
sensors

Article

Sparse Reconstruction Based Robust Near-Field
Source Localization Algorithm †

Sen Li, Bing Li, Bin Lin, Xiaofang Tang and Rongxi He * ID

College of Information and Science Technology, Dalian Maritime University, Dalian 116026, China;
listen@dlmu.edu.cn (S.L.); dlmulibing@163.com (B.L.); linbin@dlmu.edu.cn (B.L.); fangxtang@163.com (X.T.)
* Correspondence: hrx@dlmu.edu.cn; Tel.: +86-0411-8472-3310
† This paper is an extension of the conference paper published in Li, S.; Lin, B.; Li, B.; He, R. Near-Field

Localization Algorithm Based on Sparse Reconstruction of the Fractional Lower Order Correlation Vector in
Proceedings of the 2017 International Conference on Wireless Algorithms, Systems, and Applications,
Guilin, China, 19–21 June 2017; pp. 903–908.

Received: 8 March 2018; Accepted: 30 March 2018; Published: 2 April 2018
����������
�������

Abstract: Non-Gaussian impulsive noise widely exists in the real world, this paper takes the
α-stable distribution as the mathematical model of non-Gaussian impulsive noise and works
on the joint direction-of-arrival (DOA) and range estimation problem of near-field signals in
impulsive noise environment. Since the conventional algorithms based on the classical second
order correlation statistics degenerate severely in the impulsive noise environment, this paper adopts
two robust correlations, the fractional lower order correlation (FLOC) and the nonlinear transform
correlation (NTC), and presents two related near-field localization algorithms. In our proposed
algorithms, by exploring the symmetrical characteristic of the array, we construct the robust far-field
approximate correlation vector in relation with the DOA only, which allows for bearing estimation
based on the sparse reconstruction. With the estimated bearing, the range can consequently be
obtained by the sparse reconstruction of the output of a virtual array. The proposed algorithms have
the merits of good noise suppression ability, and their effectiveness is demonstrated by the computer
simulation results.

Keywords: near-filed; direction of arrival; range estimation; impulsive noise; sparse reconstruction;
robust correlation

1. Introduction

The source localization problem in array signal processing is an important problem which has
a wide range of applications. For example: related topics in radar, sonar, wireless communications,
and seismology is to determine the location of the radiation (or reflection) sources by passive sensor
array [1–4]. According to the distance of the source from the array, the localization problem is divided
into far-field source localization problem and near-field source localization problem. When the sources
are far away from the array, the localization problem in this case is far-field source localization and
the signals transmitted by the sources arrive at the array in the form of a plane wave. At this point,
the direction of arrival (DOA) needs to be estimated. When the distance between the sources and the
array is within the Fresnel region, the localization problem at this time is near-field source localization
and the signals transmitted by the sources arrive at the array in the form of a spherical wave. At this
time, the DOA and range must be determined. Compared with the DOA estimation in far-field,
the position parameter estimation problem of near-field source is relatively complex.

In recent years, near-field source localization problem has caused the concern in the field of
signal processing, and some scholars have started to research on this problem. Huang et al. [5]

Sensors 2018, 18, 1066; doi:10.3390/s18041066 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-0506-0021
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/4/1066?type=check_update&version=2
http://dx.doi.org/10.3390/s18041066


Sensors 2018, 18, 1066 2 of 17

extended the one-dimensional MUSIC method used in the far-field to the two-dimensional MUSIC
method to be used in the near-field. The biggest limitation of this method was that it required
a two-dimensional spectral peak search and required a large amount of computation. Starer et al. [6]
proposed a path-following approach which transformed the two-dimensional search problem into
multiple one-dimensional search problems, and finally solved the problem by iterative method.
Lee et al. [7] proposed a modified path-following method that replace the path search by known
algebraic paths and further reduce the computational complexity of the algorithm. Based on the
symmetric subarrays, Zhi et al. [8] applied the generalized ESPRIT algorithm to search the azimuths
of each near-field source. Liu Liang et al. [9] used the idea of rank reduction to construct a manifold
matrix that was only related to the steering angle parameters and was used to search the near-field
source azimuths. References [10–12] reconstructed a matrix related only to the azimuth parameters
of the sources, and used the MUSIC algorithm to search for the azimuths. After obtaining the source
azimuths estimation, the literatures [8–12] searched the range parameter in corresponding directions,
which transformed the two-dimensional search into multiple one-dimensional searches, this type
of method had a large array aperture loss. Some studies [13,14] estimated the source azimuths by
constructing a higher order statistics (HOS) matrix to reduce the array aperture loss. There are also
some other near-field parameter estimation methods, such as, the maximum likelihood estimator
proposed in [15] and the weighted linear prediction method presented in [16].

