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The blind image inpainting problem need to be handle when faced with a large number of images, especially medical images in
medical health. For the proposed nonconvex sparse optimization model, a proximal based alternating direction method of
multipliers (PADMM) method is designed to solve the problem. Firstly, ℓ0 sparse regularization is imposed to the binary mask
since the missing pixels are sparse in our experiments. Secondly, the total variation term is utilized to describe the underlying
clean image. Finally, ℓ2 regularization of the fidelity term is used to solve the given blind inpainting problem. Experiments
show that this method has better performance than traditional method, and could deal with the blind image inpainting problem.

1. Introduction

Medical images can directly reflect the function and health
status of human tissues, and have become one of the stan-
dards of diagnosis and medical intervention. With the
increasing availability and utilization of modern medical
imaging such as disease database, X-ray film and magnetic
resonance imaging, the demand for automatic processing
of medical image data is increasing. With the application
of medical images, automatic medical image analysis has
become one of the hot directions of contemporary medical
imaging research [1, 2]. In the process of image capture,
imaging sensors broken or the error in information trans-
mission may cause some pixels missing or corrupted by
impulse noise [3–8].

In this work, the image is defined as a vector with n
pixels in lexicographic ordering, x ∈Rn. It can be repre-
sented mathematically as follows:

y = Ax ð1Þ

where y ∈Rn is the observed image, x ∈Rn is the clean
image and A ∈Rn×n is an identity matrix. If the clean image
x is corrupted by the additive Gaussian noise ηg, the model
will be updated as follows:

y = A x + ηg

� �
ð2Þ

The image is corrupted by impulse noise, and the pixels
in y is corrupted by the impulse noise ηi. The blind image
inpainting model with the mixture noise (Gaussian and
impulse noise) is finally described as follows [9]:

y = A x + ηg

� �
+ In − Að Þηi ð3Þ

How to solve the E.q. (2) efficiently and effectively is the
most important issue. It is clear that E.q. (2) is quite chal-
lenging. It has three unknown term A, ηg and ηi. The goal
of this paper is to estimate the clean image x from the partial
observation y without unknow mask A, noise ηg and ηi.
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In the earlier researches, the inpainting problem can be
solved by many approaches related image reconstruction
from the aspect of sparse modeling [10–13]. More common
strategies for the removal of impulse noise for blind inpaint-
ing problems are to estimate an approximated A by comput-
ing the support set of the noisy pixels with some outlier
detection methods, and apply the reconstruction methods
for a known mask A.

The difficulty of reconstructing an image with missing
data and mixture noise is basically to detect the locations
of outliers. Some filtering based methods estimate the miss-
ing values, such as the adaptive median filter [14], and adap-
tive center weighted median filter [15].

Two phase based methods for blind inpainting problems
involve the estimation of mask A, which is calculated by
some outlier detection approaches. After the mask estima-
tion, the inpainted image is generated by the image recon-
struction step, which is implemented by a standard convex
optimization. Some convex methods were ulitized to estimate
the inpainted images [16]. Used the total variation (TV) regu-
larizer [17] estimates the inpainted images. Xiao et al. [18]
proposed a combination of ℓ1-norm and ℓ0-norm regularizers
for simultaneously removing impulse noise and computing
learning dictionary after the mask. In addition, the authors
[19] presented an approach for mixed impulse and Gaussian
noise removal. In the approach, a logarithmic transformation
strategy is applied to convert the multiplication between the
image and binary mask. Then, the image and mask terms
are estimated iteratively with TV regularization applied on
the image. Especially, the method can also be extended to
the removal of impulse noise by relaxing the regularizer from
the ℓ0 norm to the ℓ1 norm.

Some approaches could estimate the mask and impulse
noise field by an iterative process instead of involving a sep-
arated mask detection step, such as a low-rank matrix recov-
ery method [20]. The proposed approach belongs to the
category of simultaneously estimating the mask and impulse
noise.

