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Abstract: One of the major issues related to the environment in the 21st century is 
sustainable development. The innovative economic growth policy has supported relatively 
successful economic development, but poor environmental conservation efforts, have 
consequently resulted in serious water quality pollution issues. Hence, assessments of 
water quality and health are fundamental processes towards conserving and restoring 
aquatic ecosystems. In this study, we characterized spatial and temporal changes in water 
quality (specifically physico-chemical variables plus priority and non-priority pollutants) 
of discharges from industrial complexes on a national scale in Korea. The data were 
provided by the Water Quality Monitoring Program operated by the Ministry of 
Environment, Korea and were measured from 1989 to 2008 on a monthly basis at 61 
effluent monitoring sites located at industrial complexes. Analysis of monthly and annual 
changes in water quality, using the seasonal Mann-Kendall test, indicated an improvement 
in water quality, which was inferred from a continuous increase in dissolved oxygen and 
decrease in other water quality factors. A Self-Organizing Map, which is an unsupervised 
artificial neural network, also indicated an improvement of effluent water quality, by 
showing spatial and temporal differences in the effluent water quality as well as in the 
occurrence of priority pollutants. Finally, our results suggested that continued long-term 
monitoring is necessary to establish plans and policies for wastewater management and 
health assessment. 
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1. Introduction 

Water is one of the most essential natural resources, in both quantity and quality, for living 
organisms, including human beings. Furthermore, water resources are important for the operation of 
machines and facilities in industries. This natural resource is also important in our economic and social 
development process [1]. However, rapid industrial development, economic growth, and population 
growth have intensified the requirements for a vast number of materials and products, leading to an 
increase in the number of factories in various places across the World. Consequently, available water 
resources have been reduced, while the environmental pollution of open water systems has increased. 
However, recently, social concerns and the requirement for environmental conservation have increased 
across the World, with rising economic standards, which has led to the establishment of wastewater 
treatment facilities near the industrial complexes for the efficient control of wastewater.  

In addition, to improve environmental conditions and ecological integrity, many countries have 
developed and modified various laws and regulations. For instance, in the United States, the Federal 
Water Pollution Act, or Clean Water Act (CWA), was established in 1972 to control the nation's 
surface waters. In 1972, the CWA set the goal of “restoring and maintaining the chemical, physical, 
and biological integrity of nation's waters” in the United States [2]. Initially, the CWA aimed to 
eliminate pollutant discharge into navigable waters by 1985 and to obtain “fishable and swimmable” 
waters by 1983. Furthermore, in 1977, the National Pollutant Discharge Elimination System was 
established to limit the discharge of various water pollutants according to effluent standard. The final 
major amendment to the law was the Water Quality Act (WQA) in 1987 [3]. The WQA emphasized 
the importance of not violating the environmental standard for water quality in each state (e.g., the 
Total Maximum Daily Load [TMDL]). In addition, the Storm Water Permit was established to prevent 
the discharge of large quantities of pollutants from industries or city sewage during rainfall. A similar 
goal of attaining good ecological status was established by the Water Framework Directive (WFD) in 
the European Union (EU) from 1973 onwards [4]. On the basis of Kallis and Butler’s study [5], the EU 
water policy is divided into three periods. In the first period (1973–1986), two water-related directives 
were implemented: water use directives (e.g., standards for drinking [6], bathing [7], and fish and 
shellfish harvesting [8,9]) and water pollutant directives (e.g., the standard for the discharge of 
particular pollutants). The second period (1978–1992), which was marked by the Maastricht Treaty, 
broadly focused on pollution from urban wastewater [10] and nitrate pollution from agricultural run-
off. In addition, certain industrial sectors were regulated by the Urban Wastewater Treatment 
Directive. Finally, the third period (1993–2000) was represented by the development of the WFD. The 
goal of the WFD is to achieve a “good surface water status” and “good groundwater status,” as well as 
to prevent the deterioration in the quality of the already “good” water by 2015 [11].  

In Korea, the industrial structure has been reorganized across time, with a diverse range of 
pollutants being emitted from industrial complexes. Consequently, there have been various attempts to 
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improve the efficient management of industrial wastes, such as strengthening emission standards and 
the types of emissions under regulation. For example, the regulation of effluent quality standard for 
industrial waste management was first established under the Environmental Pollution Prevention Act 
in 1963 [12]. Then, the constitution was revised under various directives, such as the Environmental 
Protection Law (1978), the Law for the Prevention of Water Quality (1991), and the Water Quality and 
Ecosystem Conservation Act (2007).  

Furthermore, to comprehensively survey the water quality status of streams and lakes at a national 
scale, water quality has been monitored through the Water Quality Monitoring Networks (WQMN) by 
the Ministry of Environment in Korea since 1978 (http://water.nier.go.kr). Even though the WQMN 
has recently expanded to assess Total Pollutant Load Management and Integrated Watershed 
Management [13], existing research on water quality using the WQMN database is primarily focused 
on specific regions or specific types of industry [12,14].  