With the successful application of sparse signal reconstruction in far-field DOA estimation [17] and
the excellent performance of this kind of algorithm in anti-noise ability and snapshot number, more and
more scholars also carry out the research on sparse reconstruction based near-field localization methods.
Wang et al. [18] proposed a hybrid source localization algorithm based on the sparse representation
of cumulants. Tian et al. [19] proposed a joint algorithm of MUSIC and sparse representation for
localization of mixed sources with better estimation performance. In [20,21], the covariance matrix of
the received signal of the virtual far-field array was constructed and the two-dimensional near-field
parameter estimation problem was converted into the reconstruction problem of two one-dimensional
sparse signals. Hu et al. [22,23] achieved a sparse estimation of DOA and range by sparse representation
of anti-diagonal elements of received signal covariance matrix, which is similar to the method
of [20], but with lower computational complexity. In [24,25], by using the sensor-angle distribution
to characterize the sensor-dependent phase progression as a function of the source range and its
direction, the sensor-dependent spatial frequency signature was estimated by sparse reconstruction
techniques, and the results were then mapped back to source range and DOA estimation for the
near-filed source localization.

The background noise of the above near-field localization algorithms assumed that it followed
Gaussian distribution or at least had a finite second-order statistics, but in the natural environment
or many engineering applications, the noise often exhibits non-Gaussian impulsive nature, and often
has large amplitudes in a short time [26]. Mathematically, α-stable distribution model can be used
to describe this type of noise [27]. Studies have shown that α-stable distribution process does not
have the statistics of order greater than the characteristic exponent α(0 < α ≤ 2), so the algorithms
based on the second-order statistics (SOS) and HOS will degrade or even fail in α-stable distributed
noise environment. To this end, a number of articles had been studied, one way is to replace the SOS
with fractional lower order statistics (FLOS), such as the fractional lower order correlation (FLOC)
and the phased fractional lower order correlation (PFLOC) [28,29]. However, FLOS needs to know
the characteristic exponent of the α-stable distribution in advance, which is difficult to obtain in
practice. Another way is to replace the SOS with the robust second-order statistics. For example,
the secondorder correlation was replaced by a robust correlation, nonlinear transform correlation
(NTC) [30,31], which did not need to know the characteristic exponent of the α-stable distribution in
advance. To solve the localization problem of near-field sources in the impulsive noise, Wang et al. [32]
constructed matrixes by using FLOS and estimated position parameter of near-field sources by rooting
method. By combing the concept of PFLOC and the GESPRIT method in [8], Qiu et al. [33] proposed
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a new search-free method for near-field source localization under impulsive noise, referred to as the
search-free PFLOC-based GESPRIT. We studied the near-field localization problem based on sparse
reconstruction of the constructed far-field approximate FLOC vector by exploring the symmetrical
characteristic of the array under impulse noise environment for the first time in [34]. This paper is
on this basis to do further research on this issue. In this paper, to avoid estimating the characteristic
exponent α of the impulsive noise before using the FLOC statistics, we define a robust correlation
vector, NTC vector, which is just like the FLOC vector that is in relation with the DOA only, then the
bearings can be estimated based on the sparse reconstruction of the FLOC vector or NTC vector.
With the estimated bearings, the range can consequently be obtained by the sparse reconstruction of
the output of a virtual array. Lots of simulation experiments are made in this paper to demonstrate
that the proposed algorithms have the merits of good noise suppression ability.

