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Abstract: Vitamin D might play a role in counteracting COVID-19, albeit strong evidence is still
lacking in the literature. The present multicenter real-practice study aimed to evaluate the differences
of 25(OH)D3 serum levels in adults tested for SARS-CoV-2 (acute COVID-19 patients, subjects healed
from COVID-19, and non-infected ones) recruited over a 6-month period (March–September 2021).
In a sample of 117 subjects, a statistically significant difference was found, with acute COVID-19
patients demonstrating the lowest levels of serum 25(OH)D3 (9.63 ± 8.70 ng/mL), significantly
lower than values reported by no-COVID-19 patients (15.96 ± 5.99 ng/mL, p = 0.0091) and healed
COVID-19 patients (11.52 ± 4.90 ng/mL, p > 0.05). Male gender across the three groups displayed
unfluctuating 25(OH)D3 levels, hinting at an inability to ensure adequate levels of the active vi-
tamin D3 form (1α,25(OH)2D3). As a secondary endpoint, we assessed the correlation between
serum 25(OH)D3 levels and pro-inflammatory cytokine interleukin-6 (IL-6) in patients with ex-
tremely low serum 25(OH)D3 levels (<1 ng/mL) and in a subset supplemented with 1α,25(OH)2D3.
Although patients with severe hypovitaminosis-D showed no significant increase in IL-6 levels, acute
COVID-19 patients manifested high circulating IL-6 at admission (females = 127.64 ± 22.24 pg/mL,
males = 139.28 ± 48.95 ng/mL) which dropped drastically after the administration of 1α,25(OH)2D3

(1.84 ± 0.77 pg/mL and 2.65 ± 0.92 ng/mL, respectively). Taken together, these findings suggest
that an administration of 1α,25(OH)2D3 might be helpful for treating male patients with an acute
COVID-19 infection. Further studies on rapid correction of vitamin D deficiency with fast acting
metabolites are warranted in COVID-19 patients.
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1. Introduction

The current pandemic infection of coronavirus disease 2019 (COVID-2019) is caused by
severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a novel RNA
β-coronavirus that shares 79% sequence homology with SARS-CoV [1]. Even if to date
there is no evidence that a specific therapy could improve the outcomes in patients with
COVID-19, several pharmacological treatments, including vitamin D3, could negatively
influence the infection progression acting on the immune system [1,2].

In fact, both immune dysfunction and cytokine storm are involved in the development
of COVID-19 [3,4]; some authors have documented that vitamin D3 is able to improve the
symptoms of SARS-CoV-2 infection because it acts on the immune system and modulates
lung function [3], other authors have suggested that vitamin D3 supplementation may
reduce the risk of SARS-CoV-2 infection [4,5].

Vitamin D3 (in animals, including humans), is considered biologically inactive until it
undergoes two enzymatic hydroxylation reactions. The first takes place in the liver and
it is mediated by the 25-hydroxylase, most likely cytochrome P450 CYP2R1, which forms
25-hydroxyvitamin D [25(OH)D3] (calcidiol, calcifediol) [6]. The second reaction takes
place in the kidney and is mediated by the 1α-hydroxylase (also known as cytochrome P450
CYP27B1), which converts 25(OH)D3 to the biologically active hormone, 1α,25-dihydroxy
vitamin D3 (1α,25(OH)2D3). The binding of 1α,25(OH)2D3 to the vitamin D receptor (VDR)
induces the formation of a coactivator complex leading to target gene transactivation [7].
The VDR–RXRα coactivator complex can directly affect the genes to which VDR was
previously attached, or it can reallocate and promote the transcription of other genomic
sites, therefore leaving regulatory sequences uncovered for positive gene regulation by
other transcription factors. This mechanism ensures the extra-skeletal effects of vitamin D3
on endothelial modulation, muscle mass and function, metabolic control, and the immune
system, including cytokine expression profile [7–11].