To address the challenging blind inpainting task with
mixture noise, a novel model is proposed based on imposing
a ℓ0 sparse regularization to the binary mask. The proposed
model can be efficiently solved by a designed proximal based
alternating direction method of multipliers (PADMM)
method. The main contribution of this work is given as fol-
lows: 1) A new model that fits in the practical situation of
blind inpainting problem is proposed. 2) The new model
solves the challenging blind inpainting task with mixture
noise. 3) An efficient algorithm is given to effectively solve
the proposed model.

The outline of this paper is given as follows. The pro-
posed method including the new model and the designed
algorithm is exhibited in Section 2. The solution of the pro-
posed method is described in Section 3. Section 4 shows the
experimental results and analysis. Finally, we draw some
conclusions in Section 5.

2. Model Building

The paper proposes a minimization model to solve the
image inpainting problem on the basic blind image with
mixture noise. we denote a as the verctor form of mask A
and the E.q. (3) can be expressed as follows:

y = a ⊗ x + ηg

� �
+ Ι − að Þ ⊗ ηi ð4Þ

where ⊗ stands for a dot product between vectors, and Ι is a
vector with all the value Ι.

x ∈Rn is the vector form of one matrix x ∈Rn1×n2 with
n = n1 × n2 in (2), and a, y are the vectors with the same
dimensions as x. As a is the position of pixels missing, the
Ι-a represents the locations of impulse noise in the image.

we will give more explanations for E.q.(4) to present the
proposed model for the blind image inpainting with mixture
noise:

Input: The degraded image y,a initial vector ðu0, v0, a0Þ,
The parameters λi, βi, i = 1, 2, 3,
The constant κ ∈ ð0, ð1/1 + β1k∇k2ÞÞ
And the calculation accuracy Tol=1/255

Output: The stripe noise component x,a
Initialize:
1) k⟵ 0, x0 ⟵ 1, v0 ⟵ 1, a0 ⟵ 0
While k = 1 : 103or Eng<Tol
2) solve xk+1by Eq.(10)
3) solve ak+1by Eq.(15)
4) solve zk+1by Eq.(18)
5) solve wk+1 by Eq.(21)
6) solve vk+1 by Eq.(23)
7) update the multipliers πi, i = 1, 2, 3 by Eq.(10)
8) calculate the error

Eng = k∇xk+1 − zk+1k2 + kv ⊗ jajk2 + kð1 − aÞ ⊗ y −wk2
Endwhile

Algorithm 1: Solve the optimization model (5) by PADMM.
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(1) Since a ⊗ ðy − xÞ mainly represents Gaussian noise,
we use the ℓ2 norm ka ⊗ ðy − xÞk22 to construct the
fidelity term3

(2) 2. ð1‐aÞ ⊗ y only represents impulse noise (e.g., salt-
peppers, random value), thus we may use ℓ1 sparse
regularization to describe ð1‐aÞ ⊗ y, i:e:,kð1‐aÞ ⊗ yk1

(3) Especially, if the impulse noise is relatively dense,
it may impose £q regularization to a in the new
model, i.e., kak0. Otherwise, if the impulse noise
is sparse and the condition of minimizing kak0
may not hold, we could easily set a small parame-
ter to control it

(4) Finally, we employ the (anisotropic) total variation
(TV) regularization to the underlying clean image
x, i.e., k∇xk1, the TV regularization is quite popular
and useful in the applications of image processing

As presented above, we formulate the final proposed
model for the inpainting task as follows:

x, að Þ = arg min
x,a

1
2 a ⊗ y − xð Þk k22 + λ1 ∇xk k1

+ λ2 ak k0 + λ3 1 − að Þ ⊗ yk k1
ð5Þ

The ℓ0 minimization min
a

kak0 can be equality described

as min
v

< 1, 1 − v > such that v ⊗ jaj = 0 and 0 ≤ v ≤ 1 based

on [8]. Thus, E.q.(2) can be expressed as follows:

min
x,a,z,w,v

1
2 a ⊗ y − xð Þk k22 + λ1 zk kp,1 + λ2

< 1, 1 − v>+λ3 wk k1
s:t:∇x = z, v ⊗ aj j = 0, 0 ≤ v ≤ 1, 1 − að Þ ⊗ y =w

ð6Þ

As discussed above, we may get the following augmented
Lagrangian problem instead of the constrained minimiza-

tion E.q. (6) with variable substitution.