2. α-Stable Distribution

α-stable distribution is the only kind of distribution satisfying the generalized central limit
theorem. Compared with the Gaussian distribution, the α-stable distribution has a thicker statistical
tail, so it has significant impulse characteristics in time domain. There is no closed expression for the
probability density function of the α-stable distribution, but the characteristic function can be used to
facilitate the representation of the α-stable distribution

φ(t) = e{jat−γ|t|α [1+jβsgn(t)v(t,α)]} (1)

where

v(t, a) =

{
tan πα

2 , if α 6= 1
2
π log

∣∣t∣∣, if α = 1
(2)

sgn(t) =

{
t/|t|, if t 6= 0
0, if t = 0

. (3)

It can be seen that the characteristic function of the α-stable distribution is determined by four
parameters: α(0 < α ≤ 2) is the characteristic exponent, which describes the impulsive degree of the
distribution. The smaller the α is, the thicker the corresponding distribution tail is, the more significant
impulsive the signal is; β(−1 < β < +1) is the symmetry parameterand that β = 0 corresponds to
the symmetric distribution, abbreviated as symmetry α-stable (SαS) distribution; γ(γ ≥ 0) is the
dispersion which is similar to the variance of Gaussian distribution; a(−∞ < a < +∞) is location
parameter, for the SαS distribution it represents the median or the mean. When α = 2 and β = 0,
the characteristic function is the same as that of Gaussian distribution, that is, the Gaussian distribution
is a special case of the α-stable distribution. A very important characteristic of the α-stable distribution
is that it does not have a finite two order statistics and higher order statistics.

3. Problem Formulation

3.1. Signal Model

Consider the case of K independent narrowband sources s1(t), s2(t), · · · , sK(t) be in the near-field
of a symmetric uniform linear array (ULA) with N = 2M + 1 isotropic sensors as illustrated in Figure 1.
With the array center being the phase reference point, the signal received by the mth sensor at time
t can be expressed as

xm(t) =
K

∑
k=1

sk(t)Amk + nm(t) =
K

∑
k=1

sk(t)e(jτmk) + nm(t), m = −M, · · · , M (4)
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where nm(t) is the additive noise, and τmk is phase shift related with the kth source signal’s propagation
time delay between phase reference point and sensor m. By Fresnel approximation, it can be given by

τmk ≈ wkm + φkm2 (5)

wk and φk with the following form

wk = −
2πd

λ
sin θk, φk =

πd cos2 θk
λrk

(6)

Figure 1. Near-field ULA array.

Herein, λ is the wavelength, d is the interspacing,(θk, rk) represent the DOA and range parameters
of the kth source.

The signal model in Equation (4) can be concisely expressed as

X(t) = A(θ, r)S(t) + N(t) (7)

where
X(t) = [x−M(t), · · · , x0(t), · · · , xM(t)]T

S(t) = [s1(t), s2(t), · · · , sK(t)]
T

N(t) = [n−M(t), · · · , n0(t), · · · , nM(t)]T

A(θ, r) = [a(θ1, r1), a(θ2, r2), · · · , a(θK, rK)]

a(θk, rk) =
[
exp

(
j((−M)wk) + M2φk

)
, · · · , 1, · · · , exp

(
j
(

Mwk + M2φk
))]T

(8)

The purpose is to jointly estimate the DOAs θ1, θ2, · · · , θK and range parameters r1, r2, · · · , rK
for multiple near-field sources from the received array data X = [X(1), X(2), · · · , X(L)] where L is
the number of snapshots. Assume the source signals are statistically mutually independent with
zero mean and the noises nm(t) are complex isotropic Gaussian distributed random processes and
are independent of the source signals, the SOCSR algorithm proposed in [23] localized the near-field
sources by solving two spare reconstruction problems of the second order correlation vector of the
array received signal. When the noises are complex isotropic SαS distributed random processes,
the performance of the SOCSR algorithm will degrade since SαS distribution does not have finite SOS.
This fact will be verified by the simulations in Section 5. In order to inhibit the influence of the α-stable
impulsive noise, this paper proposes two new near-field sources localization algorithms by solving
the spare reconstruction problem of the FLOC and NTC vector of the array received signal which is
referenced as fraction lower order correlation-based sparse reconstruction method (FLOCSR) algorithm
and nonlinear transform correlation-based sparse reconstruction method(NTCSR) algorithm.
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3.2. FLOC Matrix of the Array Received Signal