Understanding how effluent quality of industrial complexes has changed over extended timeframes 
is fundamental for the effective management of water quality and aquatic ecosystems. Although many 
studies on the changes of water quality in open water systems exist, research about the changing trends 
in effluent quality of industrial areas at a national scale are lacking. Hence, the current study aims to: 
(1) evaluate trends in effluent quality emitted to open water systems from industrial complexes and (2) 
characterize spatial and temporal differences in wastewater quality on a national scale. We believe that 
our results will provide the necessary baseline information to set standards for ecological health, water 
quality conservation, and wastewater management of industrial complexes in Korea. 

2. Materials and Methods 

2.1. Water Quality Data 

Effluent quality data of industrial complexes were obtained from the WQMN database operated by 
the Ministry of Environment, Korea (http://water.nier.go.kr). From the database, we selected the 
dataset of 61 monitoring sites based on the survey duration and the data continuity  
(e.g., monitoring sites including at least 5-year sampling data; Figure 1, Table 1). In the selected 
dataset, maximum survey periods were for 20 years from 1989 to 2008 (21 of 61 sampling sites). 
Among 33 water quality factors in the database, we selected 20 factors based on the survey period and 
measuring frequency: eight physico-chemical factors, including pH, dissolved oxygen (DO), biological 
oxygen demand (BOD), chemical oxygen demand (COD), total suspended solid (TSS), total nitrogen (TN), 
total phosphate (TP), and total coliform (TC); nine priority pollutants, including cadmium (Cd), cyan (Cy), 
lead (Pb), chromium (VI) (Cr6+), arsenic (As), mercury (Hg), copper (Cu), zinc (Zn), and phenol; and 
three non-priority pollutants, including manganese (Mn), iron (Fe), and n-hexane (Table 2). All water 
quality factors were measured based on the standard analytical method [15]. Water samples were 
typically collected monthly or bimonthly. pH and DO were measured in situ using the appropriate 
sensors (e.g., pH: 632-pH meter, and DO: TOA DO-149). Other variables were analyzed in the 
laboratory. Water samples must be preserved and analyzed within the recommended time limit in order 
to avoid deterioration. BOD measures the amount of oxygen consumed by microorganisms during  
5-days incubation in the dark condition at 20 °C. COD was determined from oxidized organic matter 
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in sulfuric acid medium by K2Cr2O7. TSS was determined by the weight difference between before and 
after filtration through a glass fiber filter, drying at 105–110 °C for two hours. TN and TP were 
measured by absorptiometry analysis. TC were analyzed by the total coliform fermentation technique 
or total coliform membrane filter procedure. Cd, Pb, Cr6+, As, Hg, Cu and Zn were determined by 
atomic absorption spectroscopy. Cy and phenol were analyzed based on absorptiometric analysis. 
Details about the sample measuring protocol are presented in the Korean Ministry of Environment 
publication [15]. 

Figure 1. Location of 61 monitoring sites for effluents of the industrial complexes in 
Korea. Numbers 1–61 represent the monitoring sites listed in Table 1. 

 

2.2. Modeling Changes in Water Quality 

A seasonal Mann-Kendall’s test (SMK) [16] was used to evaluate the trend in water quality 
variables. SMK is regularly used for water quality studies (e.g., [17–20]), and is a non-parametric and 
robust procedure that calculates the Mann-Kendall statistic for each user-defined season. Hence,  
no comparisons are made across season boundaries. In this study, each month represented a “season,” 
and was evaluated separately; for example, January data are compared only with January, February 
only with February, etc. The R-package Kendall was used for SMK, and is available at  
http://cran.r-project.org. 
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Table 1. Survey periods at the 61 monitoring sites. 

Watershed Site number Industrial complex Survey period  
(year.month) Watershed Site number Industrial complex Survey period 

(year.month) 
Han River 1 Gangneung 1992.03–2008.12 Nakdong 

River 
33 Gumi 1992.03–2008.12 

2 Seoul Digital 1992.03–2008.12 34 Gimcheon 1994.01–2008.12 
3 Banwol1 1989.02–2008.12 35 Dalseong 1990.01–2008.12 
4 Banwol2 1989.02–2008.12 36 Daegu 3rd 1989.01–2008.12 
5 Banwol3 1989.02–2008.12 37 Daegu Geomdan 1990.01–2008.12 
6 Banwol4 1992.03–2008.12 38 Masan 1989.01–2008.12 
7 Banwol Plating 1994.01–2008.12 39 Petrochemical1 1989.02–2008.12 
8 Seonam Wastewater treatment 1992.03–2008.12 40 Petrochemical2 1990.01–2008.12 
9 Songtan 1994.01–2008.12 41 Petrochemical3 1998.02–2008.12 

