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Abstract
The human gastrointestinal tract houses an enormous microbial ecosystem. Recent studies have shown that the gut micro-
biota plays significant physiological roles and maintains immune homeostasis in the human body. Dysbiosis, an imbalanced 
gut microbiome, can be associated with various disease states, as observed in infectious diseases, inflammatory diseases, 
autoimmune diseases, and cancer. Modulation of the gut microbiome has become a therapeutic target in treating these dis-
orders. Fecal microbiota transplantation (FMT) from a healthy donor restores the normal gut microbiota homeostasis in the 
diseased host. Ample evidence has demonstrated the efficacy of FMT in recurrent Clostridioides difficile infection (rCDI). 
The application of FMT in other human diseases is gaining attention. This review aims to increase our understanding of the 
mechanisms of FMT and its efficacies in human diseases. We discuss the application, route of administration, limitations, 
safety, efficacies, and suggested mechanisms of FMT in rCDI, autoimmune diseases, and cancer. Finally, we address the 
future perspectives of FMT in human medicine.
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Abbreviations
AML  Acute myeloid leukemia
ASD  Autism spectrum disorder
CNS  Central nervous system
CTLA-4  Cytotoxic T lymphocyte antigen-4
EAE  Experimental autoimmune encephalomyelitis
FMT  Fecal microbiota transplantation
GI  Gastrointestinal
HDL  High-density lipoprotein

IBD  Inflammatory bowel disease
ICIs  Immune checkpoint inhibitors
IND  Investigational new drug
MS  Multiple sclerosis
NNT  Number needed to treat
PD-1  Programmed cell death protein-1
PsA  Psoriatic arthritis
RCT   Randomized controlled trial
rCDI  Recurrent Clostridioides difficile infection
SCFAs  Short-chain fatty acids
SLE  Systemic lupus erythematosus
T1D  Type 1 diabetes
UC  Ulcerative colitis

Introduction

The human microbiota consists of a diverse multitude of 
microorganisms that establish in niches throughout the 
human body and outnumber the host’s cells by tenfold [1]. 
The majority of the human microbiome is found colonizing 
the gastrointestinal (GI) tract [2]. The inoculation process 
begins at birth following exposure of the “essentially germ-
free child” to maternal and environmental microorganisms 
[1, 3, 4]. The infant microbiome is rich in Bifidobacterium 
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longum, which is notable for the digestion of human milk oli-
gosaccharides (HMOs) into short-chain fatty acids (SCFAs) 
[1, 4]. SCFAs are not only an energy source for enterocytes, 
but they also act as ligands in molecular pathways that medi-
ate metabolism and modulate immunity [2, 5].

The human immune system has evolved to be in homeo-
stasis with its microbiome [6]. Although the adult micro-
biome is thought to remain relatively stable, alterations in 
composition and quantity can vary with diet, environmental 
factors, age, and genetics [7, 8]. Alterations in the micro-
biota population can have a variety of effects on host health, 
notably by dysregulating metabolic and signaling pathways, 
decreasing SCFA production, increasing toxic metabolite 
production, increasing inflammation, and diminishing 
immune response [2, 5]. Distinct microbe populations have 
been found to be associated with various disease states, such 
as infection, autoimmunity, metabolic diseases, and cancer 
[9–14]. On the other hand, certain strains of microorgan-
isms, collectively known as probiotics, confer positive health 
benefits on the host. Others prevent the growth of harmful 
bacteria through competitive and noncompetitive mecha-
nisms. Thus, it is hypothesized that remedying dysbiosis, an 
imbalance between microbiota and host [10], and restoring 
the diversity and composition of the microbiome can rectify 
dysregulated metabolisms and immunological responses. In 
1958, Eiseman et al. [15] serendipitously pioneered the field 
of fecal microbiota transplantation (FMT) with their use of 
fecal enema to successfully treat patients with pseudomem-
branous colitis. A subsequent study by Hentges and Freter 
in 1962 suggested that manipulation of gut microflora can 
be of therapeutic value in intestinal infection [16]. Restoring 
the gut microbiome using FMT is now a well-recognized 

strategy for the management of recurrent Clostridioides dif-
ficile infection (rCDI) in patients who do not respond well 
to traditional treatment methods. Currently, the US FDA has 
approved FMT to be used without requiring an investiga-
tional new drug (IND) application to treat rCDI in patients 
who are nonresponsive to standard therapy. However, IND 
applications are necessary for all other investigational uses 
of FMT.

FMT is a process by which a sample of a healthy micro-
biome is transferred to a host with some sort of dysbiosis. 
The goal is the recolonization of the host gut with beneficial 
microorganisms and the restoration of eubiosis. It is believed 
that FMT originated in fourth-century China, whereby fecal 
material was administered orally to treat patients with diar-
rhea [10, 17]. FMT was further explored in the sixteenth 
and seventeenth centuries for veterinary treatments before 
it was rediscovered more recently for human medicine. As 
discussed above, the first reported use of FMT in western 
medicine dates back to 1958, when Eiseman and his team 
documented positive outcomes after fecal enema was admin-
istered to patients with diarrhea secondary to antibiotic use 
[15]. Currently, FMT is performed with either fresh donor 
stool or frozen prepared samples from healthy volunteers 
or family members. Following its success in treating rCDI, 
FMT has been explored to treat other GI and extra-GI dis-
eases (Table 1). Currently, more than 200 clinical trials have 
been conducted on the applications of FMT in the treatment 
of various inflammatory and autoimmune disorders as well 
as cancers. Here, we will discuss the current understanding 
of the use of FMT in (i) rCDI, (ii) autoimmune disorders, 
and (iii) cancer. Finally, we will explore the future perspec-
tive of FMT in human medicine.

Table 1  FMT milestones in rCDI treatment and other non-GI disorders

Year Milestones Reference

rCDI 1958 Treatment of pseudomembranous colitis with fecal enema [15]
1962 Envision the therapeutic value of manipulating the microbiome in intestinal infection [16]
2012 Treatment of rCDI with frozen fecal microbiota [18]
2014 Use of oral, capsulized, frozen FMT for relapsing C. difficile infection [19]
2016 Automatic purification of fecal microbiota and design of step-up FMT strategy [20]
2022 Oral live microbiome therapy composed of Firmicutes spores to inhibit rCDI [21]

GI disorders 1989 Treatment of UC with fecal enema [22]
1989 Use of fecal enema in treating constipation, IBD [23]
2012 Use of FMT in the treatment of insulin sensitivity in patients with metabolic syndrome [24]
2015 Use of FMT in the treatment of UC [25, 26]
2016 Treatment of slow transit constipation with FMT [27]
2016 Use of FMT for acute graft-versus-host of the gut [28]
2016 Use of FMT for hepatic encephalopathy [29]

Non-GI disorders 2017 Use of FMT for a neurological disease (epilepsy) [30]
2017 FMT improves GI and autism symptoms [31]
2022 FMT for Sjogren’s syndrome in individuals with immune-mediated dry eye [32]
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FMT in rCDI

Clostridioides difficile (C. difficile), a spore-forming, gram-
positive anaerobic, toxin-producing Bacillus, is widely 
niched in the intestinal tract of humans and animals and in 
the environment. rCDI, characterized as a toxin-mediated 
intestinal disease, is now considered one of the most com-
mon causes of healthcare-associated infections and a serious 
public health challenge. Broad-spectrum antibiotic therapy 
is one of the major risk factors for rCDI. Antibiotic-mediated 
gut microbiota dysbiosis has been best characterized in those 
with C. difficile infection. Therefore, reconstitution of nor-
mal microbial homeostasis is deemed a key strategy in the 
treatment of rCDI patients.