The spatial fraction lower order cross correlation between the mth and nth sensor can be defined
as [28,29]

cFLOC(m, n) = E
{

xm(t)xn(t)
<p−1>

}
= E

{
xm(t)|xn(t)|p−2x∗n(t)

}
=

K
∑

k=1
ej(wkm+φkm2)Λkke−j(wkn+φkn2) + ξδ(m− n)

=
K
∑

k=1
AmkΛkk A∗nk + ξδmn

(9)

where

Λkk = E

sk(t)

∣∣∣∣∣ M

∑
q=1

sq(t) + nn(t)

∣∣∣∣∣
p−2( M

∑
q=1

sq(t) + nn(t)

)∗
ξ = E

nn(t)

∣∣∣∣∣ M

∑
q=1

sq(t) + nn(t)

∣∣∣∣∣
p−2( M

∑
q=1

sq(t) + nn(t)

)∗
In order to ensure cFLOC(m, n) is a finite value, the value of p needs to be less than the characteristic

exponent α of the impulsive noise which is difficult to estimate in some practical applications.
The FLOC matrix of the array received signal can be formulated as

CFLOC = A(θ, r)ΛAH(θ, r) + ξ I (10)

where Λ = diag[Λ11, Λ22, · · ·ΛKK] and I is the identity matrix.

3.3. NTC Matrix of the Array Received Signal

In order to avoid estimating the characteristic exponent α of the impulsive noise in practical
applications, a robust correlation, the nonlinear transform correlation (NTC), between the mth and nth
sensor is defined as follows [30,31]

cNTC(m, n) = E
{

xm(t)xn
∗(t)

|xm(t)xn(t)|+ δ2

}
(11)

where δ ≥ 1 is called scale factor. It has been proved that cNTC(m, n) is bounded and then the NTC
matrix of the array received signal can be estimated.

4. Proposed Two Step Estimation Method

The FLOC cFLOC(m, n) and NTC cNTC(m, n) can be unified written as the robust correlation
cx(m, n) and the corresponding matrix form can be written as C. When m = −n the robust correlation
cx(m, n) is independent of the parameter φk. This means that by exploiting the robust correlation
between the symmetric sensors, we can transform the original two-dimensional (DOA and range)
estimation problem into a one-dimensional (DOA) estimation problem. Stacking Equation (9) or
Equation (11) for the symmetric sensors, we can build a virtual far-field model

cx = Aw(θ)Λw (12)

where cx = [cx(−M, M), . . . , cx(−1, 1), cx(1,−1), . . . , cx(M,−M)]T ∈ C2M×1 and
Λw = [Λ11, Λ22, · · · , ΛKK]

T is the received signal vector and source signal vector of the
virtual far-field array, the manifold matrix of the virtual far-field array can be expressed
as Aw(θ) = [aw(θ1), aw(θ2), · · · , aw(θK)] ∈ C2M×K with the virtual array steering vector
aw(θk) =

[
e−j2Mwk , · · · , e−j2wk , ej2wk · · · , ej2Mwk

]T ∈ C2M×1.
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4.1. Step-1: DOA Estimation

The virtual far-field array received signal vector cx can be sparsely represented in a redundant
basis. Define a set θ̂ =

[
θ̂1, θ̂2, · · · , θ̂Nθ

]
which denotes potential DOAs of interest sources

and assume that the true DOAs are exactly on this set. The number of the potential DOAs
Nθ should be much greater than K which is the number of sources. Define the overcomplete basis
Aw(θ̂) =

[
aw(θ̂1), aw(θ̂2), · · · , aw(θ̂Nθ

)
]

and the potential source signal vector v = [v1, v2, · · · , vNθ
]T .