Data from the UK-Biobank showed that although circulating vitamin D levels did
not affect the risk of COVID-19 infection, the habitual use of vitamin D supplements
was significantly associated with a 34% lower risk of COVID-19 infection (p = 0.034) [12].
Notably, vitamin D plays a physiologic role in regulating normal innate and adaptive
immunity [13], and it has been reportedly shown to be able to suppress pro-inflammatory
and stimulate anti-inflammatory cytokine formation, which might have a positive impact
on COVID-19 patients [13,14]. In this scenario, COVID-19 pandemic has placed under the
spotlight the correlation among IL-6, cytokine release syndrome, hyperinflammation state
and COVID-19 fatality rate [15,16].

Our hypothesis is that there might be a strict correlation between vitamin D status
and IL-6 serum levels. Nonetheless, albeit a role of vitamin D has been proposed in
counteracting COVID-19 [3,4,13,14] through the potential modulation of the immune
dysfunction and cytokine storm, to date, there is still a lack of evidence in the literature in
terms of differences in serum levels across large cohorts, according to disease status.

Therefore, by the present study, we aimed to evaluate the levels of serum 25(OH)D3 in
subjects tested for SARS-CoV-2 (acute COVID-19 patients, subjects healed from COVID-19,
and non-infected ones). Furthermore, we sought to evaluate the effects of the supplemen-
tation of 1α,25(OH)2D3 on IL-6 and 25(OH)D3 serum levels in a sub-group of COVID-19
patients with chronic renal failure and hypovitaminosis D.

2. Materials and Methods
2.1. Data Collection

In this multicenter real practice study, we recruited patients with symptoms of an acute
airway disease (e.g., cough, sore throat, breathing difficulties) referred to the Emergency
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Department of “Pugliese Ciaccio” Hospital, or to the Intensive Care Unit of the University
Hospital “Azienda Policlinico Mater Domini”, both located in Catanzaro, Italy, over a
6-month period (from 30 March 2021 to 30 September 2021). All study participants under-
went a naso-pharyngeal swab real-time reverse transcription polymerase chain reaction
(RT-PCR) analysis for SARS-CoV-2. This study is part of the clinical trials recorded in clini-
caltrial.gov (NCT04322513) and was conducted in compliance with the Institutional Review
Board/Human Subjects Research Committee requirements. All participants, or their legal
guardians, were asked to carefully read and sign an informed consent, and researchers
provided to protect the privacy and the study procedures according to the Declaration of
Helsinki and the Guidelines for Good Clinical Practice criteria, with pertinent National and
International regulatory requirements. Data collection and reporting were performed in
accordance with the Strengthening the Reporting of Observational studies in Epidemiology
(STROBE) guidelines. The study was approved by the Institutional Ethics Committee
(approval code: 2020.68).

2.2. Study Participants

Eligible patients were of both sexes, aged >18 years, with symptoms of an acute airway
disease (e.g., cough, sore throat, breathing difficulties), with or without fever, muscle pain,
or sudden anosmia or ageusia. A diagnosis of SARS-CoV-2 infection was postulated based
on RT-PCR analysis of naso-pharyngeal swabs. The presence of anti-SARS-CoV-2 IgG was
investigated to establish the existence of previous contacts with the virus. Patients who
did not sign the informed consent or had been taking medicinal preparations and dietary
supplements with vitamin D or cod-liver oil within the previous three months were not
considered eligible for the study.

2.3. Experimental Protocol

After clinical, biochemical, microbiological, and radiological evaluation, patients were
included and divided into four groups:

Group 1: SARS-CoV-2 acute infection with a positivity to naso-pharyngeal swab
RT-PCR analysis (COVID-19);

Group 2: patients negative for both naso-pharyngeal swab RT-PCR and IgG anti
SARS-CoV-2 analysis (no-COVID-19);

Group 3: patients healed from SARS-CoV-2 infection; with negative naso-pharyngeal
swab RT-PCR analysis and positive to IgG anti SARS-CoV-2 (h-COVID-19);

Group 4: SARS-CoV-2 acute infection with a positivity to naso-pharyngeal swab
RT-PCR analysis, and with hypovitaminosis D, who underwent 1-week treatment with
0.25 µg of 1α,25(OH)2D3 per day, at 1 week from the admission (vd-COVID-19).