The effectiveness of FMT in rCDI can vary with the route 
of infusion, the amount of feces administered, the therapy 
prior to infusion, and the concomitant treatment. The route 
of FMT administration, safety, and effectiveness in rCDI 
have been extensively evaluated. Systematic reviews and 
meta-analysis studies have demonstrated that FMT is highly 
effective and considerably safe, with higher clinical resolu-
tion rates through lower GI FMT delivery vs. the upper GI 
route [33–35]. There was no significant difference in outcome 
observed in samples originating from unrelated donors vs. 
closely related ones; stool banks have been established to 
meet the growing demands with the added benefit of reducing 
the cost of treatment. Additionally, donors undergo screening 
to reduce the risks of spreading infection and are advised to 
avoid any foods and substances the donor may be allergic to 
prior to sample collection. Given these considerations, the 
FDA continues to advise caution regarding potential adverse 
outcomes (https:// www. fda. gov/ safety/ medic al- produ ct- 
safety- infor mation/ fecal- micro biota- trans plant ation- safety- 
alert- risk- serio us- adver se- events- likely- due- trans missi on). 
A randomized, controlled trial study demonstrated that duo-
denal infusion of donor fecal samples is significantly more 
effective than vancomycin alone in treating rCDI [36]. Hvas 
et al. reported that the combination of FMT and vancomycin 
was superior to fidaxomicin or vancomycin alone in patients 
with rCDI [37]. Experimental studies in a murine model of 
CDI relapse indicated that, although administration of van-
comycin can suppress both C. difficile colonization and cyto-
toxin titers, it cannot eradicate C. difficile completely and 
leads to rapid relapse, concomitantly with a consistently low 
diversity of gut microbiota in mice. On the other hand, FMT 
after vancomycin treatment can clear C. difficile and lead to 
a diverse, healthy microbiota, indicating FMT provides addi-
tional assistance in the restoration of the gut microbiota [38, 
39]. Buffie et al. validated that the loss of specific bacterial 
taxa with the development of infection leads to susceptibility 
to C. difficile in mice. They reported that Clostridioides cin-
dens was associated with resistance to C. difficile infection, 

and adoptive transfer of resistance-associated intestinal bac-
teria after antibiotic exposure reinforces resistance to C. dif-
ficile infection [40]. Other studies have also corroborated that 
FMT is an effective and safe therapy for rCDI [41, 42].

Mechanisms of FMT in rCDI

The specific mechanism whereby FMT leads to clinical 
recovery in rCDI is unclear. To date, the prevailing theories 
include: (i) direct competition of C. difficile with commensal 
microbiota administered by FMT [43], (ii) changes in bile 
acid metabolism [40], (iii) repair of the gut barrier by stimu-
lation of the mucosal immune system [43], and (iv) recon-
stitution of alpha diversity that contributes to colonization 
resistance against C. difficile [44, 45] (Fig. 1). Competition 
among variant gut microbiota, including competitive niche 
exclusion and nutritional resources, as well as the produc-
tion of bacteriocins, which possess bactericidal or bacte-
riostatic activity against competitors, can interfere with the 
C. difficile population [46]. It has been reported that bile 
acid metabolism is involved in the pathogenesis of rCDI. 
Bile acids, generated from cholesterol and synthesized in the 
liver, are modified in the colon by indigenous gut microbiota 
and metabolized into secondary bile acids. Bile acids can 
regulate the composition of the gut microbiota, and differ-
ent bile acids can either stimulate or inhibit the life cycle 
of C. difficile. The primary bile salt taurocholate is a com-
mon component used in C. difficile growth media, while the 
secondary bile acid, lithocholic acid, is an inhibitor of C. 
difficile spore germination [47]. Weingarden et al. reported 
that pre-FMT fecal samples contain high concentrations of 
primary bile acids and bile salts, while secondary bile acids 
are almost undetectable. In contrast, the concentrations of 
secondary bile acids were comparable between post-FMT 
stool samples and non-CDI donor samples, which indicated 
that the metabolism of bile acids was disturbed in patients 
with rCDI and that FMT can correct rCDI by normalizing 
the microbiome composition and bile acid metabolism [48].

Gut barrier dynamic entities interacting and responding 
to various stimuli are an important guard against pathogen 
invasions. The immune system is one of the important com-
ponents of the gut barrier. In RegIIIγ (−/−) mice, reduction 
of RegIIIγ expression, a secreted antibacterial lectin, may 
lead to increased bacterial colonization of the intestinal epi-
thelial surface and activation of intestinal adaptive immune 
responses [49]. The immune response in CDI can be either 
protective or harmful, with respect to the specific C. difficile 
strains and the attributes of the individual host. For example, 
the severity and worse outcomes in rCDI are associated with 
intestinal inflammation featured by higher levels of fecal 
IL-8 and CXCL5, not fecal pathogen burden [50]. FMT can 
reshape the gut barrier by providing essential tonic signals to  

https://www.fda.gov/safety/medical-product-safety-information/fecal-microbiota-transplantation-safety-alert-risk-serious-adverse-events-likely-due-transmission
https://www.fda.gov/safety/medical-product-safety-information/fecal-microbiota-transplantation-safety-alert-risk-serious-adverse-events-likely-due-transmission
https://www.fda.gov/safety/medical-product-safety-information/fecal-microbiota-transplantation-safety-alert-risk-serious-adverse-events-likely-due-transmission
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regenerate epithelial cells and produce mucin and antimi-
crobial peptides [43]. A phase 3, double-blind, randomized, 
placebo-controlled trial (NCT03183128) on an investigational 
microbiome therapeutic (SER-109) composed of purified  
Firmicutes spores for the treatment of recurrent C. difficile 
infection showed that SER-109 was superior to placebo in 
reducing the risk of rCDI and with a safety profile similar 
to that of placebo. Engraftment of the SER-109 microbial 
species was evident and associated with an increase in sec-
ondary bile acids in the SER-109 recipients from week 1 
and persisted through the end of the study. Competition for 
essential nutrients between the spore-forming Firmicutes 
and C. difficile and modulation of bile acid composition 
could negatively affect C. difficile sporulation, germination, 
and colonization in the SER-109 recipients [21].

Seekatz et al. reported a relative increase in the abun-
dance of Bacteroidetes and a decrease in the abundance of 
Proteobacteria after FMT, with the composition and diver-
sity resembling the donor profile more than the microbiota 
prior to transplantation, followed by functional changes in 
promoting colonization resistance [45]. Another study also 
indicated that the lower alpha diversity in rCDI patients’ 

pre-FMT samples was restored upon FMT. It was observed 
that the microbial composition also altered with post-FMT, 
with similar abundances in Lachnospiraceae, Ruminococ-
caceae, and Bacteroidaceae between responder and donor 
samples. Based on these results, the regression tree-based 
model can predict recurrence accurately [51]. Hence, recon-
stitution of the normal microbial diversity and community 
structure through FMT is an attractive therapy to prevent 
pathogen infections in the gut.

