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An impending inhibitor useful for 
the oil and gas production industry: 
Weight loss, electrochemical, 
surface and quantum chemical 
calculation
Ambrish Singh1,2, K. R. Ansari3, Xihua Xu1, Zhipeng Sun1, Ashok Kumar4 & Yuanhua Lin1,2

The influence of a Schiff base namely N,N′-(pyridine-2,6-diyl)bis(1-(4-methoxyphenyl) methanimine) 
(PM) on the corrosion of J55 and N80 steel in 3.5 wt.% NaCl solution saturated with CO2 was evaluated 
using weight loss, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), X-ray 
diffraction (XRD), contact angle, scanning electron microscopy (SEM), atomic force microscopy (AFM) 
and scanning electrochemical microscopy (SECM). Potentiodynamic polarization results suggested 
that the inhibitor acted as a mixed type inhibitor by reducing both anodic and cathodic reactions. The 
adsorption of PM on the J55 and N80 steel surface obeyed the Langmuir adsorption isotherm. XRD, 
contact angle, SEM, AFM and SECM studies revealed that the surface of the metal was quite unaffected 
after the addition of inhibitor. Quantum chemical calculations and molecular dynamic simulation 
support the experimental results well.

The varying amount of gases and the high concentration of salts in water are the major constituents of the oil 
and gas production industry1. Of the gases, carbon dioxide in the presence of high chloride concentrations is the 
most common corrosive medium in the petroleum industry, and such corrosion is said to be sweet corrosion2–4. 
Infrastructure such as pipe lines and oil well processing equipment in the oil and gas industry is made of carbon 
steel due to its lower cost. Although the carbon steel is resistant towards corrosion, in presence of a high content 
of chloride aqueous solutions of carbon dioxide, a significant corrosion problem arises. This corrosion problem 
results in a tremendous loss of the revenue to the oil and gas industry, either in the form of loss in production or 
repair costs for the production unit. Additionally, an indirect impact of corrosion occurs over the environment 
and ecology5.

The problems arising from carbon dioxide corrosion have lead to the development of various methods of cor-
rosion control. Of these methods, injection of corrosion inhibitors has proven to be most practical and economic 
method due to its simplicity of use6. Many organic compounds have been tested as corrosion inhibitors, but het-
eroatoms containing nitrogen, oxygen, and sulphur are the most commonly used inhibitors because the heteroa-
toms can easily interact with the metal surface by donating their lone electron pair. Hence, most of the organic 
compounds containing heteroatoms and multiple bonds act as good corrosion inhibitors7–9, and Schiff bases are 
the best known examples in this category. The review of the literature reveals that despite the superlative inhibi-
tion characteristics of Schiff bases in general, this class of compound has so far not been exploited as a corrosion 
inhibitor for carbon dioxide10,11. By keeping our eyes on the losses due to corrosion and environmental safety, we 
have synthesized N,N′-(pyridine-2,6-diyl)bis(1-(4-methoxyphenyl)-methanimine), which shows various types 
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of biological activity such as antibacterial, antimicrobial, antitubercular, local anaesthetic, anti-inflammatory, 
anti-convulsant, anti-viral and anti-cancer12.

In the present study, N,N′-(pyridine-2,6-diyl)bis(1-(4-methoxyphenyl)-methanimine) has been synthesized, 
and its corrosion inhibition effect was tested on both J55 and N80 steels in 3.5% NaCl solution saturated with 
carbon dioxide using gravimetric methods, potentiodynamic polarization, electrochemical impedance spectros-
copy (EIS), X-ray diffraction (XRD), UV-visible spectroscopy, contact angle measurement, scanning electron 
microscopy (SEM), atomic Force Microscopy (AFM), scanning electrochemical microscopy (SECM), quantum 
chemical calculations and molecular dynamic simulation (MD).