2.4. Endpoints

The first endpoint was to determine a statistically significant difference in terms of
serum 25(OH)D3 levels among SARS-CoV-2 healed patients (Group 3; h-COVID-19), SARS-
CoV-2 infected patients (Group 1; COVID-19) and patients never infected by SARS-CoV-2
(Group 2; no-COVID-19). Moreover, the effects of 1α,25(OH)2D3 in COVID-19 infected
patients (Group 4; vd-COVID-19) was evaluated.

The second endpoint was the correlation between serum 25(OH)D3 and IL-6 levels,
in patients with extremely low serum 25(OH)D3 levels (<1 ng/mL).

Lastly, in all four groups, we also evaluated the gender-related statistically significant
difference in serum 25(OH)D3 levels.

2.5. Reverse Transcription Polymerase Chain Reaction (RT-PCR) Assay for SARS-CoV-2

Naso-pharyngeal swab samples were collected for extracting SARS-CoV-2 RNA from
patients suspected of having COVID-19. All test swabs were placed in a collection tube
with 150 µL of virus preservation solution, and total RNA was extracted within 2 h us-
ing automated nucleic acids extraction and PCR setup (Nimbus, Seegene, Seoul, Korea).
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The suspension was used for RT-PCR assay of SARS-CoV-2 RNA. Two target genes for
SARS-CoV-2, including RNA-dependent RNA polymerase and nucleo-capsid protein, were
simultaneously amplified and tested during the RT-PCR assay. The RT-PCR assay was
performed using a SARS-CoV-2 nucleic acid detection kit according to the manufacturer’s
protocol (Allplex™ 2019-nCoV Assay—Seegene, Seoul, Korea). RT-PCR assay was per-
formed under the following conditions: incubation at 50 ◦C for 15 min and 95 ◦C for 5 min,
45 cycles of denaturation at 94 ◦C for 15 s, and extending and collecting fluorescence signal
at 55 ◦C for 45 s. A cycle threshold value (Ct-value) of less than 39 was defined as a positive
test result, and a Ct-value of 40 or more was defined as a negative test. These diagnostic
criteria were based on the recommendation by the Italian Health Institute according to
World Health Organization (WHO) Berlin recommendation.

2.6. Serum 25(OH)D3 and Interleukin-6 (IL-6) Detection

Blood samples were collected from all the patients in the different groups at the time of
hospitalization and then centrifuged. Serum aliquots were prepared and stored at −20 ◦C
in screened and standard tubes for further analysis.

Serum samples were processed using chemiluminescent immunoassay technique
through the Architect I1000® (Abbott Diagnostics, Lake Forest, IL, USA; LOD 2.2 ng/mL),
using an internal quality control system to ensure the assay validity. Each detection for
25(OH)D3 and IL-6 was performed in triplicate to reduce the technical error.

2.7. Statistical Analysis

Continuous data are expressed as mean ± standard deviation (SD) and categorical data
as counts and percentages. A one-way ANOVA test was used to evaluate the differences
within the groups. Differences identified by ANOVA were examined by using a Kruskal–
Wallis test followed by Dunn’s multiple comparison test. The Pearson test was used
to evaluate the correlation between serum 25(OH)D3 levels and IL-6 levels. Wilcoxon
matched-paired singed rank test was employed to analyze the difference in 25(OH)D3 and
IL-6 levels before and after treatment with 1α,25(OH)2D3 supplementation. GraphPad 5.0
software was used for the statistical analyses (GraphPad Software, San Diego, CA, USA).