ζ x, a, z,w, v, π1, π2, π3ð Þ
= 1
2 a ⊗ y − xð Þk k22 + λ1 zk kp,1 + λ2

< 1, 1 − v>+λ3 wk k1 + <π1,∇u − z

> + β1
2 ∇u − zk k22+<π2, v ⊗ aj j>+ β2

2 v ⊗ aj jk k22+

<π3, 1 − að Þ ⊗ y −w>+ β3
2 1 − að Þ ⊗ y −wk k22

s:t:0 ≤ v ≤ 1

ð7Þ

Where π1, π2 and π3 are Lagrange multipliers, and β1, β2
and β3 are three positive parameters. The Lagrangian prob-
lem ζðx, a, z,w, v, π1, π2, π3Þ can be solved alternatively and
iteratively by the following minimization subproblems in
Section 3.

3. Model Solution Method

We add the proximal term 1/2kx − xkk2D to the x subproblem
from E.q.(7) and denote kxk2D = xTDx to get the following
proximal

xk+1 = arg min
x

1
2 a ⊗ y − xð Þk k22+

< π1,∇u − z > +β1
2 ∇u − zk k22 +

1
2 x − xk
 2

D

ð8Þ

Where

D = 1
κ
Ιn − diag að Þ + β1∇

T∇
À Á

, κ ∈ 0, 1
1 + β1 ∇k k2

� �� �

ð9Þ

The solution of E.q.(8) is given as follows:

xk+1 = 1
2 x − pk
 2

2
ð10Þ

X

A (Mask) NI

X + NG Y = A.⁎(X + NG) + (1 – A). ⁎NI

How to recover X from Y ?
Input

Figure 1: The flowchart of how to simulate the input image. Note that A and X are both blind and need to compute.
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Where

pk = xk − κ1 a ⊗ xk − y
� �

+ ∇T π1 − β1zð Þ + β1∇
T∇xk

h i
ð11Þ

The a-subproblem is shown as the following:

ak+1 = arg min
a

1
2 a ⊗ y − xð Þk k22+ < π2, v ⊗ aj j

> +β1
2 v ⊗ aj jk k22+ < π3, 1 − að Þ ⊗ y −w

> +β3
2 1 − að Þ ⊗ y −wk k22

ð12Þ

We need to discuss the solution by the following two
cases:

When a>0,

ak+1 = −v ⊗ π2 + β3y ⊗ Ι ⊗ y + y ⊗ π3
y − xð Þ ⊗ y − xð Þ + β2v ⊗ v + β3y ⊗ y

ð13Þ

When a<0,

ak+1 = v ⊗ π2 + β3y ⊗ Ι ⊗ y + y ⊗ π3
y − xð Þ ⊗ y − xð Þ + β2v ⊗ v + β3y ⊗ y

ð14Þ

Therefore, the reformulation is:

yk+1 = sgn qk
� �

∗
qj jk − v ⊗ π2

hk
ð15Þ

Where

qk = β3y ⊗ y + y ⊗ π3, hk = y − xð Þ ⊗ y − xð Þz
+ β2v ⊗ v + β3y ⊗ y

ð16Þ

The z-subproblem can be written as the following mini-
mization problem:

zk+1 = arg min
z

λ1 zk k1+ < π1,∇u − z > +β1
2 ∇u − zk k22 ð17Þ

(a) (b) (c) (d) (e)

Figure 2: The visual comparisons between ASInpaint and the proposed method. (a) The ground-truth image; (b) The mask for the missing
pixels; (c) The degraded image by Gaussian and impulse noise; (d) The recovered image by ASInpaint [6]; (e) The recovered image by the
proposed method.
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which has a closed-form solution by soft-thresholding [7].

zk+1 = Shrink ∇x + π1
β1

, λ1
β1

� �
ð18Þ

Where

Shrink x, tð Þ =max 0, xj j − 1
t

� �
:∗ sign xð Þ ð19Þ

(a) Noisy image (b) NLH

(c) NSNR (d) WNNM

Figure 3: Denoising results on a real color image by all competing methods.