10 Sihaw 1995.01–2008.12 42 Yangsan 1989.01–2008.12 
11 Anseong 1992.03–2008.12 43 Onsan1 1989.01–2008.12 
12 Yeongdeungpo Mechanical 1992.03–2008.12 44 Onsan2 1989.02–2008.12 
13 Wonju 1989.01–2008.12 45 Waewan 2001.02–2008.12 
14 Incheon 5, 6 1992.03–2008.12 46 Yonggang 1994.01–2008.12 
15 Incheon 2002.01–2008.12 47 Ulsan1 1989.01–2008.12 
16 Incheon Namdong 1992.03–2008.12 48 Ulsan2 1998.02–2008.12 
17 Incheon local 1992.03–2008.12 49 Ulsan3 1998.02–2008.12 
18 Cheonheung 1995.01–2008.12 50 Jinju 1989.01–2008.12 
19 Chuncheon 1989.01–2008.12 51 Jinhae Macheon 1994.01–2008.12 
20 Chungju 1998.02–2008.12 52 Changwon 1989.01–2008.12 
21 Hyangnam Pharmaceutical 1992.03–2008.12 53 Pohang 1989.01–2008.12 

Geum River 22 Gunsan 2003.01–2008.12 Yeongsan 
River/Seumjin 

River 

54 Gwangyang 1990.01–2008.12 
23 Daejeon 1989.01–2008.12 55 Gwangju1 2003.01–2008.12 
24 Daejeon 1989.01–2008.12 56 Gwangju2 2003.01–2008.12 
25 Daejeon 1994.01–2008.12 57 Gwangju3 2003.01–2008.12 
26 Daepung 1998.02–2008.12 58 Daebul 2002.01–2008.12 
27 Iri 1989.01–2008.12 59 Yeocheon1 1999.01–2008.12 
28 Jeonju 1989.01–2008.12 60 Yeocheon2 1989.01–2008.12 
29 Jeongeup 1990.01–2008.12 61 Ocheon 1990.01–2008.12 
30 Cheongju1 1989.07–2008.12     31 Cheongju2 1992.01–2008.12     
32 Hyungdo 1995.01–2008.12     
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Table 2. Characteristics of water quality variables in the study areas. 

Variables  Survey period Samples/year Mean SE * Valid N ** 
Physico-chemical variables     

DO (mg/L) 1989–2008 24 5.11 0.07 959 
BOD (mg/L) 1989–2008 24 40.77 1.81 959 
COD (mg/L) 1989–2008 24 36.98 1.18 959 
TSS (mg/L) 1989–2008 24 32.59 1.12 959 

TC *** × 105 (mg/L) 1989–2008 12 47.0 16.3 959 
TN (mg/L) 1994–2008 12 21.72 0.75 776 
TP (mg/L) 1994–2008 12 1.51 0.07 777 

Priority pollutants      
Cd (μg/L) 1989–2008 12 3.42 0.36 959 
Cy (μg/L) 1989–2008 12 28.56 5.68 959 
Pb (μg/L) 1989–2008 12 17.44 2.23 959 

Cr6+ (μg/L) 1989–2008 12 1.51 0.31 959 
As (μg/L) 1989–2008 12 1.77 0.19 959 
Hg (μg/L) 1989–2008 12 0.03 0.01 959 
Cu (μg/L) 1989–2008 12 170.21 35.06 959 
Zn (μg/L) 1989–2008 12 352.42 43.28 941 

Phenol (μg/L) 1989–2008 12 50.73 7.43 941 
Non-priority pollutants      

Mn (μg/L) 1989–2008 12 294.5 15.19 941 
Fe (μg/L) 1989–2008 12 683.17 33.12 941 

n-Hexane (μg/L) 1989–2008 12 1,325.45 60.01 941 
* SE: standard error; ** Valid N: valid number of monitoring samples; *** TC: total coliform. 

To characterize water quality factors in terms of spatial and temporal differences, we applied  
a Self-Organizing Map (SOM) [21,22]. SOM is an unsupervised artificial neural network learning 
algorithm that approximates the probability density function of the input data [22]. SOM consists of 
input and output layers that are connected with computational weights (connection intensities). The array 
of input neurons (computational units) operates as a flow-through layer for the input vectors, whereas 
the output layer consists of a two-dimensional network of neurons arranged in a hexagonal lattice. 

In the SOM learning process, the input data (i.e., nine priority pollutants in this study) were initially 
subjected to the network. The number of output neurons was set to 150 (= 10 × 15) in a 2D hexagonal 
lattice, which was based on experience and a preliminary study. Subsequently, the weights of the 
network were trained for a given dataset. Each node of the output layer computes the summed distance 
between weight vector and input vector. The output nodes are considered as virtual units that represent 
typical patterns of the input dataset assigned to their units after the learning process [23]. Among all 
virtual units, the best matching unit (BMU), which has a minimum distance between weight and input 
vectors, is the winner. For the BMU and its neighborhood units, the new weight vectors are updated by 
the SOM learning rule. This results in the network being trained to classify the input vectors by the 
weight vectors to which they are closest. For the training SOM, we used the functions provided in the 
SOM toolbox [24] of Matlab for Windows ver. 6.1 [25]. 
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We used two different methods to cluster the trained SOM units into several groups. First, the 
unified distance matrix algorithm (U-matrix; [26]) was applied. The U-matrix calculates distances 
between neighboring map units, with these distances being visualized to represent clusters using a grey 
scale display on the map. A hierarchical cluster analysis using Ward's linkage method based on the 
Euclidean distance measure [27] was applied to the weights of the SOM output units [23,28]. After 
defining the clusters in the SOM analysis, Multi-Response Permutation Procedures (MRPP) were 
conducted to test whether there is a significant difference among clusters by using the PC-ORD for 
Windows ver. 4.25 [29]. 