FMT in Autoimmune Disorders

Advances in deciphering the roles of gut microbiota in 
human health and evidence of cross-talk between the micro-
biome and the human body have inspired a new paradigm 
in treating autoimmune disorders by manipulation of the 
gut microbiota via FMT. Here, we will highlight the salient 
findings in studies of FMT in several autoimmune disor-
ders, including inflammatory bowel disease (IBD), multiple 
sclerosis (MS), psoriasis, autoimmune arthritis, and type 1 
diabetes (T1D) (Table 2).

Fig. 1  Hypothetical mechanism 
of FMT. Possible mechanisms 
of FMT: (1) increasing micro-
bial diversity that contributes to 
gut homeostasis; (2) direct com-
petition for niches and nutrition 
with pathogens; (3) alteration 
of microbial metabolites such 
as increasing the production of 
SCFAs and changing bile acid 
metabolism; (4) repairing the 
gut barrier by stimulation of the 
mucosal immune system and 
by providing the essential tonic 
signals to regenerate epithelial 
cells and produce mucin and 
antimicrobial peptides; (5) 
modulation of the immune sys-
tem through providing essential 
signals for proper develop-
ment, education, and epigenetic 
regulation of immune cells; and 
(6) acting on gut-brain axis via 
intrinsic and extrinsic factors, 
modulating the function of both 
the enteric and central nervous 
systems
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FMT in IBD

Since the late 1980s, multiple case reports and cohort studies 
have demonstrated that FMT delivered via enema or colonic 
infusion could lead to clinical remission in ulcerative coli-
tis (UC) and Crohn’s disease (CD) [61]. FMT applications 
ranged from single to multiple doses. The pooled results 
from these studies showed FMT achieved clinical remission 
in 33% [95% confidence interval (CI) = 23–43%] for UC and 
52% [95% CI = 31–72%] for CD. Recently, multiple rand-
omized controlled trials have shown promising results using 
FMT for mild to moderate UC. Investigations for pouchitis 
and Crohn’s disease are ongoing [62, 63].

FMT in UC

Five randomized controlled trials using FMT to treat mild 
to moderate UC have been published from 2015 to 2022 
[14, 25, 26, 64, 65] (Table 3). Patients with mild to moder-
ate disease, defined by Mayo scores between 4 and 10, were 
studied. The primary outcomes were corticosteroid-free 
clinical remission and endoscopic remission or response. 
Rossen et  al. [26] administered two doses of FMT to 
UC patients via the nasoduodenal route for 3 weeks but 
did not achieve a significant response. On the contrary, 
Moayyedi et al. [25] demonstrated that FMT delivered by 
enema given once a week for 6 weeks significantly induced 
clinical remission in 9/38 (24%) of the FMT-treated group 
vs. 2/37 (5%) placebo using water enema. Each specimen 
was donated by a healthy individual donor. Surprisingly, 
this study noted a super donor effect, where FMT from a 
single donor resulted in a significantly higher number of 

recipients achieving remission. It is likely that the success 
of FMT depended on the microbial diversity and composi-
tion of the stool donor. High diversity of the gut micro-
biota, particularly in the donor, appears to best predict a 
patient’s positive response to FMT. In 2017, Paramsothy 
et al. [64] illustrated that intensive dosing of FMT from 
pooled donors via enema given 5 days/week for 8 weeks 
after one colonoscopy infusion was able to achieve clinical 
remission in 11 of 41 (27%) patients when compared with 
3 of 40 (8%) who were assigned placebo (risk ratio 3.6, 
95% CI 1.1–11.9; p = 0.021). The improvement is associ-
ated with an increase in distinct microbial diversity, but 
the response was unrelated to the presence of pathobionts 
with Fusobacterium spp. Costello et al. [14] conducted 
a 1-week treatment with anaerobically prepared pooled 
donor FMT. The significant primary outcomes of steroid-
free remission and endoscopic remission were achieved in 
12 of the 38 participants (32%) receiving anaerobic FMT 
compared with 3 of the 35 (9%) receiving autologous FMT 
(difference, 23% [95% CI, 4–42%]; odds ratio, 5.0 [95% CI, 
1.2–20.1]; p = 0.03). In 2022, Haifer et al. [65] published 
the first randomized controlled trial (RCT) using oral lyo-
philized capsule FMT in treating mild to moderate UC. 
Patients were given 2 weeks of amoxicillin, metronidazole, 
and doxycycline before randomizing to receive oral lyophi-
lized FMT or placebo capsules for 8 weeks. Therapeutic 
IBD medications were continued, including mesalamine, 
biologics, and corticosteroids. Steroid therapy was tapered 
as per protocol. The regimen included six capsules four 
times a day for 1 week, then six capsules twice daily for 
1 week, followed by six capsules daily for the remaining 
6 weeks.

Table 2  Clinical trials of various autoimmune-mediated disorders

Disorders Method of administration Outcome Clinical trial number/animal model Reference

UC Enema Increased remission rate NCT01545908 [25]
Nasogastric tube No improvement NCT01757964 [52]

MS Oral gavage BBB leakage ↓, microglia, and astro-
cyte activation ↓

EAE [53]

Oral gavage Improving EAE disease EAE [54]
Intragastrical administration Reconstitution of gut microbiota and 

attenuation of EAE
EAE [55]

Oral Rebuild the gut microbiota ⎯ [56]
PsA Gastro-duodenal tube Failure NCT03058900 [57]
SLE Oral Improved systemic immune-inflamma-

tion profiles
ChiCTR2000036352 [58]

T1D Nasoduodenal tube Stabilize residual beta cell function NTR3697 [59]
ASD Oral or rectal More effective in multiple rounds of 

infusion
NCT02504554 [31]

Oral versus rectal Promote the colonization of donor 
microbes

ChiCTR1800014745 [60]

Metabolic syndrome Gastro-duodenal tube Improved insulin sensitivity Dutch Trial Register NTR1776 [24]
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The primary outcome (Fig. 2) showed a significant 
response in 8 of 16 patients (50%) receiving FMT vs. 3 
of 19 patients (16%) receiving placebo (OR: 4.63; 95% 
CI: 1.74–12.30; p = 0.002). Steroid-free clinical remis-
sion rates and endoscopic remission rates were 69% vs. 
26% (p = 0.012) and 44% vs. 16% (p = 0.074) in the FMT 
and placebo arms, respectively. Relapse occurred after 
induction, but all the patients had sustained responses 
with continued maintenance therapy.

Both the upper and lower routes of administration are 
effective. The pooled data from these 5 RCTs showed that 
FMT, when compared to placebo, can achieve clinical and 
endoscopic remission. The estimated number needed to 
treat (NNT) is 3. This NNT to achieve remission is similar 
to using mesalamine, steroids, or biologics vs. a placebo. 
These studies provide evidence for a therapeutic role in 
microbiota manipulation in mild to moderate UC. FMT 
is a promising alternative or adjuvant modality to current 
therapies for UC patients. More extensive clinical trials 
are pending to confirm its long-term efficacies and safety 
[14, 25, 26, 62, 65, 66].