Figure 4: The 15 test images used in image denoising experiments.
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Similarly, the w-subproblem is given as the follows:

wk+1 = arg min
w

λ3 wk k1+ < π3, 1 − að Þ ⊗ y −w

> +β3
2 1 − að Þ ⊗ y −wk k22

ð20Þ

which holds the closed-form solution by soft-thresholding:

zk+1 = Shrink 1 − að Þ ⊗ y + π3
β3

, λ3
β3

� �
ð21Þ

The v-subproblem is given as the follows:

vk+1 = arg min
0≤v≤1

λ2 < 1, 1 − v > + < π2, v ⊗ aj j > +β2
2 v ⊗ aj jk k22

ð22Þ

which could also hold the closed-form solution [9]:

vk+1 = min 1, max 0, rk
� �� �

ð23Þ

Where

rk = λ2 − aj j ⊗ π2
β2 aj j ⊗ aj j ð24Þ

We finally update the Lagrange multipliers by:

πk+1
1 = πk

1 + β1 ∇xk+1 − zk+1
� �

, πk+1
2

= πk
2 + β2 v ⊗ aj jð Þ, πk+1

3

= πk
3 + β3 1 − að Þ ⊗ y −wð Þ

ð25Þ

We may effectively obtain the solution of the constrained
model (5) with the initial guesses u0 = v0 = a0 = 0. We sum-
marize the above steps to get the following Algorithm 1:

Although Algorithm 1 involves some parameters, these
parameters are actually not sensitive and easy to select. We
also compute the energy of each iteration. If the energy is
below a given tolerance, the iteration will stop and output
the final result.

In the next section, we will exhibit the experiment results
to demonstrate the effectiveness of the proposed method.

4. Experimental Results and Analysis

The numerical experiments in this section are implemented
with MATLAB (R2016a) for both simulated and real images.
The experimental computer has 2G RAM and Intel(R) Cor-
e(TM)i3-2370M CPU: @2.40GHz 2.40GHz. Since the litera-
tures for blind image inpainting with mixture noise are
limited, we here only compare the proposed method with

(a) Input image (b) Ground truth

(c) WNNM (PSNR: 27.11 dB) (d) McS: (PSNR: 27.57 dB)

Figure 5: Inpainting results on images Starfish by different methods (Random mask with 75% missing values).
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one recent state-of-the-art blind inpainting approach [6],
denoted as “ASInpaint” 4.

In Figure 1, we present the whole process of image,
which is degraded jointly by Gaussian noise and impulse
noise. The goal of this work is to recover the clean image
X from the degraded image Y. To evaluate the quantitative
performance of the compared approaches, we employ two
kinds of metrics to estimate the performance of different
methods: peak signal-noise ration (PSNR) and structural
similarity (SSIM)5 [21].

In the experiments, we assume that the pixel values are
within the interval [0, 255]. The added salt&pepper type of
impulse noise ηI can have a value of either 0 or 255. For Gauss-

ian noise, the values are also uniformly distributed within the
interval [0, 255]. For the parameters in Algorithm 1, we empir-
ically set λ1 =0.9, λ2 =0.08, λ3 =0.08, and β1 = β2 = β3 = 200
for experiments. Note that we could tune the paramters to
get better results, and we fix them in the experiments to illus-
trate the stability of the given method. For the parameters of
“ASInpaint”, we keep the default settings of the provided code.

In Figure 2, we illustrate the visual performance of the
two compared methods by four different simulated images
with mixture noise (see Figure 2(a)) named “Lena”, “Cam-
eraman”, “Phantom”, and “Satellite”. We added the Gauss-
ian and impulse mixture noise on the images (see
Figure 2(b)). In particular, we evaluate the effectiveness of
the proposed method by the same image with different levels
mixture noise (see Figure 2 the 1st and 3rd rows). Although
the ASInpaint approach also obtained competitive results
(see Figure 2(d)), the proposed method could obtain better
visual performance, especially on the shape profile of the
images (see Figure 2(e)). we have to emphasize that the
visual performance of both methods seem to be not better
than the recovered image by other literatures. The problem
addressed is quite challenging that there are four unknown
variables in the problem, such as the underlying clean image
X, the mask A, the impulse noise NI, and the Gaussian noise
NG. Although we may reduce to only two unknown variables
X and A, it is still very difficult to recover the underlying
clean image X. However, the given model has also recovered
the relatively good visual results by the given algorithm.