Experimental procedures
Inhibitor synthesis.  2,6-Diaminopyridine (0.1 mol) and 4-methoxybenzaldehyde (0.2 mol) were refluxed in 
ethanol (20 mL) for approximately 5 h. The solid mass thus obtained was filtered and further recrystallized from 
ethanol12. The synthesis scheme is shown in Fig. 1, and the 1H-NMR, IR spectrum is given in supplementary 
file S1 and S2 respectively.

The detailed characterization is as follows:

N,N′-(Pyridine-2,6-diyl) bis(1-(4-methoxyphenyl)-methanimine) (PM).  1H-NMR (500 MHz, DMSO-d6) δ 
(ppm): 3.827(OCH3), 6.819–7.062 (CH Pyridine) 7.802–7.819 (CH benzene), 9.123 (=CH).

IR (KBr cm−1): 3053 (Ar-CH), 2875 (C-H aliphatic), 1715 (C = O), 1617 (C = N), 1580 (C = C).

N80 and J55 steel specimens.  The composition of the steel samples is as follows: J55 steel (wt%): C 0.24; 
Si 0.22; Mn 1.1; P 0.103; S 0.004; Cr 0.5; Ni 0.28; Mo 0.021; Cu 0.019; Fe remainder13 and N80 steel of (wt%): 
C 0.31; Si 0.19; Mn 0.92; P 0.010; S 0.008; Cr 0.2; Fe remainder. The steel coupons are flat with a dimension of 
5.0 cm × 2.5 cm × 0.2 cm and 2.0 cm × 1.0 cm × 0.025 cm used for gravimetric and electrochemical experiments, 
respectively. Only one end face (1.0 cm2) was exposed, and the rest was sealed by epoxy resin. All the steel cou-
pons were abraded through 600, 800 and 1200 grit silicon carbide metallurgical paper, degreased in acetone, 
washed with anhydrous ethanol, and then dried at room temperature and finally kept in the desiccators14.

Experimental solution.  In the present study, the test solution is 3.5% NaCl saturated with carbon dioxide 
that was prepared by passing carbon dioxide gas through the solution for 120 min at a pressure of 6 MPa until the 
pH of the solution became 4 ± 0.05 and, when necessary, the pH was adjusted with small amounts of NaHCO3 
or HCl. The 3.5% NaCl solution was continuously saturated with CO2 throughout the experiment, and nitrogen 
gas was passed through the solution to minimize the oxygen concentration prior to each test. All the experiments 
were performed in static, unstirred solutions.

Weight loss experiments.  The gravimetric experiments were done by immersing the steel samples (J55 and 
N80) in 3.5% NaCl solution saturated with CO2 for 7 days. The corrosion rate (CR) and inhibition efficiency (η%) 
were calculated using the following equations:

C (mm/y) 87 6W
atD (1)R =
.

η =
−

×
C C

C
% 100

(2)
R R(i)

R

where W is the weight loss of the specimen (mg), a is the area of the specimen (cm2), t represents the immer-
sion time (h), and CR and CR(i) are the corrosion rates in the absence and presence of the inhibitor molecules, 
respectively.

Electrochemical methods.  All electrochemical studies, i.e., potentiodynamic polarization and electro-
chemical impedance spectroscopy (EIS) experiments were performed using a standard three electrode cell, which 
consists of J55 and N80 steel strips as working electrodes, a graphite rod as the counter electrode and Ag/AgCl 

Figure 1.  Synthetic scheme of inhibitors.
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as the reference electrode. The stable value for the open circuit potential was achieved by immersing the working 
electrodes in the test solution for 30 min. Potentiodynamic polarization and EIS measurements were performed 
using the Autolab Potentiostat/Galvanostat electrochemical analysis device. EIS measurements were carried out 
in the frequency range of 100 kHz to 0.00001 kHz at the amplitude of 10 mV, peak to peak.

Potentiodynamic polarization was carried out by changing the potential from-250 mV to +250 mV vs open 
circuit potential (OCP) at a constant sweep rate of 1 mV/s.