3. Results

We recruited 133 patients of both sexes, and after clinical and laboratory evaluation,
16 were excluded (12.0 %), eight because their legal guardians did not sign the informed
consent, and eight because they used vitamin D supplementation before the beginning of
the study. The remaining 117 patients (87.9%) were included and assigned to the 4 study
groups:

Group 1: COVID-19, n = 40 (30.1%): 27 males (67.5%) and 13 females (32.5%),
with an age at diagnosis ranging from 38 to 83 years (mean 56.0 ± 7.7 years for males;
57.6 ± 13.7 years for females);

Group 2: no-COVID-19, n = 38 (28.5%): 23 males (60.5%) and 15 females (39.5%), with
average age ranging from 25 to 72 years (mean 53.2 ± 9.5 years for males; 44.3 ± 13.2 years
for females);

Group 3: h-COVID-19, n = 27 (20.3%): 19 males (70.4%) and 8 females (29.6%),
with an age at diagnosis ranging from 21 to 63 years (mean 56.0 ± 7.7 years for males;
57.6 ± 13.7 years for females).

Group 4: vd-COVID-19, n = 12 (9.0%): 7 males (58.3%) and 5 females (41.6%),
with an age at diagnosis ranging from 76 to 82 years (mean: 79 ± 2.2 years for males;
74.8 ± 2.9 years for females) with chronic renal failure, who underwent 1-week treatment
with 1α,25(OH)2D3, 0.25 µg per day.

Using the chemiluminescent immunoassay (CLIA) technique, we were able to identify
subjects with insufficient serum 25(OH)D3 levels in respect to the actual range considered
normal (>30 ng/mL).
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As per our primary endpoint, we evaluated the existence of a statistical difference
in 25(OH)D3 serum levels among the three study groups. We documented that serum
levels of 25(OH)D3 in COVID-19 patients (9.63 ± 8.70 ng/mL) were significantly lower
(p = 0.0091) than values reported by no-COVID-19 patients (15.96 ± 5.99 ng/mL). Notably,
we reported the absence of a significant difference (p > 0.05) between COVID-19 and
h-COVID-19 patients (11.52 ± 4.90 ng/mL), albeit even in this case the COVID-19 group
showed lower levels of serum 25(OH)D3 (see Figure 1 for further details).
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Figure 1. Serum 25(OH) vitamin D3 determination in COVID-19 (Group 1), no-COVID-19 (Group 2)
and h-COVID (Group 3); ns = not significant, ** p value = 0.0091.

When we stratified the data by gender, we observed no difference in the male popula-
tion, with a range of 25(OH)D3 serum levels of 10.4 ± 7.3 ng/mL in COVID-19 patients;
11.8 ± 4.3 ng/mL in no-COVID-19; and 11.7 ± 5.3 ng/mL in h-COVID-19 (Figure 2A).

On the other hand, we documented a significant difference in serum 25(OH)D3 lev-
els in COVID-19 female patients (11.7 ± 9.5 ng/mL) in respect to no-COVID-19 group
(17.7 ± 4.7 ng/mL) with a p = 0.006 (Figure 2B). The female no-COVID-19 group showed
25(OH)D3 levels significantly higher than the female h-COVID-19 (9.2 ± 2.8 ng/mL) group,
with a p-value = 0.019 (Figure 2B). No significant differences emerged when we compared
COVID-19 (11.7 ± 9.5 ng/mL) and h-COVID-19 (9.2 ± 2.8 ng/mL) female patients.

Overall, six patients belonging to Group 2 (COVID-19, four females and two males)
showed extremely low serum 25(OH)D3 levels (<1 ng/mL). As per our secondary endpoint,
we assessed circulating IL-6 levels in this subgroup of patients with extreme hypovita-
minosis D (see Table 1 for further details).
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** p value = 0.0021.
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Table 1. Serum levels of 25(OH)D3 and IL-6 determination in COVID-19 patients with extremely low
25(OH)D3 serum levels (n = 6).

Sex Age
(years)

25 (OH)D3
(ng/mL)

IL-6
(pg/mL)

Female 62 0.35 2.1
Female 63 0.25 2.6
Female 57 0.30 2.5
Female 60 0.72 2.8
Male 74 0.84 4.7
Male 69 0.90 4.3

Surprisingly, none of these patients exceeded circulating levels of IL-6, and they
all stayed within the range of normality, with mean = 3.16 ± 1.2 pg/mL. Considering
the small sample size (n = 6), we performed an exploratory non–parametric correlation
analysis, which showed a positive correlation between 25(OH)D3 and IL-6 levels (Spearman
correlation coefficient = 0.759, p = 0.04).