FMT in Crohn’s Disease

Systematic reviews and meta-analyses of early case series of 
FMTs in Crohn’s disease showed clinical remissions of 50% 
[61]. However, RCT data are lacking. A recent randomized, 

sham-controlled pilot trial evaluating FMT in Crohn’s dis-
ease by Sokol et al. [67] did not achieve the primary end-
point of donor microbiota engraftment at week 6. However, 
it demonstrated that the post-FMT increase in alpha diversity 
was driven by the engraftment of donor species, mainly seen 
with Actinobacteria species associated with remission and 
Bacteroidetes in relapse. The failure of a single FMT appli-
cation in this trial suggested that multiple transplantations 
may be needed [68, 69].

Current Observations of FMT in IBD

Overall, FMT is safe for patients with IBD. Most of the 
adverse effects were self-limiting GI complaints. Severe 
adverse effects were included in a few patients with wors-
ening colitis, Clostridiodes infection, and pneumonia. Minor 
AEs were new anemia and elevated alkaline phosphatase, 
and aminotransferases were similar in both groups [14, 25, 
26, 62, 64, 65, 67]. Although a few case reports suggest the 
effectiveness of FMT in pouchitis, the results of RCTs are 
still pending.

The efficacy of FMT depends on the severity of the dis-
ease, the delivery routes, and the duration of treatment. 
Multiple applications over a longer period can induce pro-
longed clinical remission [64, 65]. Both a shorter duration 
and a milder disease state in UC allowed for higher success. 

Table 3  Summary of the early randomized controlled trials on FMT in mild to moderate UC

Study Rossen et al. Moayyedi Paramsothy Costello Haifer

Route Nasoduodenal Enema Colon (× 1) + enema (40) Colon (1) + enema (× 2) 2 weeks Abx (Amox/metro/
doxy) + oral lyophilized 
capsule

Endpoint Week 12 Week 7 Week 8 Week 8 Week 8
Disease severity SCCAI 4–11, 

endoscopic 
subscore ≥ 1

Mayo ≥ 4, 
endoscopic 
sub-
score ≥ 1

Mayo 4–10 Mayo 3–10, endoscopic 
subscore ≥ 2

Mayo 4–10, endoscopic 
subscore ≥ 1

Primary outcome 
remission  
definition

SCCAI ≤ 2, 
endoscopic 
Mayo 
improved 
by ≥ 1

Total 
Mayo ≤ 2, 
endoscopic 
Mayo = 0

Total Mayo ≤ 2, endoscopic 
Mayo improved by ≥ 1 
point

Total Mayo ≤ 2, endoscopic 
Mayo ≤ 1

Total Mayo ≤ 2, endoscopic 
Mayo improved by ≤ 1 
point, steroid-free clinical 
remission

Control Autologous Water Saline Autologous Placebo
Volume 120 ml 50 ml 150 ml 200 ml + 100 ml Capsule 0.35 g lyophilized 

stool @
Timing Weeks 0 and 3 1/week 5/weeks 3 times Daily
Duration 3 weeks 6 weeks 8 weeks 1 week 8 weeks
Number of FMTs 2 6 41 3 24 capsules daily 1st week, 

12 capsules daily 2nd 
week, 6 capsules daily 3rd 
to 8th weeks

References [26] [25] [64] [14] [65]
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Concurrent use of corticosteroids and severe endoscopic 
disease may decrease response.

A meta-analysis showed that remission rates in the treatment 
of UC can vary depending on the route of administration. The 
lower GI route achieved the best remission rate [17]. While 
delivery via colonoscopy or enema showed better responses 
than duodenal infusions, oral lyophilized capsules have now 
proven to be an effective alternative [14, 25, 26, 64, 65].

The post-FMT intestinal flora of recipients generally 
increased in diversity and was enriched with species associ-
ated with eubiosis, even in cases where remission was not 
reached [17]. In addition to the restoration of the gut micro-
biome, improved insulin sensitivity was also observed when 
FMT from lean donors was used to treat obese recipients 
[10]. It has been reported that some combinations medi-
cations can influence the efficacy of FMT. A population-
based metagenomic analysis showed significant associa-
tions between the gut microbiome and several drugs, such 
as antibiotics, proton-pump inhibitors, metformin, statins, 
and laxatives [70]. Antibiotic pretreatment may improve the 
efficacy of FMT in patients with UC [71], but early antibi-
otic use may increase the risk of FMT failure [72].

Microbial engraftment is an important factor for a suc-
cessful FMT. Preconditioning the recipient’s gut flora with 
antibiotics before FMT could likely eliminate pathobionts 
such as Fusobacterium, Sutterella, Escherichia, and Strep-
tococcus to facilitate the engraftment of beneficial microbes, 
resulting in clinical remissions [65]. A high abundance of 
Caudovirales in recipients can diminish FMT effectiveness 
[62, 73].

The efficacy of this approach may also be donor-dependent. 
There are some case series that exhibit positive results [74], 
but others show disappointing results [75], which can be partly 
explained by the donor characteristics, perhaps bacteriological 
or immunological. In a trial in 2015 using FMT from 6 donors 
to treat IBD, the donor-produced stool was significantly more 
effective than a placebo, while patients administered stool 
produced by the other 5 donors had similar response rates to 
placebo treatment [25]. The donor’s specimen characteristics 
may well create a super donor phenomenon [25, 36]. The com-
ponents and viability of the donor’s fecal microbiota can affect 
FMT efficacy. Further efforts are needed to optimize the pro-
cedure for preparing donor feces.

Fig. 2  Primary outcomes of the five RCTs of FMT in mild to moder-
ate ulcerative colitis. The bar graphs highlight the efficacies of FMT 
in the induction of clinical remission for mild to moderate UC in five 
RCTs. The Rosen study using nasoduodenal delivery of FMT over a 
3-week period showed no statistical significance, whereas the other 

four RCTs demonstrated the effectiveness of FMT for induction of 
clinical remission when compared to placebo. The pooled data from 
these RCTs showed that the NNT is 3, which is comparable to other 
effective medical therapies for IBD
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FMT in MS