(a) Input image (b) Ground truth

(c) WNNM (PSNR: 32.85 dB) (d) McS: (PSNR: 33.85 dB)

Figure 6: Inpainting results on images Monarch by different methods (Text mask).

Table 1: The quantitative performance of Figure 2 for the two
compared methods with the corresponding noise setting, i.e.,
missing proportion for impulse noise NI and the a for Gaussian
noise NG.

Image Noise setting
ASInpaint [6] PADMM
PSNR SSIM PSNR SSIM

Lena 50% missing σn = 15 21.82 0.6347 22.78 0.6650

Cameraman 30% missing σn = 19 19.13 0.5435 19.60 0.5630

Lena 10% missing σn = 15 24.29 0.7175 24.49 0.7240

Phantom 10% missing σn = 0.4 49.25 0.9657 49.35 0.9666

Satellite 10% missing σn = 15 22.41 0.6446 22.54 0.7662
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Table 2: Denoising results (PSNR, SSIM) by competing methods on 15 test images.

NLH KSVD BM3D WNNM
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

σn=15

C.man 32.0054 0.9001 31.4074 0.8926 31.9152 0.9007 32.1768 0.9036

House 35.2832 0.8981 34.308 0.8758 34.9447 0.8907 35.1533 0.8909

Peppers 32.9416 0.9087 32.2062 0.8987 32.7017 0.9064 32.974 0.9098

Straws 28.5721 0.9285 28.3231 0.9262 28.5618 0.9317 29.1396 0.9396

Leaves 32.0951 0.9697 30.8806 0.9562 31.7233 0.9659 32.8266 0.9735

StarFish 31.4140 0.9007 30.7377 0.8931 31.1458 0.9007 31.8255 0.9081

Monarch 32.1065 0.9388 31.3864 0.9291 31.8597 0.9360 32.7178 0.9424

Airplane 31.4084 0.9025 30.7955 0.8937 31.0768 0.8995 31.4004 0.9029

Ma 31.9838 0.8657 31.4910 0.8544 31.9293 0.8667 32.123 0.8701

J.Bean 36.1662 0.9708 35.5188 0.9635 35.7038 0.9678 36.5642 0.9735

Couple 31.9414 0.8692 31.4498 0.8540 32.1087 0.8761 32.1818 0.8746

Parrot 31.3826 0.8919 31.0367 0.8915 31.3760 0.8944 31.6071 0.8968

Barbara 32.8384 0.9216 32.4214 0.9099 33.1141 0.9228 33.6114 0.9277

Boat 31.9944 0.8483 31.7033 .8410 32.1401 0.8534 32.2800 0.8549

Lena 34.1902 0.8953 33.7410 0.8851 34.2716 0.8950 34.3822 0.8973

σn=30

C.man 28.8607 0.8402 28.0158 0.8157 28.6377 0.8366 28.7827 0.8399

House 32.4570 0.8502 31.1754 0.8305 32.0871 0.8474 32.551 0.8523

Peppers 29.5743 0.8540 28.791 0.8407 29.2799 0.8500 29.4916 0.8567

Straws 24.4253 0.8038 24.3021 0.7964 24.8358 0.832 25.2457 0.8497

Leaves 28.1228 0.9333 26.9665 0.9118 27.8111 0.9275 28.6083 0.9389

StarFish 27.8924 0.8331 27.2325 0.8130 27.6535 0.8286 28.0689 0.8357

Monarch 28.7220 0.8891 28.0109 0.8717 28.3641 0.8817 28.9135 0.8926