Besides that, the 12 patients in Group 4 (vd-COVID-19, 5 females and 7 males) showed
low serum 25(OH)D3 levels (mean = 13.6 ± 1.1 ng/mL for females and 15 ± 3.5 ng/mL
for males) at admission, with no difference by gender, consistent with the results obtained
in Group 1. All of them were alive after 2 weeks from admission. As reported in Table 2
both the circulating levels of 25(OH)D3 and IL-6 significantly decreased after the admin-
istration of 1α,25(OH)2D3. IL-6 serum levels were high at admission in both females
(127.64 ± 22.24 pg/mL) and males (139.28 ± 48.95 ng/mL), and dropped drastically after
1-week of supplementation with 1α,25(OH)2D3, showing mean IL-6 = 1.84 ± 0.77 pg/mL
in females and 2.65 ± 0.92 ng/mL in males.

Table 2. Serum levels of 25(OH)D3 (normal values >30 ng/mL) and IL-6 (normal values <6 pg/mL)
determination after 1α,25(OH)2D3 administration in vd-COVID-19 patients (n = 12).

Sex
Age

(Years)
25 (OH)D3 (ng/mL) IL-6 (pg/mL)

Admission After 2 Weeks p-Value Admission After 2 Weeks p-Value

F 73 15 13 132.1 2
F 74 14 12 151.8 1.5
F 73 13 11 111 1.8
F 80 12 11 99 0.9
F 74 14 13 144.3 3
M 76 19 18 0.025 141 2 0.0022
M 82 12 11 200 3.5
M 80 12 12 89 4.2
M 81 13 13 65 3
M 78 12 11 185 2.1
M 77 18 17 162 2
M 79 19 18 133 1.8

Statistical analysis was performed using the Wilcoxon matched-paired singed rank test. M = male; F = female.

4. Discussion

In the present real-life study, we have evaluated the levels of serum 25(OH)D3 in
recovered COVID-19 (h-COVID-19) patients, compared to acute infected (COVID-19) and
non-infected ones (no-COVID-19).

Vitamin D acts as a lipophilic hormone and can be obtained from both nutritional
intervention and sunlight exposure. Besides maintaining bone homeostasis, vitamin D
is involved in the mechanisms of immune response [17]. Indeed, the scientific literature
has recently pointed out the interaction between vitamin D and the immune system,
suggesting that the former may play a key role in regulating normal innate and adaptive
immunity [13]. In addition to this, previous studies have demonstrated an association
between vitamin D deficiency and infectious processes [18–20]. Lu et al. [21], suggested
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that insufficient 25(OH)D3 levels are associated with an increase of both inflammatory
cytokines and respiratory infections.

Notably, a retrospective study reported an association between low serum 25(OH)D3
levels and SARS-CoV-2 infection [22] and, more recently, other authors documented that
insufficient serum 25(OH)D3 levels could represent a risk factor for the development of
SARS-CoV-2 infection [5]. Accordingly, in this study, we documented the prevalence of
25(OH)D3 insufficiency (<30 ng/mL) in SARS-CoV-2 acute and healed infection as well as
in Group 2, which encompassed patients without COVID-19 who had been admitted to the
intensive care unit with symptoms of an acute airway disease. Of note, an insufficient level
of 25(OH)D3 has been reported for several other conditions (e.g., COPD, obesity, diabetes,
migraine, infections, cancer) [23–29]. Moreover, D’Avolio et al. [22] in 1377 control patients
reported values of serum 25(OH)D3 levels lower than 30 ng/mL in patients with high
levels of C reactive protein. In this concern, we found significantly higher serum 25(OH)D3
levels in no-COVID-19 patients compared to COVID-19 ones, but no differences between
the former group and h-COVID-19.