In this study, nine priority pollutants (including Cd, Cy, Pb, Cr6+, As, Hg, Cu, Zn, and phenol) were 
selected as input variables in the SOM analysis, based on measuring pollutant continuity. Priority 
pollutants that had an effect on bioaccumulation, persistency, and carcinogens (even at low 
concentrations) comprise a set of chemical pollutants that are regulated by the EPA [30]. 

The Kruskal-Wallis (K-W) [31] test was conducted to evaluate differences in environmental factors 
for different clusters defined in SOM, and Dunn’s multiple comparison tests were carried out  
if significant differences in the K-W test (p < 0.05) were detected, using statistical software 
STATISTICA for Windows ver. 7 [32]. 

3. Results 

3.1. Changes in Water Quality 

We considered annual changes in number of factories discharging wastewater and the amount of 
wastewater effluent per factory. We found that the amount of effluent per factory tended to decrease, 
despite an increase in the number of the operational factories for most types of industry (Figure 2). The 
amount of effluent from the charcoal, petroleum, and uranium mining industries (MCPUI) sharply 
decreased during the 2000s (i.e., 1,177.4 m3/factory in the 1990s and 164.7 m3/factory in the 2000s). 
The electric and electronic manufacture industries (MEEI) produced high amounts of effluent during the 
survey periods, with a major increase in the number of factories after 1995 (i.e., 495 factories). Despite there 
being a large number of factories in the repair and maintenance industry (range 3,771–17,752 factories), 
the amount of effluent per factory was relatively low (range 2.2–6.6 m3/factory). However, the amount 
of effluent per factory continuously increased, despite low effluent levels. In addition, despite a continuous 
decline in the amount of effluent per factory, the tobacco, pulp, paper, and wood products manufacture 
industries (MTPPWPI), the refined petroleum products manufacture industry (MRPPI), the clothing 
manufacture industry (CMI) and the water treatment industry (WTI) represented relatively high levels  
of annual effluents (MTPPWPI: 697.3–1,465.9, MRPPI: 248.4–1,497.9, CMI: 199.0–520.9, and  
WTI: 169.9–442.2 m3/factory).  

Second, we considered annual changes in water quality variables (i.e., physico-chemical variables, 
as well as priority and non-priority pollutants) from 1989 to 2008. Most physico-chemical variables 
were generally improved (Figure 3). For example, annual average values of DO tended to increase, 
while those of BOD, COD, TSS, TC, TN, and TP continuously decreased. Even though the annual 
average values of priority and non-priority pollutant variables showed high variation compared to 
physico-chemical variables, there was a general improvement (Figure 4). 
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Figure 2. Annual changes both in the number of wastewater discharge factories and in the 
amount of effluent per factory. (a) total; (b) chemicals and chemical products; (c) leather 
and allied products; (d) wastewater treatment, waste discharge, and cleaning-related 
services; (e) printing and related support activities; (f) primary metal manufacture;  
(g) water purification plant; (h) electric and electronic manufacture; (i) food and drink 
manufactures; (j) repair and maintenance services; (k) research and development in the 
physical, engineering, and life sciences; (l) seafood product preparation and packaging;  
(m) dry cleaning and laundry services; (n) condensation of cleaning facilities of waste gas; 
(o) clothing manufacture; (p) refined petroleum products; (q) non-metallic mineral 
products; (r) hospital facility; (s) water supply and irrigation systems; (t) plate work and 
fabricated structural products; (u) tobacco, pulp, paper, and wood products; (v) charcoal, 
petroleum, and uranium mining; (w) rubber and plastic products; (x) metal production and 
processing; and (y) others. 
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Figure 3. Annual changes in physico-chemical variables from 1989 to 2008. (•: annual 
mean, Ⅰ: standard error, —: trend line, --: total mean during the survey periods). 

 

Figure 4. Annual changes in (a) priority and (b) non-priority pollutants from 1989 to 2008. 
(•: annual mean, Ⅰ: standard error, —: trend line, --: total mean during the survey periods). 

 
 
SMK test results based on monthly data also showed that the water quality of most effluents 

improved (Figure 5). For example, upward trends in DO (indicating improving water quality) were 
found at 36 out of 61 sites, while downward trends were observed for other physico-chemical factors, 
including BOD (47 sites), COD (45 sites), TSS (45 sites), TN (33 sites), TP (25 sites), and TC (58 sites).  
  