Airplane 27.9736 0.8439 27.2595 0.8252 27.5592 0.8366 27.8176 0.8438

Ma 28.9999 0.7803 28.3244 0.7514 28.8597 0.7798 28.9798 0.7818

J.Bean 32.0428 0.9321 31.6162 0.9227 31.9669 0.9350 32.5005 0.9438

Couple 28.9726 0.7964 28.9726 0.7463 28.8691 0.7943 28.9679 0.7945

Parrot 28.3200 0.8319 27.5551 0.8186 28.1184 0.8313 28.3202 0.8346

Barbara 29.8374 0.8746 28.6006 0.8226 29.8136 0.8682 30.3086 0.8812

Boat 29.1663 0.7785 28.4093 0.7440 29.1172 0.7791 29.2262 0.7792

Lena 31.3194 0.8474 30.4192 0.8245 31.2621 0.8443 31.4315 0.8502

σn=50

C.man 26.3466 0.7903 25.7361 0.7451 26.1130 0.7822 26.4176 0.7848

House 30.5178 0.8306 27.9468 0.7602 29.6939 0.8116 30.3325 0.8231

Peppers 27.0524 0.8063 26.0368 0.7695 26.6834 0.7932 26.9123 0.8008

Straws 21.6929 0.6308 21.3263 0.5800 22.2874 0.6898 22.7261 0.7305

Leaves 25.3567 0.8907 24.2136 0.8571 24.6818 0.8677 25.4721 0.8925

StarFish 25.2100 0.7492 24.3876 0.7125 25.0443 0.7429 25.4327 0.7596

Monarch 26.2902 0.8354 25.1663 0.7937 25.8186 0.8196 26.3170 0.8350

Airplane 25.3611 0.7821 24.6200 0.7431 25.1022 0.7716 25.4244 0.7850

Ma 26.8762 0.7031 26.0308 0.6625 26.8081 0.7051 26.9373 0.7090

J.Bean 29.6937 0.9114 28.1745 0.8526 29.2595 0.8998 29.6351 0.9098

Couple 26.4604 0.7057 25.3037 0.6309 26.4638 0.7064 26.6436 0.7135

Parrot 25.9856 0.781 25.4187 0.7540 25.8984 0.7804 26.0926 0.7847

Barbara 27.4833 0.8128 25.5600 0.7191 27.2254 0.7942 27.7887 0.8199

Boat 26.8625 0.7032 25.9357 0.6569 26.7808 0.7050 26.9693 0.7083
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Meanwhile, denoising results on a real color image by all
competing methods (NLH method, NSNR method, WNNM
method) is shown as Figure 3. The 15 test images used in
image denoising experiments are shown as Figure 4. Inpaint-
ing results on images Starfish by different methods (Random
mask with 75%missing values) are shown as Figure 5. Inpaint-

ing results on images Monarch by different methods (Text
mask) are shown as Figure 6. These results show that
PADMMalgorithm has high performance of image denoising.

The quantitative comparisons of all methods are
reported in Table 1, which indicates that the PADMM
algorithm can improve the performance and yield the best

Table 2: Continued.

NLH KSVD BM3D WNNM
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Lena 29.2023 0.8069 27.8701 0.7606 29.0502 0.7989 29.2512 0.8059