As a result cx can be rewritten as the following form

cx = Aw
(
θ̂
)
v (13)

It can be seen that the elements of vector v have K nonzeros, that is vk = Λii if θ̂k = θi, i = 1, · · · , K.
Hence the DOA estimation problem can be reduced to finding the nonzero elements of the vector v.
Since v is sparse, so it can be estimated by solving the following sparse reconstruction problem

min‖v‖1 s.t. ‖cx − Aw
(
θ̂
)
v‖2 ≤ ε1 (14)

where ε1 is a parameter which means how much of the error we wish to allow and plays an important
role in the algorithm performance.

4.2. Step-2: Range Estimation

Given a DOA θk(k = 1, · · · , K) which is estimated in Step1, the robust correlation matrix of the
near-filed received signal can be written as

Cθk
= A

(
θk, r

)
ΛAH(θk, r

)
+ ξ I (15)

where the manifold matrix A
(
θk, r

)
=
[
a
(
θk, r1

)
, a
(
θk, r2

)
, · · · , a

(
θk, rK

)]
. Applying the vectorization

operator on Equation (15), we have

yθk
= vect

(
Cθk

)
= Bθk

(r)Λw + ξvect(I) ∈ CN2×1 (16)

Bθk
(r) =

[
a∗
(
θk, r1

)
⊗ a

(
θk, r1

)
, · · · , a∗

(
θk, rk

)
⊗ a

(
θk, rk

)]
∈ CN2×K (17)

where ⊗ denotes Kronecker product. It is interesting to see that yθk
in Equation (16) can also be

regarded as output of the virtual far-filed array where Bθk
(r), Λw and ξvect(I) are the virtual manifold

matrix, equivalent source signal vector, and equivalent noise vector, respectively. Notice that the vector
ξvect(I) has only N nonzero elements, then these elements of yθk

corresponding to these positions of
nonzero elements in ξvect(I) can be removed and the rest N(N − 1) entries of yθk

corresponding to
these positions of zeros elements in ξvect(I) can be preserved. Then, the virtual far-field array output
vector processed by this operation can be formulated as

y′
θk

= B′
θk
(r)Λw ∈ CN(N−1)×1 (18)

where B′
θk
(r) ∈ CN(N−1)×K is the new manifold matrix obtained by removing the rows of matrix Bθk

(r)
which are corresponding to these positions of nonzero elements in ξvect(I). This elimination operation
can further reduce the effect of the impulsive noise.

Using a similar approach as in Step-1, the virtual received signal vector y′
θk

can be sparsely
represented as the following form

y′
θk

= B′
θk
(r̂)p (19)

where B′
θk
(r̂) ∈ CN(N−1)×Nr is the overcomplete basis on a set r̂ = [r̂1, r̂2, · · · , r̂Nr ]. Nr is the number

of the potential sources on the direction of θk and should be much greater than the number of real
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sources Nrk on the direction of θk, p = [p1, p2, · · · , pNr ]
T is the potential source signal vector that have

Nrk nonzeros, that is pj = Λkiki
if r̂j = rki

(
i = 1, · · · , Nrk

)
. Hence the range parameter estimation

problem can be resolved by finding the nonzero elements of vector p, which can be estimated by
solving the sparse reconstruction problem given by

min‖p‖1 s.t. ‖y′
θk
− B′

θk
(r̂)p‖

2
≤ ε2 (20)

where ε2 is also a parameter which means how much of the error we wish to allow and plays
an important role in the algorithm performance.

5. Simulation Results

In order to verify that our proposed FLOCSR and NTCSR algorithms have a more noise-rejection
ability than the SOCSR algorithm in the α–stable impulsive noise environment, we conduct a series
of numerical experiments under a variety of simulation conditions. In order to solve the convex
optimization problem given in Equations (14) and (20), the software package CVX [35] is used.
Considering an N = 15 element ULA, the separation distance between the elements is λ/4. Uniform
sampled in the angular space [−90o, 90o] at 1o interval and near-field range scope [0.1λ, 10λ] at 0.1λ

interval, that is Nθ = 181 and Nr = 100.
As the characteristic of the α-stabledistribution makes the use of the standard SNR meaningless,

a new SNR measure, generalized signal-to-noise ratio (GSNR) is defined as [27]