0

5

10

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

0

100

200

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

0

450

900

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

0

70

140

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

0

70

140

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

0

20

40

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

0

1

2

3

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

D
O

 
(m

g/
L)

SS
 

(m
g/

L)
TP

 
(m

g/
L)

BO
D

 
(m

g/
L)

TC
 Ⅹ

10
5

(m
g/

L)

C
O

D
 

(m
g/

L)
 

TN
 

(m
g/

L)

Years

0

10

20

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

0

100

200

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

0

100

200
19

89
19

91
19

93
19

95
19

97
19

99
20

01
20

03
20

05
20

07
0

5

10

15

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

0

6

12

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

0

0.1

0.2

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

0

2000

4000

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

0

300

600

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

0

1000

2000

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

0

1500

3000

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

0

150

300

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

0

2000

4000

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

Cd (μ
g/

L)
Cr

6+
 

(μ
g/

L)
Cu

 
(μ

g/
L)

M
n

(μ
g/

L)

CN
 

(μ
g/

L)
As

 
(μ

g/
L)

Zn
 

(μ
g/

L)
Fe

 
(μ

g/
L)

Pb (μ
g/

L)
Hg

 
(μ

g/
L)

Ph
en

ol
 

(μ
g/

L)
N-

he
xa

ne
 

(μ
g/

L)

Years

Years

(a)

(b)



Int. J. Environ. Res. Public Health 2012, 9 
 

1191 

Figure 5. Trends in water quality variables at the 61 monitoring sites of the industrial 
complexes based on seasonal Mann-Kendall’s test (p < 0.05). 

 

Out of the nine priority pollutants, decreasing trends were recorded for Cd (23 sites), Cu (27 sites),  
Zn (37 sites), and phenol (26 sites). In comparison, no significant increasing or decreasing trends were 
recorded for Cy (46 sites), Pb (50 sites), Cr6+ (59 sites), As (43 sites), and Hg (61 sites). All of the  
non-priority pollutants, such as Mn (40 sites), Fe (41 sites), and n-hexane (35 sites) tended to decrease 
at most of the sites. 

3.2. Pattern of Water Quality Changes 

Differences in water quality at 61 monitoring sites across a 20-year period were characterized using 
nine priority pollutants on the basis of their similarities in SOM (Figure 6). The SOM output units 
were further classified into eight clusters (1–8) based on the U-matrix, as well as a hierarchical cluster 
analysis using Ward’s linkage method with Euclidean distance measures. MRPP showed significant 
differences in the quantity of the nine priority pollutants among eight clusters (A = 0.17, p < 0.001). 
The clusters showed differences in the nine priority pollutants among survey sites and years. In 
general, the relative ratio of samples measured during 1990s was higher in clusters 7 and 8, while the 
ratio of samples from the 2000s was higher in cluster 1. In addition, most of the sampling sites, 
including Daepung and Onsan industrial complexes, in which the effluents of nine priority pollutants 
were relatively low were located in cluster 1. In comparison, monitoring sites, such as Banwol and 
Nakdong national and Daegu Dying industrial complexes were in cluster 8, with high effluent levels of 
the nine priority pollutants.  
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Figure 6. Patterning spatial and temporal changes of effluent quality based on nine priority 
pollutants at the 61 monitoring sites of the industrial areas in Korea from 1989 to 2008. (a) 
Classification of the trained samples in the SOM with nine priority pollutants; (b) U-
matrix, and (c) Dendrogram of a hierarchical cluster analysis of the SOM units using 
Ward’s linkage method based on Euclidean distance. 

 

Other clusters (2 to 6 clusters) included samples mainly surveyed from the mid 1990s and 2000s. In 
particular, samples from Dalseuong, Daegu 3rd, and Pohang steel industrial complexes, which were 
surveyed during this period, were included in cluster 6.  

3.3. Differences in Water Quality among SOM Clusters 

When considering the differences in water quality factors among the eight clusters, water quality 
primarily declined from clusters 1 to 8 (Table 3). For example, DO was higher in cluster 1, while other 
physico-chemical factors (including BOD, COD, TSS, TN, and TP) were higher in cluster 8. In 
contrast, TC was higher in cluster 6. Among the nine priority pollutants, Cy, Pb, Cr6+, As, Hg, Zn, and 
phenol were higher in clusters 7 and 8, which was similar to the physico-chemical variables. Cd was 
higher in clusters 2 and 8, while Cu was higher in clusters 3 and 8. All non-priority pollutants showed 
relatively high values in clusters 7 and 8. 

Annual changes in effluent quality were calculated, and presented in the SOM map (Figure 7). For 
example, the monitoring sites in the Seoul Digital complex, Banwol Plating industrial complex and the 
Yeongdeungpo mechanical industrial complex moved from cluster 8 to cluster 1, indicating the 
recovery process of the nine priority pollutants. 
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Table 3. The mean value and standard error of water quality variables in each cluster defined in SOM. Different alphabet letters indicate 
significant differences among the clusters based on Dunn’s multiple comparison tests (p < 0.05). 