MS is an autoimmune neurologic disorder characterized 
pathologically by multifocal areas of demyelination with 
loss of oligodendrocytes and astroglial scarring. Moreover, 
there is a clinical presentation of gradual progression into 
significant physical disability within 20–25 years in more 
than 30% of patients [76]. Given that the gut microbiota 
and/or their metabolites contribute to shaping neurons [77], 
astrocytes [78], and microglia [79] of the CNS, it is not sur-
prising that the gut microbiota is involved in the pathogen-
esis of MS. The microbiome, acting is an integral player 
in maintaining the microbiota-gut-brain axis, therefore, is 
a fundamental underlying mechanism of utilizing FMT in 
central nervous system (CNS) disease (Fig. 1) [80]. Ample 
evidence demonstrates the presence of gut microbiota dys-
biosis in MS [81, 82], and re-establishing gut microbiota is 
considered a promising novel therapeutic strategy. Recent 
sequencing-based approaches have revealed that MS has a 
distinct gut microbiota composition compared to healthy 
controls [83]. A transplantation study of human fecal mate-
rial in a mouse model of MS revealed that mice transplanted 
with MS patient-derived microbiota had a higher frequency 
of spontaneous experimental autoimmune encephalomyeli-
tis (EAE) than mice colonized with intestinal bacteria from 
healthy twins. More strikingly, mouse recipients of MS 
microbiota had a lower level of IL-10 produced by immune 
cells than mouse recipients of healthy samples, while neu-
tralization of IL-10 in mice colonized with healthy fecal 
samples caused disease incidence to increase, indicating 
IL-10 may have a regulatory role in the pathogenesis of MS 
[84]. Similarly, Berer et al. reported concordance results 
showing that germ-free mice transplanted with microbiota 
from MS patients exhibited reduced proportions of IL-10+ 
Tregs compared with mice administered with microbiota 
from healthy controls. Further study on immunoregulatory 
mechanisms showed that MS-associated bacterial species 
decrease Tregs and increase Th1 lymphocyte differentiation 
in vitro and simultaneously exacerbate disease severity [84]. 
These studies provided the basis for the hypothesis that FMT 
can be a novel therapy by modulating the immune response 
in MS. A recent study reported that FMT can restore altered 
gut microbiota and have a therapeutic effect on EAE; the 
study also revealed that FMT prevented blood–brain bar-
rier (BBB) leakage with protective effects on myelin and 
axons and also alleviated microglia and astrocyte activation 
[53], which were considered to contribute to the inflamma-
tory pathology of MS [85]. Another study addressed the fact 
that FMT ameliorated the severity and pathologic outcomes 
of EAE disease partly due to modulating the composition 
of the gut microbiota by increasing the abundance of ben-
eficial bacteria and reducing the abundance of pathogenic 
bacteria [54]. Interventions with Clostridioides butyricum 

and norfloxacin can rebuild the composition of the gut 
microbiota and regulate the immune response in EAE mice 
by suppressing Th17 cell response and increasing Treg 
response via suppression of the MAPK pathway, eventu-
ally ameliorating EAE, indicating gut microbiota modula-
tion is a potential efficacious therapy for MS [55]. Similarly, 
studies in human patients with MS have demonstrated that 
probiotics can ameliorate neuroinflammation. Several stud-
ies on human MS patients reported that administration of 
probiotics (enriched with Lactobacillus, Streptococcus, and 
Bifidobacterium) can rebuild the gut microbiota, repress the 
inflammatory peripheral immune response with a negative 
correlation with pro-inflammatory markers, and afford a 
positive correlation with anti-inflammatory immune mark-
ers [56]. A randomized, double-blind, placebo-controlled 
trial reported that administration of probiotics to MS patients 
can achieve favorable effects on an expanded disability status 
scale (EDSS), parameters of mental health, inflammatory 
factors, markers of insulin resistance, high-density lipopro-
tein (HDL-), total-/HDL cholesterol, and malondialdehyde 
levels, indicating that probiotic treatment can improve MS 
[86]. A phase 1b study (NCT03594487) is underway to 
evaluate the safety and benefits of treating progressive MS 
patients with capsules of the fecal microbiome.

FMT in Psoriasis

Psoriasis is a chronic inflammatory disease of the cutaneous, 
musculoskeletal, and GI systems. Recent studies have linked 
Th17 cells to several autoimmune disorder,s including pso-
riasis [87]. One proposed mechanism is based on the observa-
tion that T cells produce IL-17 in response to IL-23. It was 
found that IL-17R receptor and IL-17RA protein are more 
highly expressed in cases of rheumatoid arthritis and psoriatic 
arthritis (PsA) when compared to asymptomatic patients as 
well as patients with joint pain secondary to osteoarthritis 
[87]. A double-blind, randomized, placebo-controlled trial 
(NCT03058900) is ongoing to determine if FMT is more 
effective than a placebo in reducing disease activity in patients 
with PsA and active peripheral arthritis concomitantly treated 
with weekly subcutaneously administered methotrexate. Thus 
far, participants with PsA in a nested qualitative study found 
FMT acceptable and safe [57, 88].

FMT in Autoimmune Arthritis

The effect of microbes on autoimmune arthritis was also 
addressed in germ-free mice. Wu and the team observed that 
markers for autoimmune arthritis are significantly reduced 
by the neutralization of IL-17 via interference with germinal 
center formation in GALT [89]. However, upon colonization 
of a species of segmented filamentous bacteria, autoimmune 
arthritis markers and autoantibodies were increased after 
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Th17 cell proliferation [89]. These observations enhance 
our perspective on the etiological mechanisms and effects 
of microbiota in autoimmune arthritis and perhaps other 
autoimmune diseases.

FMT in Systemic Lupus Erythematosus

Systemic lupus erythematosus (SLE) is a prototypical auto-
immune disorder characterized by the presence of hyperac-
tive immune cells and aberrant antibody responses to nuclear 
and cytoplasmic antigens, multisystem inflammation, pro-
tean clinical manifestations, and a relapsing and remitting 
course that affects primarily young women [90]. Dysbiosis 
of the intestinal microbiota is implicated in the develop-
ment of SLE [91–93]. Patients with SLE have a restricted 
gut microbiota richness and diversity, with a significantly 
reduced Firmicutes/Bacteroides ratio [94–96]. The asso-
ciation between gut microbiome composition and disease 
activity was explored. Li et al. reported that the genera 
Streptococcus, Campylobacter, and Veillonella positively 
associated with lupus activity, while the genus Bifidobac-
terium negatively correlated with disease activity [94]. 
Interestingly, another study demonstrated that the increase 
genera in Bacteroides, Bilophila, Parabacteroides, and Suc-
cinivibrio in SLE were positively correlated with the levels 
of inflammatory cytokines IL-17, IL-21, IL-2R, TWEAK, 
IL-35, IFN-γ, and IL-10, whereas the decrease in genera 
such as Dialister and Gemmiger was inversely correlated 
with the levels of IL-17, IL-2R, and IL-35 in SLE patients. 
Furthermore, this study also corroborated that glucocorti-
coid therapy may stabilize the gut microbiota environment, 
modify the metabolic function of the gut microbiota, and 
further reduce inflammatory cytokine production [95]. The 
abundance of Ruminococcus gnavus of the Lachnospiraceae 
family was also found to be fivefold higher in SLE patients 
compared to healthy controls [97]. Subsequently, Chen et al. 
demonstrated that there was a disrupted gut microbiota with 
a distinct functional profile in SLE patients, which is similar 
to the lupus MLR/lpr mouse model [98]. Germ-free mice 
receiving FMT from SLE patients developed lupus-like 
phenotypic features of autoimmunity and inflammation, 
indicating a causal role of gut dysbiosis in the pathogenesis 
of SLE [99]. Normal mice administered fecal microbiome 
from SLE mice resulted in an exacerbation of the intestinal 
mucosal splenic immune response as well as the upregula-
tion of certain lupus susceptibility genes in their colon, sug-
gesting SLE is associated with aberrant gut microbiota [55]. 
Another study in MRL/lpr mice established that FMT alle-
viated lupus severity by renovating the antibiotic-induced 
dysbiosis of gut microbiota [100]. Collectively, these obser-
vations affirm the important roles of gut microbiota in the 
pathogenesis of SLE. Hence, the manipulation of gut micro-
biota is a logical and promising novel therapeutic strategy 

for SLE. At present, gut microbiota intervention in SLE is 
still in the beginning stages. The first clinical trial of FMT 
in active SLE patients (ChiCTR2000036352) demonstrated 
that FMT may be a feasible, safe, and potentially effec-
tive short-term treatment for patients with SLE by altering 
the gut microbiota and its metabolic profile. It effectively 
changed the gut microbiota from a pro-inflammatory style 
to an anti-inflammatory style and also improved clinical 
parameters [58]. FMT in SLE is still in its infancy as data 
are still sparse and further studies with large multi-center 
cohorts are warranted.