GSNR = 10 log10
σ2

s
γ

(21)

where σs is the variance of the signal.
Two performance criteria are used to assess the performance of the algorithms. The first one is

the probability of success. A successful simulation is defined if angle difference between the estimated
DOA and the real DOA is less than 3o and distance difference between the estimated range and the
real range is less than 0.3λ for all incident sources. The probability of success is defined as the ratio
of the number of successful simulations to the total number of Monte Carlo simulations. Another
criterion that used to assess the performance of the algorithms is the average root mean square error
(RMSE) defined as

RMSE =
1
K

K

∑
l=1

√√√√ 1
Nok

Nok

∑
i=1

(xl(i)− xl)
2 (22)

where xl is the real value of the DOA or the range parameter, xl(i) is the ith estimation value of xl and
Nok is the number of successful simulations.

5.1. Simulation 1

Two independent Gaussian distribution sources with equal power in the near-field region at
locations (θ1, r1) = (20o, 1.5λ) and (θ2, r2) = (45o, 3.6λ) are considered. Suppose the noise is modeled
to be SαS distributed with α = 1.5. The generalized SNR is set to be GSNR = 5 dB and the number
of snapshots is L = 500. Two-hundred Monte-Carlo simulations are performed individually for each
method. Figures 2–4 give the estimated locations of the SOCSR, FLOCSR, and NTCSR algorithm.
It can be seen that the simulation results of the SOCSR algorithm are scattered around the real location,
whereas the simulation results of the FLOCSR and NTCSR algorithms are closely gathered near the
real location, especially the NTCSR algorithm.
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Figure 2. Simulation results of the SOCSR algorithm.

Figure 3. Simulation results of the FLOCSR algorithm.

Figure 4. Simulation results of the NTCSR algorithm.

5.2. Simulation 2

In this simulation the locations of two independent Gaussian distribution sources with equal
power are set as (θ1, r1) = (20o, 0.2λ) and (θ2, r2) = (45o, 1.4λ). The characteristic exponent of
the α-stable noise is fixed at α = 1.5 and thenumber of snapshots is L = 1000. Figure 5 shows
the performance of the three algorithms for various GSNRs ranging from 2 dB to 20 dB. We see
that probability of success of all algorithms improve with the increase of GSNR, and the proposed
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FLOCSR and NTCSR algorithms outperform the SOCSR algorithm. For example, when GSNR = 6 dB,
the probability of success of SOCSR algorithm is only 58% whereas the probability of success of
FLOCSR and NTCSR method are all above 90%. The RMSE of DOA and range of all algorithms
decrease with the increase of GSNR but the proposed FLOCSR and NTCSR algorithms have a less
value than the SOCSR algorithm at the same GSNR. That is to say, the proposed FLOCSR and NTCSR
methods have a better estimation accuracy and precision than SOCSR algorithm. From the simulation
results, we can also see that the performance of the NTCSR algorithm is better than that of the FLOCSR
algorithm, indicating that the nonlinear transform correlation has a better ability to suppress impulse
noise compared with the fraction lower order correlation.

Figure 5. Cont.
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Figure 5. Performance as a function of GSNR (a) probability of success; (b) RMSE of DOA; and (c)
RMSE of range.

5.3. Simulation 3

Figure 6 plots the performance of the three algorithms varying with different values of the
characteristic exponent of the α-stable impulsive noise. The simulation environment is as same as
Simulation 2 except that the GSNR is kept at 10 dB. As shown in Figure 6, our proposed FLOCSR and
NTCSR algorithms demonstrate their performance enhancement over SOCSR algorithm in the sense
of the probability of success and RMSE under the highly impulsive noise environment. In particular,
the performance of NTCSR algorithm which has a good ability to suppress impulse noise is more
outstanding when in the strong impulse noise environment with characteristic exponent α = 1.1,
the probability of success is almost 1 and the lowest RMSE.

Figure 6. Cont.
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Figure 6. Performance as a function of characteristic exponent α (a) probability of success; (b) RMSE of
DOA; and (c) RMSE of range.