Surface analysis (SEM, AFM and XRD).  Surface analysis of steel samples in the absence and presence 
of inhibitor was performed using the TESCAN VEGA II XMH instrument and AFM studies were performed 
using the NT-MDT SOLVER Next AFM/STM instrument. The scanned size of each sample used in AFM is 
10 μm × 10 μm.

The films formed on the surface of the steel specimens were analysed using an X-ray diffractometer, X Pert 
PRO incorporated with High Score software.

Contact angle and SECM measurements.  Contact angle measurements were performed using the ses-
sile drop technique with the help of the DSA100 Kruss instrument made in Germany. SECM studies were carried 
out using an electrochemical work station of CHI900C model consisting of a three-electrode assembly.

Computational methods.  Density Functional Theory (DFT) calculations are an important tool to predict 
the reactivity or stability of inhibitor molecules and were performed using the Gaussian 09 program15. Gauss 
View 5.0.8 was used to prepare the input files of inhibitor molecules16. The optimization of the inhibitor molecules 
was done using a 6–31 G (d, p) basis set. All the calculations have been carried for the aqueous phase, both for 
neutral and protonated inhibitor molecules. Quantum chemical parameters such as energy of the highest occu-
pied molecular orbital (EHOMO), energy of the lowest unoccupied molecular orbital (ELUMO), electronegativity (χ), 
hardness (η), softness (σ) and the fraction of electrons transferred (ΔN) were calculated and discussed.

The ionization potential (IP) and electron affinity (EA) energies are correlated with the HOMO and LUMO of 
the inhibitor molecules, respectively, and can be expressed as follows17–20:

Figure 2.  (a) Variation of inhibition efficiency (η %) with inhibitor concentration at 313 K. (b) Variation of 
inhibition efficiency (η %) with temperature. (c,d) Arrhenius plots of the corrosion rate (CR) of (c) J55 steel (d) 
N80 steel in the absence and the presence of an optimum concentration of inhibitor.
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IP E (3)HOMO= −

= −EA E (4)LUMO

Additionally, electronegativity (χ), global hardness (η) and global softness (σ) are given as follows21.
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Figure 3.  (a,b) Nyquist plots for (a) J55 steel (b) N80 steel in 3.5% NaCl saturated with CO2 in absence and 
presence of different concentration of inhibitors at 313 K. (c,d) Phase angle (log f vs. α°) plots of impedance 
spectra for (c) J55 steel (d) N80 steel in 3.5% NaCl saturated with CO2 in the absence and the presence of 
different concentrations of the inhibitors at 313 K. (e,f) Equivalent circuit model used to fit the EIS data.
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The fraction of electrons transferred (ΔN) from the inhibitor molecules to the metal surface was calculated 
using the values of χ (electronegativity) and ƞ (global hardness) and can be expressed as follows22.

N
2( ) (8)

inh

Fe inh

φ χ

η η
∆ =

−

+

where φ is the work function and χinh is the electronegativity of inhibitor molecule, ƞFe and ƞinh denote the abso-
lute hardness of iron and the inhibitor molecule. The values of φ and ƞFe are taken as 4.82 and 0 eV mol−1 23.

Molecular dynamics simulation.  The interaction between the inhibitor molecules and the metal surface 
was studied using molecular dynamics (MD) simulations using the Forcite module of the Materials Studio 6.0 
program developed by Accelrys, Inc.24,25. In this method, the most densely packed and stable iron surface was 
chosen, i.e., Fe-(110) for the adsorption study26. The MD simulation was performed at the temperature of 313 K, 
controlled by the Andersen thermostat and NVT ensemble, with a time step of 1.0 fs and simulation time of 10 0 
0 ps, using the COMPASS27 force field.