FMT in T1D

T1D is an autoimmune disease characterized by T-cell-
mediated beta-cell destruction, and its pathophysiology has 
been linked to intestinal dysbiosis [101]. FMT studies in 
NOD mice suggested that the interplay of gut microbiota 
and immune players is involved in the pathophysiology of 
T1D. In a randomized controlled trail conducted in the Neth-
erlands (NTR3697), patients with recent onset of T1D were 
randomized into two groups (n = 10 per group) and were 
administered with either autologous or allogenic healthy 
donors FMT [59]. The data showed that FMT can stabilize 
residual beta cell function in subjects with new-onset T1D. 
Interestingly, the effect of autologous FMT is better than 
allogenic FMT.

FMT in Autism Spectrum Disorders

Interactions between the GI tract and the CNS have long 
been observed, and recent studies support a link between 
microbiota and CNS disease. SCFAs and other microbe 
metabolites play a direct role in communication along the 
gut-brain axis by acting as neurotransmitters.

Autism spectrum disorders (ASD) are complex neurobio-
logical disorders of unknown cause. Reports on abnormal 
gut bacteria and GI problems in children with ASD sug-
gested that microbiome dysbiosis may be linked to ASD. 
Interestingly, there is increasing evidence of autoimmune 
phenomena in some individuals with autism [102–104]. In 
an open-label study, 18 children with ASD and moderate to 
severe GI problems were enrolled and received FMT derived 
from stools obtained from healthy individuals for 10 week, 
followed by an 8-week follow-up observation period [31]. 
This study also compared two routes of administration, oral 
vs. rectal, for the initial dose and thereafter, with a lower 
maintenance dosage given orally for 7–8 weeks. Improve-
ments in GI symptoms, ASD symptoms, and the microbi-
ome persisted for at least 8 weeks after treatment ended in 
children who received FMT. Moreover, the ASD bacterial 
community also shifted toward that of age/gender-matched 
healthy controls and to that of their donors (NCT02504554). 
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Recently, Li et al. reported their findings from an open-
label clinical study of FMT in children with ASD [60]. 
Their data showed that: (i) there was a large difference in 
baseline characteristics of behavior, GI symptoms, and gut 
microbiota between children with ASD and controls; (ii) 
ASD showed improvement in GI symptoms like abdomi-
nal pain, constipation, or diarrhea; (iii) in addition to GI 
symptoms, ASD symptoms were also improved after FMT 
treatment; (iv) FMT promoted the colonization of donor 
microbes and shifted the microbiota of children with ASD 
toward that of the donors. However, in this study, the benefi-
cial effect on GI symptoms and ASD gradually diminished 
within a few weeks at the end of therapy, suggesting that 
extended treatment with FMT is needed (Chinese Clinical 
Trial Registry (www. chictr. org. cn) (trial registration number 
ChiCTR1800014745). Follow-up randomized, double-blind, 
placebo-controlled studies will be necessary to determine 
the efficacy of FMT on children with ASD, and GI problems 
should include immunological parameters on autoimmunity 
and autism.

FMT in Cancer

The use of targeted immunotherapies to indirectly increase 
T-cell activation and boost the antitumor response is a strate-
gic approach in cancer treatment. Anti-cytotoxic T lympho-
cyte antigen-4 (CTLA-4) and anti-programmed cell death 
protein-1 (PD-1) antibodies are immune checkpoint inhibi-
tors (ICIs) that do not directly cause tumor cell death but 
rather lead to activation of anti-tumor pathways and T-cell 
immune response [105]. Patients exhibit different responses 
to the treatments. It was found that patients vary in micro-
biome composition and that patients who responded better 
to PD-1 ICI had a much more diverse microbiota than those 
who did not respond to treatment [8]. It was also observed 
that Ruminococcus obeum was more prevalent among ICI-
responsive melanoma patients compared to Roseburia intes-
tinalis in groups that did not respond to the treatment [105]. 
Additionally, the specific strains and relative abundances 
were shown to vary between patients with different cancers. 
The microbiome composition is also associated with vary-
ing T-cell responses and efficacy [105]. Studies comparing 
antitumor responses in antibiotic-treated vs. control mouse 
populations suggest that loss of commensal microbiota nega-
tively affects the efficacy of ICI [105]. Patients pretreated 
with antibiotics were found to have a poorer response to ICI 
[106]. As such, replenishment of beneficial strains may be 
sufficient to improve patient outcomes. FMT has already 
been shown to modulate antitumor immunity and response 
to this targeted immunotherapy. There is evidence that some 
commensal microbes increase response to therapies that tar-
get ICIs, and that restoration of these strains is necessary for 

anti-tumor action. The mechanism is still under investiga-
tion, but it is postulated that metabolites secreted by these 
GI microbes may affect how cancerous cells respond to 
apoptosis-inducing agents [107].

Acute myeloid leukemia (AML) is a blood cancer that is 
treated by chemotherapeutic agents that, as a consequence, 
deplete the cells involved in the immune response and infec-
tion defense. Patients often require multiple antibiotic treat-
ments due to secondary infections, and hematopoietic stem 
cell transplantation is not always possible. Restoration of 
the gut microbiome is thought to not only protect against 
the overgrowth of pathogenic strains but also improve the 
efficacy of the treatments while reducing complications. A 
study of AML patients treated with autologous FMT showed 
improved outcomes post-treatment compared to control 
patients [108].

Mechanisms and Outlook of FMT in Cancer

While studies on viral etiology in cancer are abundant, the 
exact mechanisms by which bacteria and other microorgan-
isms trigger tumorigenesis are limited. One study showed 
that tumor cells undergo apoptosis when microbiota diver-
sity increases and SCFA levels are restored, suggesting that 
dysbiosis and the resulting metabolic dysregulation play a 
role [5]. Recent studies in colorectal cancer indicate that 
chronic inflammation caused by pathogenic metabolites 
leading to sustained tissue damage is responsible for an 
increased rate of mutation and resultant neoplasia [109, 
110]. This pathogenesis is also supported by the phenom-
enon of gastric cancer development secondary to H. pylori 
infection. Research shows that the chronic gastric inflamma-
tion resulting from infection eventually develops into gastric 
carcinoma [12].

“Leaky gut,” secondary to GI dysbiosis, occurs when 
the intestinal barrier is damaged or weakened and perme-
ability increases. The overgrowth of harmful bacteria also 
results in an increase in damaging metabolites that can then 
affect other parts of the body. Studies on the liver-gut axis 
found that metabolite trafficking via the portal system causes 
damage to the liver. The resultant inflammation and loss of 
immune tolerance precipitate carcinogenesis. It was found 
that cytokines released in the GI tract in response to dys-
biosis affected the liver downstream by promoting hepato-
carcinogenesis and migration of cancerous cells [107]. It 
was observed that cancerous tissues also have their own 
microbiomes. Similar to how a different microenvironment 
is detected in different tissues and systems of the body, dif-
ferent tumors have varying microenvironments that depend 
on their specific characteristics. For example, the low oxy-
gen environment of tumors allows for the proliferation of 
anaerobic strains, and inflammation and edema support the 
movement of bacteria in and around the tissue. Tumors in 
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the mucosa are constantly exposed to microorganisms and, 
as such, can be greatly influenced by the microbiota [5]. 
Research shows that certain strains of intratumor bacteria 
contribute to drug resistance by directly metabolizing chem-
otherapeutic agents and that these effects can be reversed 
with antibiotic administration [111].