 

Variables 
Cluster 

1 2 3 4 5 6 7 8 
Physico-chemical variables       
DO (mg/L) 6.22 (0.12)a 5.54 (0.22)ab 4.92 (0.39)bc 5.18 (0.2)b 4.99 (0.18)b 4.99 (0.18)b 5.13 (0.4)b 3.34 (0.28)c 
BOD (mg/L) 18.41 (2.43)d 22.21 (4.61)cd 37.08 (8.25)b 36.74 (4.29)bc 34.74 (3.79)c 32.08 (3.69)c 43.31 (8.43)ab 105.74 (5.78)a 
COD (mg/L) 20.24 (1.39)d 26.15 (2.64)c 34.24 (4.74)b 28.86 (2.46)bc 31.23 (2.17)b 30.75 (2.12)b 41.91 (4.84)b 88.07 (3.31)a 
TSS (mg/L) 18.42 (1.32)d 18.63 (2.5)cd 28.77 (4.49)b 30.48 (2.33)b 28.54 (2.06)b 26.39 (2.01)bc 28.44 (4.58)b 62.06 (3.14)a 
TC × 105(mg/L) 12.4 (11.2)c 2.7 (21.3)b 12.5 (38.2)b 14.6 (19.8)b 10.3 (17.5)b 48.8 (17.1)b 12.9 (39.0)ab 37.8 (26.7)a 
TN (mg/L) 13.87 (1.1)c 22.33 (2.09)b 25.03 (3.73)ab 22.74 (1.94)b 18.48 (1.71)b 24.74 (1.67)b 39.56 (3.82)a 54.49 (2.61)a 
TP (mg/L) 1.25 (0.11)b 1.08 (0.21)b 2.1 (0.38)ab 1.33 (0.2)b 1.87 (0.18)b 1.56 (0.17)b 1.8 (0.39)b 2.65 (0.27)a 
Priority pollutant variables        
Cd (μg/L) 0.13 (0.43)f 11.74 (0.83)a 1.59 (1.48)bc 0.53 (0.77)de 0.41 (0.68)ef 2.3 (0.66)cd 29.07 (1.51)a 0.83 (1.04)b 
Cy (μg/L) 1.19 (9.22)e 1.66 (17.52)de 9.98 (31.39)b 0.96 (16.3)d 15.81 (14.4)bc 10.67 (14.04)cd 119.1 (32.06)b 258.56 (21.97)a 
Pb (μg/L) 0.44 (2.39)b 27.53 (4.53)a 21.62 (8.12)a 14.58 (4.22)a 1.48 (3.73)b 0.22 (3.63)b 38.49 (8.29)a 57.39 (5.68)a 
Cr6+ (μg/L) 0.37 (0.46)c 0.01 (0.88)c 0.28 (1.57)abc 0.35 (0.81)c 0.05 (0.72)c 0.35 (0.7)c 5.22 (1.6)ab 8.59 (1.1)a 
As (μg/L) 2.01 (0.21)c 1.21 (0.41)c 1.29 (0.73)bc 0.36 (0.38)cd 0.85 (0.33)c 0.07 (0.33)d 3.17 (0.75)ab 5.47 (0.51)a 
Hg (μg/L) 0.01 (0.01)b 0.06 (0.01)b 0.02 (0.02)b 0.00 (0.01)b 0.02 (0.01)b 0.00 (0.01)b 0.08 (0.02)ab 0.10 (0.02)a 
Cu (μg/L) 11.8 (28.9)f 35.6 (55.0)cd 462.7 (98.5)bc 45.2 (51.2)de 31.3 (45.2)e 49.6 (44.1)c 176.1 (100.6)ab 958.4 (68.9)a 
Zn (μg/L) 78.9 (75.8)e 236.9 (144.1)bc 708.4 (258.0)ab 172.2 (134.0)cd 130.3 (118.4)d 239.1 (115.4)b 999.8 (263.5)a 2,054.9 (180.6)a 
Phenol (μg/L) 1.5 (12.0)b 0.6 (22.8)b 29.6 (40.8)a 2.4 (21.2)b 62.0 (18.7)a 0.6 (18.2)b 22.7 (41.6)a 443.4 (28.5)a 
Non-priority pollutant variables       
Mn (μg/L) 128.7 (25.1)c 418.3 (47.8)b 293.4 (85.5)ab 200.1 (44.4)b 196.2 (39.2)b 384.1 (38.3)b 1045.4 (87.4)a 491.1 (59.9)a 
Fe (μg/L) 251.0 (40.5)d 454.1 (76.9)b 544.6 (137.8)b 497.3 (71.5)c 413.9 (63.2)c 568.4 (61.6)bc 587.1 (140.7)ab 1,903.2 (96.4)a 
n-hexane (μg/L) 648.4 (92.9)c 520.3 (176.6)b 1,504.9 (316.2)b 1,426.8 (164.2)b 1,215.4 (145.1)b 1,014.9 (141.4)b 1,871.1 (323.0)b 3,536.7 (221.3)a 



Int. J. Environ. Res. Public Health 2012, 9 1194 
 

Figure 7. Annual changes in industry types from 1999 to 2008 and temporal changes in 
wastewater effluent at (a) the Seoul Digital industrial complex and (b) the Banwol 
industrial complex. 