Fukui functions.  The calculation of the Fukui functions was performed using UCA-FUKUI v 1.0 software28 
using the Finite Difference (FD) method with the help of the output file from Gaussian 09. The Fukui function (fk) 
is the first derivative of the electronic density ρ r( ) with respect to the number of electrons N, in a constant exter-
nal potential r( )  and is written as follows29.
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Nucleophilic and electrophilic attacks were calculated using the Finite Difference approximations method29:

= + −+f q N q N( 1) ( ) (for nucleophilic attack) (10)k k k

Figure 4.  Potentiodynamic polarization curves for (a) J55 steel and (b) N80 steel in 3.5% NaCl saturated with 
CO2 in the absence and the presence of different concentration of inhibitors at 313 K.
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= − −−f q N q N( ) ( 1) (for electrophilic attack) (11)k k k

Here, qk represents the gross charge of the atom. The charges on the anionic, neutral and cationic species are 
denoted by qk (N + 1), qk (N) and qk (N − 1) respectively.

Results and Discussion
Weight loss.  Consequence of concentration.  The percentage inhibition efficiency with the increase in inhib-
itor concentration is shown in Fig. 2a, which shows that the inhibition efficiency increases as the inhibitor con-
centration increases, suggesting that a greater number of inhibitor molecules is adsorbing over the active sites 
of the metal and thus preventing the direct contact between the metal and the aggressive solution. The highest 
inhibition efficiency obtained at 400 mg/L is 93% (J55 steel) and 90% (N80 steel). However, a further increase 
in the inhibitor concentration provides no significant change in the value of the inhibition efficiency. Therefore, 
400 mg/L has been selected to be the optimum concentration.

Consequence of temperature.  The variation in the inhibition efficiency with increase in the temperature from 313 
to 373 K at the optimum inhibitor concentration is shown in Fig. 2b. Figure 2b shows that the inhibition efficiency 
decreased with the increase in the temperature for both J55 and N80 steels due to desorption of the inhibitor 
molecules from the metal surfaces30.

The activation energy for the corrosion process was calculated using the Arrhenius equation:

λ=
−

.
+C E

RT
log

2 303
log (12)R

a

where Ea represents the activation energy, R is the universal gas constant, and λ denotes the pre-exponential 
factor. The value of the activation energy in the absence and presence of the inhibitor was calculated by taking 
the linear regression between log CR and 1/T (Fig. 2c,d). The activation energy for both inhibited systems is 
higher than the activation energy for the uninhibited system, i.e., 14.46 kJ/mol (uninhibited J55 steel), 14.07 kJ/
mol (uninhibited N80 steel). However, in the presence of inhibitor, Ea increased to 36.59 kJ/mol and 22.57 kJ/mol 
for J55 and N80 steel, respectively.

The high values of Ea suggest that a high energy barrier has formed in presence of inhibitor for corrosion reac-
tions. Thus, charging or mass transfer from the metal surface is avoided due to the adsorbed inhibitor molecules.

Electrochemical measurements.  Electrochemical impedance spectroscopy (EIS).  Impedance spectra for 
J55 and N80 steel in 3.5% NaCl solution saturated with CO2 in the absence and presence of different concentra-
tions of PM are shown in Fig. 3a–d in the form of Nyquist plots and Bode phase angle plots31. The Nyquist plots 
consist of depressed semicircles with one capacitive loop in the high frequency (HF) zone and one inductive loop 
in the lower frequency (LF) zone. The occurrence of an inductive loop is due to the relaxation process of Hads or 
FeOHads

32. The diameter of the semicircle is increased with an increase in the inhibitor concentration, due to the 
adsorption of inhibitors forming a protective inhibitor film over the metal surface (Fig. 3a,b). The calculated EIS 
parameters from the Nyquist plots are given in Table 1.