Given the implication of microbiota dysregulation in 
many inflammatory, infectious, and metabolic diseases and 
the interplay of the microbiome and host health processes, 
FMT is regarded as a strategic way to target both the root 
cause as well as alleviate the symptoms. There were con-
cerns about the potential risk of infection to the oncologi-
cal patient population since clinical trials and research were 
typically done with non-immunocompromised individuals 
and there is no long-term safety data [107, 112]. However, 
recent data suggest that the benefits from the restoration of 
microbiota come without added risks to the patient popu-
lation. Reversal of dysbiosis comes with an increase in 
antimicrobial peptides, restoration of mucosal barrier and 
immunity, as well as reestablishment of expected immune 
signaling pathways [112]. Additionally, the protective effects 
of a diverse microbiome include resistance to pathogenic 
colonization and a decrease in the risk of infectious com-
plications. As such, successful treatment by FMT would 
improve outcomes in these populations. Clinically, micro-
bial intervention would further benefit oncologic patients by 
managing acute toxicity or secondary complications. Indeed, 
complications of cancer therapy include diarrhea and other 
GI toxicities.

FMT can also be a promising adjuvant therapy for cancer 
patients who do not respond to immune checkpoint-targeted 
chemotherapeutic drugs [113]. This is well illustrated in 
cancer patients who do not respond to anti-PD-1 and anti-
CTLA-4 [114], including both primary and secondary resist-
ance [115, 116]. In the phase I clinical trial, FMT of stool 
microbes from responders together with anti-PD-1 therapy 
in patients with anti-PD-1-refractory metastatic melanoma 
shifted the microbiota of recipients toward a responsive 
donor-type taxonomic composition, reset the tumor micro-
environment with upregulation of MHC class II molecules in 
tumor-infiltrating lymphocytes, and decreased inflammatory 
markers in the plasma. These observations clearly illustrate 
how modulating gut microbiota can overcome resistance to 
immunotherapy [117, 118]. Wang et al. showed that FMT 
improved immune checkpoint inhibitor (ICI)-associated coli-
tis in cancer patients and was accompanied by the reconstitu-
tion of gut microbiota and a relative increase in the propor-
tion of regulatory T-cells within the colonic mucosa [119]. 
A study on FMT in humans and mice clearly illustrated that 
the efficacy of CTLA-4 blockade relies on the composition 
of the gut microbiota (B. fragilis and/or B. thetaiotaomi-
cron and Burkholderiales) [120] and further highlighted 
the potential of FMT to alleviate the side effects of cancer 

treatment. Physiologically, FMT can modulate the diver-
sity of commensals to that of the responder and facilitates 
maintaining intestinal tissue vigor, amelioration of bile acid 
metabolism, and maturation of the mucosal immune system. 
Moreover, FMT could transfer distinct commensals that can 
mediate immune activation to chemotherapy drugs during 
concomitant immunotherapy [121]. Iida et al. reported that 
an intact commensal microbiota enabled optimal response to 
cancer treatment by regulating myeloid-derived cells in the 
tumor microenvironment [122]. Chang et al. established that 
FMT after 5-fluorouracil, leucovorin, and oxaliplatin (FOL-
FOX) treatment in colorectal cancer-bearing mice restored 
the disrupted fecal gut microbiota composition, attenuated 
FOLFOX-induced intestinal mucositis, and alleviated the 
expression of toll-like receptors (TLRs), MyD88, and serum 
IL-6, which can be induced after FOLFOX treatment. The 
possible mechanism may be related to the TLR-MyD88-
NF-κB signaling pathway [123].

In addition to direct interaction with immune cells, anti-
cancer immunity can also be regulated by microbial metabo-
lites. Recent studies revealed that microbiota-derived SCFAs 
could enhance the memory potential of antigen-activated 
 CD8+ T cells [124], and the microbial metabolite butyrate 
could promote antitumor therapeutic efficacy through the 
inhibition of DNA-binding 2-dependent regulation of  CD8+ 
T-cell immunity [125]. Secondary bile acid-mediated gut 
dysbiosis promotes intestinal carcinogenesis in that it may 
disrupt the integrity of the intestinal barrier, promote the 
recruitment of tumor-associated macrophages and polariza-
tion of M2 macrophages, and further accelerate the intestinal 
adenoma-adenocarcinoma sequence by activating the Wnt/β-
catenin signaling pathway [126]. Bile acid receptors play a 
critical role in colorectal cancer, and FMT can restore nor-
mal fecal bile acid composition in rCDI [48]. Therefore, it 
is reasonable that targeting the bile acids–microbiota axis by 
FMT should be a potential intervention for colorectal can-
cer management [127]. Studies also show that targeting the 
microbiota in conjunction with chemotherapy attenuates side 
effects such as neutropenia [107]. Collectively, the mecha-
nism of microbiota modulation on immunotherapy response 
in cancer patients is complex and involves the interplay of 
immune cells, microbial metabolites, anticancer drugs, and 
the tumor microenvironment [128]. Though the direct mech-
anisms of FMT in cancer are still under investigation, it is 
believed that supporting the microbiota will decrease inflam-
matory mechanisms, prevent colonization by pathogenic 
strains, and reduce injury and dysfunction (Fig. 3). Probi-
otic therapies were explored and found to be insufficient in 
both diversity and density to effectively restore or preserve 
the microbiome [112]. Although FMT has been shown to 
successfully restore diversity and number to the microbi-
ome in patients with dysbiosis secondary to antibiotic use 
as well as in patients with C. difficile and other diseases, 
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more work remains to be done on the immunocompromised 
oncologic population [107]. Finally, further understanding 
of microbiota-modulating mechanisms in oncogenesis will 
help in determining the strategy, safety, and efficacy of FMT 
for different types of cancer.

Future Perspectives of FMT in Human Medicine

Although FMT has gained much attention recently and has 
increased its potential applications on top of GI disease, 
there are still many lingering issues that limit its applica-
tion in clinical settings. Notably, the US FDA recently issued 
several warnings on FMT following serious infections and 
one death after FMT [123, 129].

The major issue of FMT is: What do we know/do not 
know about the baseline microbial load/functional output 
and its long-term physiological effects on the FMT recipi-
ent? The genetic make-up, interplay of diet and microbial 
metabolites, drugs/medications, and other underlying dis-
eases of the individual can interfere with the clinical out-
come of FMT [130, 131]. The dynamics of microbial strains 
in engraftment processes and species interdependency add 
another compounding level of factors that are relevant to 
FMT efficacy. Understanding the diversity and variability 
of individual microbiome differences is of vital importance 
in FMT [132].