Sexual bias is a hallmark in various diseases including infectious conditions [30],
therefore, we decided to stratify our patients by gender, considering that males usually get
the worst prognosis for COVID-19 [31]. In the present study, we highlighted a significant
increase in serum 25(OH)D3 levels in the female no-COVID-19 group with respect to
COVID-19 and h-COVID-19 female cohorts, whereas no differences were detectable among
the male cohorts. The immune inflammatory response triggered by bacteria and virus
infection is critical for the disease outcome, and the host benefits from an acute reaction
when it is kept under tight control, with balanced protective vs. excessive/pathological
inflammation. An example of viral infection models, known to cause more severe heart
muscle inflammation in males than in females, is the Coxsackievirus B3 [32]. Notably,
estradiol promotes immune regulation that favors a protective response in females [33].
Gender difference in vitamin D status is also a crucial research topic [34].

It has been recently reported that vitamin D deficiency is associated with increased levels
of IL-6 in patients with HIV infections [35,36]. In agreement with this, experimental studies
in mice revealed that vitamin D levels are inversely linked to IL-6 liver expression [37].
Low levels of serum 25(OH)D3 levels increase IL-6 synthesis and vice versa. In this context,
targeting the IL-6 pathway could be an innovative therapeutic approach for COVID-
19 patients, particularly in the elderly [15,38]. In our study, we noticed a subgroup of
patients (four females and two males) characterized by extremely low levels of 25(OH)D3
(<1 ng/mL, tested twice for confirmation). Therefore, in this subpopulation we dosed
circulating levels of IL-6 and, surprisingly, we found normal levels IL-6. Due to the small
sample size, we cannot exclude the presence of confounding factors, such as a VDR
mutation that could decreases the affinity of the receptor for its ligand and, therefore,
increase the demand of 1α,25(OH)2D3 from extra renal tissues that increased 1α-hydroxylase
expression in an inflammatory milieu [31]. On the other hand, it could be argued that in a
scenario of chronic renal failure 25(OH)D3 is not efficiently converted to the active form
1α,25(OH)2D3, and patients have been reported displaying normal values of 25(OH)D3
levels (26 ng/mL) and hugely increased IL-6 concentrations (580 pg/mL). Clearly, in
the presence of chronic renal failure any compensation provided by extra-renal calcitriol
synthesis is insufficient to ensure adequate levels of the active vitamin D form. Furthermore,
it should be noted that low serum levels of 25(OH)D3 are frequent in severe COVID-19
patients that commonly present several functional impairments [12,39–42].

When we corrected the condition of hypovitaminosis D in a small group of COVID-
19 patients with chronic renal failure by supplementing 1α,25(OH)2D3 for one week,
we observed a steep and significant decrease in circulating IL-6 levels. Our findings suggest
that rapidly acting vitamin D metabolites are more likely to be effective in treating such
patients than cholecalciferol itself. The emerging literature [41,42] supports this concept
and it should be investigated in more depth by further studies on larger samples.
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We are aware that the present study is not free from limitations: first, the small
sample size that does not guarantee high external validity. Second, the absence of data on
mutations of the VDR. Third, the fact that calcitriol is formed in many tissues including
immune system cells, therefore its intracellular concentration may be higher than that
found in the circulation, thus leading us to not assume that only those with chronic renal
failure are short of calcitriol in their immune tissues.

However, this is the first study that: (i) evaluated patients in the real-life context, with-
out exclusion for co-morbidities; (ii) investigated the levels of vitamin D in h-COVID-19;
(iii) assessed the patients in a very short time and this excluded the possibility that
sun exposition could modify 25(OH)D3 levels; (iv) performed a stratification by gender;
(v) proved how calcitriol can be useful in COVID-19 patients with chronic renal failure.

5. Conclusions

Taken together, the findings of this multicenter cross-sectional study showed insuf-
ficient 25(OH)D3 serum levels in real-life patients with and without COVID-19, and in
subjects healed from COVID-19. We collected evidences that males, who usually have a
worst prognosis for COVID-19, display unfluctuating 25(OH)D3 levels that in turn could
not ensure adequate levels of the active vitamin D form. Therefore, we could affirm that
an administration of 1α,25(OH)2D3, without neglecting the hypercalcemic risk, might be
considered as an adequate indication for treating male COVID-19 patients.
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