σn =75

C.man 24.7529 0.7492 23.1804 0.6550 24.3254 0.7334 24.5520 0.7353

House 28.5325 0.7963 25.3369 0.6800 27.5085 0.7640 28.2378 0.7887

Peppers 25.1632 0.7510 23.5163 0.6835 24.7341 0.7364 24.9152 0.7418

Straws 20.4422 0.5214 19.2792 0.3604 20.5588 0.5440 21.0039 0.6040

Leaves 23.0093 0.8306 20.7623 0.7296 22.4889 20.8070 23.0594 0.8350

StarFish 23.2220 0.6642 22.1093 0.6027 23.2746 0.6667 23.4720 0.6801

Monarch 24.4982 0.7831 22.9080 0.7183 23.9073 0.7553 24.3075 0.7754

Airplane 23.6914 0.7289 22.3293 0.6611 23.4749 0.7145 23.7407 0.7302

Ma 27.4366 0.8824 25.4310 0.7616 27.2153 0.8565 27.4233 0.8707

J.Bean 27.4366 0.8824 25.431 0.7616 27.2153 0.8565 27.4233 0.8707

Couple 24.9190 0.6422 23.5776 0.5511 24.6988 0.6257 24.8577 0.6369

Parrot 24.3794 0.7421 23.3786 0.6820 24.1856 0.7302 24.3698 0.7410

Barbara 25.6379 0.7430 23.0497 0.6032 25.1238 0.7108 25.8123 0.7486

Boat 25.3021 0.6487 23.9756 0.5795 25.1196 0.6407 25.2951 0.6465

Lena 27.5996 0.7706 25.7484 0.6939 27.2569 0.7510 27.5432 0.7657

σn =100

C.man 23.5329 0.7050 21.6712 0.5762 23.0813 0.6922 23.3579 0.6968

House 26.7203 0.7589 23.6751 0.6186 25.8723 0.7196 26.6640 0.7536

Peppers 23.8028 0.7076 21.8289 0.6238 23.3946 0.6876 23.4485 0.6978

Straws 19.4043 0.4004 18.3801 0.2655 19.4303 0.4223 19.6878 0.4537

Leaves 21.5963 0.7844 18.2896 0.5934 20.9095 0.7481 21.5658 0.7884

StarFish 22.1677 0.6158 20.9669 0.5397 22.0977 0.6051 22.2263 0.6170

Monarch 23.1498 0.7322 20.5568 0.6154 22.5185 0.7017 22.9500 0.7257

Airplane 22.6891 0.6953 20.8416 0.5773 22.1094 0.6710 22.5529 0.6854

Ma 24.4735 .6139 23.3894 0.5482 24.2237 0.5975 24.3584 0.6048

J.Bean 26.1801 0.8561 23.6984 0.6911 25.8010 0.8175 26.0293 0.8337

Couple 23.7407 0.5835 22.6183 0.4992 23.5107 0.5661 23.5597 0.5702

Parrot 23.1367 0.7053 21.8362 0.6820 22.9593 0.6892 23.1863 0.7045

Barbara 24.4712 0.6960 21.8834 0.5332 23.6243 0.6426 24.1098 0.6862

Boat 24.2023 .6073 22.7806 0.5246 23.9703 0.5932 24.1098 0.5981

Lena 26.4509 0.7428 24.3508 0.6387 25.9548 0.7085 26.2127 0.7256

Table 3: The average PSNR & SSIM values by comprting methods on the 15 test images: The best results are highlighted in bold.

σn =15 σn = 30 σn =50 σn =75 σn =100
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

BM3D 32.3048 0.9072 28.9490 0.8448 26.4607 0.7779 24.6126 0.7120 23.2972 0.6575

KSVD 31.8271 0.8977 28.3099 0.8223 25.5818 0.7332 23.2684 0.6372 21.7845 0.5685

NLH 32.4216 0.9073 28.3099 0.8459 26.6928 0.7826 24.9342 0.7269 23.4999 0.6747

WNNM 32.7309 0.9116 29.2809 0.8517 26.8235 0.7908 24.9360 0.7300 23.6013 0.6761

9Computational and Mathematical Methods in Medicine



quantitative results. Meanwhile, the paper tests the perfor-
mance of NLH, KSVD, BM3D and WNNM algorithms on
PSNR and SSIM of 15 pictures in the different value of σn.
The experimental results are shown in Tables 2 and 3. The
results show that with the increase of σn value, the PSNR
and SSIM of each picture gradually decrease, but the per-
formance of these algorithms is significantly worse than
PADMM algorithm.

5. Conclusions

In this paper, we present a novel optimization model and
design the corresponding algorithm to address the challeng-
ing blind inpainting task with mixture noise. There are three
main contributions in this work: 1) The model intetrates a ℓ0
sparse regularization to the binary mask, the total variation
term to the underlying clean image and a ℓ2 regularization
to describe the fidelity term; 2), Theproximal based alternat-
ing direction method of multipliers (PADMM) method was
utilized and implemented to solve the optimization problem;
3) Experiments on some simulated examples with complex
mixture noise are implemented, and the visual and quantita-
tive results demonstrate the proposed method outperforms
the other method.

Data Availability
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from the corresponding author, [author initials], upon rea-
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