Feces are a highly complex matrix comprising hundreds, 
if not thousands, of species of microorganisms, microbial 
metabolites, and other stool ingredients that are highly vari-
able between different people. Variability also occurs with 
different time points, even in the same individual. Hence, 
there is a lack of standardization of human stool, and stool-
derived products can result in significant variation between 
different batches of FMT products. Fundamental parameters 

such as donor screening, methods of preparation, the amount 
of starting material, and the route of administration need to 
be better defined [133–136].

Furthermore, even though donors may appear healthy and 
asymptomatic of infections, they may carry pathogens that 
are harmful to FMT recipients. With the alarming report of 
the serious effect on two immunocompromised FMT recip-
ients who received fecal material from a donor who was 
found to have extended-spectrum beta-lactamase-producing 
Escherichia coli [137], the FDA has now required in-depth 
screening to include the use of nucleic acid amplification 
tests for extended-spectrum beta-lactamase microorganism 
before FMT [138]. An extra screening process has been insti-
tuted since the global coronavirus disease 2019 (COVID-
19) pandemic. The FDA issued updated safety protection 
guidelines specific to COVID-19 in 2020 [139]. Thus, proper 
handling of FMT material for safety and quality control is of 
utmost importance to prevent contamination of pathogens. 
FMT materials should meet Good Manufacturing Practice 
(GFP) criteria established for pharmaceutical practice with 
accurate pathogen screening and detection methods. In addi-
tion to GFP requirements, methods of preparation of fecal 
materials for FMT can affect its efficacy. Fresh collected 
and frozen fecal materials showed similar efficacies in CDI 
treatment [18, 140, 141] and IBD [142, 143].

Pretreatment with antibiotics has also been considered, 
and data show increased IBD remission rates when antibiot-
ics are given prior to FMT [11]. Some patients can experi-
ence mild to moderate side effects after FMT that range from 
GI discomfort to anesthetic complications.

For each method, clinicians offer informed consent, lay-
ing out a clear understanding of the procedure, associated 
risks, aesthetic factors, privacy, psychological factors, and 
the management plan. Various routes of FMT administra-
tion are also being investigated for their efficacy and safety. 

Fig. 3  Mechanisms involved in 
the efficacy of FMT in cancer 
therapy. The mechanism of 
FMT in cancer therapy is mul-
tifactorial, such as increasing 
microbial diversity, enhancing 
the resistance to pathogenic 
colonization, maintaining 
mucosal integrity, modulation 
of the immune system, and 
regulation of microbial metabo-
lites. Collectively, the interplay 
of these factors reset the tumor 
microenvironment, improves the 
efficacy of chemotherapeutic 
drugs, and reduces tissue injury
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Administration of FMT in the GI tract can be via the upper, 
mid-, or lower gut (Fig. 4), and each comes with different 
financial and practical considerations. Studies have shown 
effective treatment of rCDI via both nasoduodenal and colo-
noscopic FMT administration, but there is no standard pro-
tocol. A 2017 study on the use of both the oral route and the 
colonoscopy route FMT in treating a patient with rCDI in a 
RCT showed similar efficacy in preventing recurrent infec-
tion over 12 weeks [144]. In this study, 116 adult patients 
with rCDI were enrolled and randomly assigned to FMT by 
capsule or by colonoscopy at a 1:1 ratio. Prevention of rCDI 
after a single treatment was achieved in 96.2% of both the 
capsule group (51/53) and the colonoscopy group (50/52). 
The rates of minor adverse events were 5.4% and 12.5% for 
the capsule group and the colonoscopy group, respectively.

The efficacy of FMT is also different between gut infec-
tion disease and non-gut infection disease. FMT is very 
effective in treating luminal infection, as exemplified by 
Clostridiodes difficile infection [73]. However, its effec-
tiveness in non-CDI indications such as IBD can differ. 
Mechanistically, newly FMT-introduced microorganisms 
may indirectly inhibit Clostridioides difficile by competing 
for nutrients or by enhancing host innate immune defenses 
such as antimicrobial peptides in rCDI [66, 145, 146]. 
Bacterial metabolites such as levels of indole and second-
ary bile acids have also been implicated to have predictive 
value of positive FMT outcome in rCDI and UC, respec-
tively [147, 148]. FMT can replenish clostridial clusters 
XIVA and IV for the recipient. These microbes possess 
7-dehydroxylase activity that converts primary bile salts to 
secondary bile salts and deoxycholic acid that inhibits C. 
difficile sporulation [149, 150]. Furthermore, other factors 
such as the contribution of other commensal nonbacterial 
microbial populations of fungi, bacteriophages, viruses, 
and parasites in terms of diversity, composition, and their 

metabolites in determining the efficacy of FMT are limited 
and remain to be further investigated [151–153]. Further 
studies are needed to improve and maintain a sustained 
response.

In addition, data from amplicon sequencing and shotgun 
metagenomics have consistently shown that increases in 
alpha diversity (number of different species within the com-
munity) and shifts in beta diversity (composition) towards 
the donor microbiota could be indicators of FMT success 
before therapy [154]. An extensive study on specific micro-
bial diversity, composition, and functional output by targeted 
and untargeted metabolite profiling with artificial intelli-
gence will help in designing personalized FMT in the future 
[155]. Recently, FMT was explored as a way to alleviate 
GI symptoms and improve the immune response in patients 
who recovered from COVID-19. Fecal samples were ana-
lyzed and found to be positive for SARS-CoV2 in half of the 
patients, suggesting that the GI tract is implicated in the viral 
process in some way. It was found that COVID-19 patients 
had very different microbiota compositions compared to 
controls, with changes persisting even after discharge. In a 
recent study, 11 COVID-positive patients underwent FMT. 
The findings show restoration of microbiota composition 
to baseline, and the 5 patients with GI complaints reported 
improvement in their symptoms [156]. They also used flow 
cytometry to study the effects of FMT on leukocyte compo-
sition. The study was notable for an increase in memory B 
cells with an associated decrease in naïve B cells, as well as 
a relative increase in double-positive T cells. These initial 
findings suggest modulation of the gut microbiome favors 
improved immune response in cases of viral infection, but 
more work remains to be done [156].

Despite the lack of knowledge about the precise mecha-
nisms of action and pharmacological standardization of 
FMT, its use in clinical practice has piqued the interest of 

Fig. 4  Routes of FMT admin-
istration. FMT can be admin-
istered through the upper gut 
(mouth or nose), mid-gut (tube 
or surgical procedure), or lower 
gut (anus). In detail, the route 
through the upper gut includes 
oral intake, a nasogastric tube 
(NGT), esophagogastroduoden-
oscopy (EGD), and enteroscopy. 
The route through the mid-gut 
encompasses the nasojejunal/
enteral tube, jejunostomy, 
and percutaneous endoscopic 
cecostomy (PEC). The route 
through the lower gut includes 
enteroscopy, transendoscopic 
enteral tube (TET), sigmoidos-
copy, colonoscopy enema, and 
distal ileum stoma/colostomy
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patients, clinicians, and researchers alike. Much effort is 
needed to unveil the mechanisms and continue to update 
the FMT guidelines internationally [157–159]. With tech-
nological advances and the continuous development of arti-
ficial intelligence in personalized medicine, it is the goal 
of scientists, clinicians, and patient communities that FMT 
will become a standardized treatment where the current regi-
men will be replaced by well-defined microbial consortia, 
metabolites, or laboratory-synthesized compounds that can 
be readily administered.
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