ATCC 25922 was used as the control strain.

Subsequently, blaNDM-1-positive strains were used as donor bacteria and sodium azide-
tolerant E. coli J53 as receptor bacteria. The donor and receptor bacteria were mixed at
a ratio of 1:3 in LB broth (Landbridge, Beijing, China), and the mixture was spread onto
microporous membranes affixed to Mueller Hinton agar (Landbridge, Beijing, China) at
37 ◦C for 18 h. The colonies on the membranes were then diluted in LB broth and evenly
coated onto MacConkey agar plates containing 1 µg/mL meropenem and 400 µg/mL
sodium azide. The cultures were incubated at 37 ◦C for 18 h. Then, the strains were filtered
using these cultures. Conjugation assays were performed in triplicate.

DNA from all blaNDM-1-positive isolates was extracted using the TIANamp Bacteria
DNA Kit (Tiangen Biotech Co., China), according to the manufacturer’s instructions. WGS
of 20Q122mw, 20Q124mw, and 20Q171mw was performed using the Illumina HiSeq
sequencing platform (Illumina, San Diego, CA, USA) by Annoroad Gene Technology
(Beijing, China). Meanwhile, genomic DNA sequencing of strain 20Q126mw was performed
using the Nanopore MinION (100-fold average read depth). Raw sequences were assembled
using SPAdes 3.11 (Bankevich et al., 2012) and annotated using RAST (http://rast.nmpdr.
org/, accessed on 8 January 2022). AMR genes were searched in the Center for Genomic
Epidemiology database (www.genomicepidemiology.org, accessed on 8 January 2022).
The Basic Local Alignment Search Tool (BLAST) of the National Center for Biotechnology
Information (NCBI) (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 16 January 2022)
was used to analyze the alignments of similar sequences. The genetic environment of
blaNDM-1 was investigated using Easyfig 2.2.5 [35]. The BLAST Ring Image Generator
(BRIG 0.9516) was used to generate a comparative genomic circle map [36].

5. Conclusions

In this study, four strains of blaNDM-1-positive Providencia spp. were found in the feces
of swine. These four strains carried the same segments of blaNDM-1 and were isolated from
different farming rooms. Furthermore, the segments were similar to that of Proteus mirabilis,
which was isolated from a patient in Zhengzhou, China, thereby indicating that these
segments of blaNDM-1 can be transmitted between humans and animals. In order to reduce
the risk of AMR transmission, the conditions in pig farms should be further optimized to
minimize the use of antibiotics. AMR monitoring of intensive farms should be maintained
to keep humans and animals safe.
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