 
 

In the Seoul Digital industrial complex, which showed an increase in the electronics and electrical 
industry with a decrease in the annual changes of discharge and effluent (Figure 7a), all samples were 
located in cluster 8 during the early period (1992–1995), representing relatively high values for priority 
pollutant variables (Figure 8a). However, these sites moved from cluster 8 to clusters 1 and 4, 
indicating relatively cleaner states as time progressed. At the Banwol industrial complex, sampling 
sites were mainly located in cluster 8, and sometimes crossed over to cluster 7 (Figure 8b). The 
Banwol industrial complex was represented by a high ratio of machinery industry and electric and 
electronic industries, with a slight decrease in annual discharges and effluent after 1985. Of note, the 
last two monitoring sites were placed in cluster 5. In contrast, most samples obtained from the 
Cheonheung industrial complex were located in cluster 1 (Figure 8c). 

4. Discussion 

Since industrial complexes were first built in the 1960s in Korea, industries have mainly focused on 
economic growth, with limited attention to environmental protection. Industrial complexes that have 
intensive production activities in a limited space are likely to cause a high occurrence of environmental 
pollution and issues [33]. However, increasing social concerns and the requirement for the 
environmental conservation has resulted in the development of stringent environmental standards and 
legislation being applied to industrial complexes to achieve cleaner production, and a reduction of all 
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types of pollution [33–35]. Hence, to effectively manage effluents, it is important to obtain baseline 
information about the changes in water quality at industrial areas over time. Therefore, in this study, 
we used SMK and SOM analyses to evaluate changes in water quality at 61 monitoring sites that were 
located near industrial complexes across Korea (i.e., at a national scale) over a 20-year period spanning 
1989–2008. 

Figure 8. Temporal changes of effluent quality in the SOM ordination and annual changes 
of nine priority pollutants at (a) the Seoul digital industrial complex; (b) the Banwol 
industrial complex; and (c) the Cheonheung industrial complex. 

 

Because key industrial types have changed over time, the amount of effluent according to the 
industrial types has also changed. In the 1960s, industries were primarily low-skilled, labor intensive, 
and light, such as the textile and wig industries. This was followed in the 1970s with capital intensive, 
heavy, and chemical industries, such as steel, machinery, and petrochemical industries. In the 1980s, 
assembly processing industries, such as consumer-electronics, shipping, and the automotive  
industry, were dominant. Finally, since the 1990s, the information technology industry, such as the 
semiconductor industry, computer industry, and telecommunications equipment industry, has been the 
primary focus of Korean industries. Our results showed that the amount of effluents in MEEI (1990s 
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key industry) was relatively high, with small annual variation. In contrast, the amount of effluent in 
most other industrial types showed a continuous decline, including the clothing manufacturing industry 
(1960s key industry), MRPPI (1970s key industry), and metal production and processing industry 
(1980s key industry).  

Based on annual and monthly changes in water quality, there was a general improvement in effluent 
quality at most of the 61 monitoring sites. For example, DO gradually increased, while other factors 
(including BOD, COD, TN, and TP) continuously decreased (Figure 3 and 4). This improvement in 
water quality might be explained by several legislative efforts in Korea. For instance, water quality 
standards have strengthened through legal amendments. Since the Environmental Pollution Prevention 
Act was enacted in 1963, the constitution was amended to the Environment Conservation Act (1978) 
and Water Quality Conservation Act (1991). However, the water quality control activities were not 
efficient, because the government mostly focused on industrial and economic development, with 
limited attention on environmental protection. As economic levels and social development increased, 
present day social concern and the requirement for the environmental protection strengthened, which 
led to the development of the Water Quality and Ecosystem Conservation Act (2008). This act has 
been subject to several amendments that have resulted in the strengthening and refining of the water 
quality standards, which in turn have contributed to the continuous improvement in water quality. At 
present, 32 variables are used as parameters to assess water quality. In addition, TMDLs, which 
differently stipulate the maximum amount of pollutants according to the regions (e.g., watershed, city, 
or province), have been implemented since August 2004. If the criteria are not met, the local 
government has the authority to regulate the budget or development work of the industries [36]. The 
first phase (2004–2010) of TMDL was performed in the Nakdong River basin (from 2004), the 
Yeongsan River basin (from 2005), and the Seomjin River basin (from 2005). BOD was selected as a 
criterion for TMDL during the first phase, with the addition of TP during the second phase (2011–2015) [15]. 