5.4. Simulation 4

In this experiment, the simulation environment is accordance with Simulation 2 except for
GSNR = 6 dB and the number of snapshots is varied from 50 to 1600. Figure 7 shows the relationship
between the performance of the three algorithms and the number of snapshots. We can observe that
as the number of snapshots increase all algorithms exhibit a decrease in RMSE and an increase in
the probability of success. However when the number of snapshots is more than 400, the increased
performance caused by the snapshots is not obvious. Nevertheless, our proposed FLOCSR and NTCSR
algorithms produce lower RMSE and higher probability of success compared to the SOCSR algorithm
when the same number of snapshots is used.
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Figure 7. Performance as a function of snapshots (a) probability of success; (b) RMSE of DOA; and
(c) RMSE of range.

5.5. Simulation 5

The ranges of two incident sources are fixed at r1 = 0.2λ, r2 = 1.4λ, Figure 8 shows the capability
of angular separation of three algorithms with the DOA of the first source is fixed at θ1 = 20◦ and
the DOA of the second source is varied from 24◦ to 40◦ with an interval of 2◦ under the simulation
environment of GSNR = 6 dB, α = 1.5, and L = 1000. It is generally considered that the greater the
angle separation, the smaller the influencesbetween the two incident sources, the better the estimation
performance. The simulation results verify this point of view, that the greater the angle separation,
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the higher the probability of success and the lower of the RMSE of the angle estimation. Since the
range parameter is obtained on the basis of the estimated DOA, thence, the performance of the range
estimation has little to do with the angle separation. Under the same angle separation condition,
since the SOCSR algorithm is not resilient to impulsive noise, it realizes the localization at a lower
probability of success and a higher RMSE relative to the FLOCSR and NTCSR algorithm which can
effectively suppress the impulse noise.

Figure 8. Performance as a function of angle separation (a) probability of success; (b) RMSE of DOA;
and (c) RMSE of range.

5.6. Simulation 6

To test the capability of range separation of the algorithms, we fix the directions of two incident
sources at θ1 = 20

◦
, θ2 = 40

◦
and the range of the first source at r1 = 0.2λ. The range of the second

source is varied from r2 = 0.2λ to r2 = 2λ with an interval of 0.2λ. The plots in Figure 9 are obtained
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under GSNR = 6 dB, α = 1.5 and L = 1000. According to the principle of the algorithm, DOA estimation
is independent of range, accordingly, the range separation changes will not affect the estimation results
of DOA. Therefore, as shown in Figure 9, the probability of success and the RMSE of DOA hardly vary
with range separation. However, the RMSE of range improves with the increase of range separation.
In any case, our proposed two algorithms have better probability of success and lower RMSE than the
SOCSR algorithm.

Figure 9. Performance as a function of range separation (a) probability of success; (b) RMSE of DOA;
and (c) RMSE of range.

5.7. Simulation 7

In the NTCSR algorithm, the scale factor δ determines the degree of nonlinear transformation of
the array received signals, in other words, it determines the degree of the impulse noise suppression.
Figure 10 shows the performance of NTCSR algorithm in α = 1.2 and 1.5 two different impulse noise
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conditions for various scale factors ranging from 1 to 10. The number of snapshots is L = 1000 and
GSNR = 10 dB. Although the localization of the near-field signal sources can be relatively successfully
implemented in both impulse noise environments, different scale factors result in different estimation
accuracies. From Figure 10 we can observe that δ ∈ [3− 5] would be the optimal domain for NTCSR
algorithm to achieve its best performance in the RMSE of DOA and range.

Figure 10. Performance of NTCSR algorithm as a function of scale factor (a) probability of success;
(b) RMSE of DOA; and (c) RMSE of range.
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6. Conclusions

In this paper, the localization problem of near-field sources under impulsive noise environments
is studied. Based on the symmetrical characteristic of the array, we construct the robust far-field
approximate correlation vector in relation with the DOA only, which allows for bearing estimation
based on the sparse reconstruction of the robust correlation vector. With the estimated bearing,
the range can consequently be obtained by the sparse reconstruction of the output of a virtual array.
Simulation results indicate the superiority of the presented two algorithms in the probability of success
and RMSE under a variety of impulsive noise environments.
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