With improvements in the quality of life, recognition and concerns about environmental pollution 
have changed, along with the policies regarding environmental issues. One of the most representative 
examples reflecting the power of environmental non-governmental organizations (NGOs) and public 
response is the Nakdong River phenol emissions. In 1991, citizens in Daegu, which is the third largest 
city in Korea, identified a foul smell in the tap water [37]. Water supply authorities found that the 
smell was caused by phenol leakage into the Nakdong River from a large electronics company (more 
than 30 tons of phenol liquid was released). Hence, the environmental NGOs and citizens organized a 
phenol investigation team, and boycotted all products from the company at a national scale. Through 
this incident, public awareness concerning water pollution rapidly increased, and later, an act on 
special measures for the control of environmental offences was introduced [34]. 

In addition, as environmental pollution has become a major issue at an international scale, the world 
community has implemented many comprehensive approaches, including treaties and establishing 
international organizations to achieve sustainable development. For example, the World Summit on 
Sustainable Development (WSSD), which took place in Johannesburg, South Africa, in 2002, 
discussed the issues of Water, Energy, Health, Agriculture, and Biodiversity (WEHAB), along with 
potential counterstrategies that the international community might take. Such counterstrategies 
included the increased use of renewable energy, the establishment of a 10-year plan for sustainable 
production and consumption, and a reduction in the quantity of discharged waste [35]. Furthermore, 
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the World Water Forum is held every three years, and it raises awareness about water-related issues  
(e.g., water supply and water pollution). At the Rio Earth Summit in 1992, the UN also established 
World Water Day, which is held on 22 March every year, to focus public attention on critical water 
issues of our era. 

In 2003, the Eco-Industrial Parks (EIP) was established in Korea, which is a national initiative to 
protect the environment [38]. The objective of the EIP is to minimize the impact of environmental 
pollution by participating industries and enhance economic outputs. Within the EIP plan, there are 
three steps to promote 27 EIP for 15 years. Hence, the EIP aims towards developing “green” industry, 
cleaner production, pollution control, and an increase in energy efficiency, as well as cooperation 
among companies. Standard industrial complexes only consider raw materials and products, whereas 
EIP also consider by-product and wastes. Currently, pilot EIP projects are in progress at the Pohang, 
Yeosu, Ulsan, Banwol, Sihwa, and Cheongju industrial complexes. In 2009, EIP had economic effects 
of around 340 thousand U.S. dollars, and reduced CO2 emissions by about 184,000 tons [35]. 

The SOM analysis provided a good representation of the observed trends in water quality in this 
study. Water quality declined from cluster 1, which mainly comprised the 2000s data, to cluster 8, 
which mainly comprised 1990s data. In addition, the ordination location of each sampling site in the 
SOM ordination map changed according to the sampling time, reflecting temporal changes in the 
numbers and types of industrial complexes. For example, the Seoul Digital industrial complex, which 
moved from cluster 8 to cluster 1 as time progressed, is one of the representative industrial complexes 
that reflects Korean industrial type changes. During the 1960s, the Seoul Digital industrial complex 
was mainly focused on export industries (e.g., the textile industry), whereas it has recently been 
increasingly focused on high-tech industry, information-knowledge based industry, and major 
company and venture businesses [39]. The venture center was initially constructed by the Korea 
Industrial Complex Corporation in 2000, with the Seoul Digital industrial complex rapidly shifting into 
an advanced urban industrial complex. In comparison, at Banwol industrial complex, which was 
mainly ordinated in cluster 8 for most of the survey period, most priority pollutants tended to decrease 
along with other physico-chemical variables that also represent an improvement in water quality, 
despite these variables being relatively higher compared to other industrial complexes. Based on 2008 
data, the amount of wastewater discharge (168,845 mg/L, 6.8%) and effluent (156,931 mg/L, 7.5%), as 
well as the amount of organic loading discharge and effluent, was the highest at this site compared to 
all other industrial complexes [40]. Even though the ratio of the machinery industry is relatively high, 
based on Korean standard industrial classification, all types of manufacturing industries are heavily 
aggregated with small to medium-sized factories, causing difficulty in the efficient management of 
wastewater. Hence, intensive management, as well as controlling the occurrence of pollution sources, 
is necessary at the Banwol industrial complex.  

5. Conclusions 

We have evaluated changes in the spatial and temporal trends of water quality in Korea from 1989 
to 2008 using WQMN datasets collected by the Ministry of Environment. When considering annual 
changes in water quality and SMK, physico-chemical factors, as well as priority and non-priority 
pollutants, indicated an improvement at monitoring sites for effluents of the industrial complexes. 
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Furthermore, the SOM results also indicated an improvement in water quality, as well as decrease in 
the amount of effluent from priority pollutants produced by industrial complexes. However, even 
though water quality showed an improvement, continued long-term monitoring is necessary to 
establish plans and policies for wastewater management and health assessment in the future. 
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