The impedance results of the EIS spectra were calculated by fitting the two equivalent circuits (Fig. 3e,f), which 
consist of Rs (solution resistance), Rp (polarization resistance), CPE (constant phase element) and RL (inductive 
resistance) and L (inductance)33. The presence of L in the impedance spectra in the presence of the inhibitors that 
were investigated indicated that iron was still dissolved by the direct charge transfer at the inhibitor adsorbed 
electrode surface34. The impedance of the constant phase element is given by the following equation:

Cinh Rs Rp

n

Y0 L RL η

χ2(mgL−1) (Ω) (Ω cm2) (μF/cm2) (H cm2) (Ω cm2) (%)

J55 steel

Blank 9.1 132 0.783 303 — — — 0.78 × 10−2

50 7.9 453 0.789 262 164 74 69 1.3 × 10−2

100 8.6 518 0.798 170 210 75 73 1.8 × 10−2

200 7.1 1421 0.833 95 285 92 90 1.2 × 10−2

400 8.1 1848 0.834 77 — — 92 0.87 × 10−2

N80 steel

Blank 9.6 125 0.749 299 80 33 — 0.71 × 10−2

50 7.1 690 0.787 208 289 135 80 0.69 × 10−2

100 7.7 810 0.791 150 349 184 83 1.4 × 10−2

200 9.1 852 0.795 85 591 304 84 1.6 × 10−2

400 7.5 1301 0.801 67 — — 90 0.54 × 10−2

Table 1.  Electrochemical impedance parameters for J55 and N80 steel in 3.5% NaCl saturated with CO2 in the 
absence and the presence of different concentrations of inhibitor at 313 K.
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ω= − −Z Y j( ) (13)CPE
n

0
1

where Yo is the magnitude of CPE, j is the square root of −1, and n is the phase shift, which can be used as a gauge 
of the heterogeneity or roughness of the surface, and ω is the angular frequency35.

In EIS, degree of difficulty in corrosion reaction is reflected by Rp values, higher the value of Rp lower is the 
corrosion rate. Inspection of EIS data in Table 1 shows that Rp value increases with increasing the concentration 
of inhibitor. This reflects that the inhibitor prevents corrosion effectively and a protective layer on the electrode 
surface is formed. This layer acts as a barrier towards mass and charge transfer. The precision of the fitted data 

Cinh Ecorr icorr βa −βc η

(mgL−1) (mV/SCE) (μA/cm2) (mV/dec) (mV/dec) (%)

J55 steel

Blank −698 94.4 154 690 —

50 −697 57.1 118 436 40

100 −721 36.1 129 636 62

200 −709 15.3 113 758 84

400 −714 8.1 85 569 91

N80 steel

Blank −715 106.3 129 179 —

50 −711 50.4 111 89 53

100 −722 34.1 97 113 68

200 −711 21.0 116 178 80

400 −724 10.2 114 102 90

Table 2.  Potentiodynamic polarization parameters for J55 and N80 steel in 3.5% NaCl saturated with CO2 in 
the absence and the presence of different concentration inhibitor at 313 K.

Figure 5.  Langmuir adsorption isotherm plots for inhibitors (a) J55 steel and (b) N80 steel.
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was evaluated by chi-squared (χ2). The values of χ2 are very small (Table 1), which supports that the equivalent 
circuit is ideal for fitting.

The inhibition efficiencies value can be calculated according to the following equation:

η =





−






×

R
R

: % 1 100
(14)

p

p i( )

where Rp [sum of Rct (charge transfer resistance) and Rfilm (film resistance)] and Rp(i), respectively, represent the 
polarization resistance in the absence and the presence of different concentration of inhibitors. From the Table, 
we observe that the value of polarization resistance with the addition of inhibitors is increased, due to the for-
mation of a protective film at the metal solution interface36. The decrease in the magnitude of CPE in presence of 
inhibitors (Table 1) indicates the increase in the thickness of the double layer. Additionally, the values of “n” in 
presence of inhibitors increased from 0.787 to 0.834 compared to the blank 0.783 (J55 steel) and 0.749 (N80 steel), 
revealing that the metal surface becomes more homogeneous in the presence of inhibitor molecules37.

In the Bode phase angle plots (Fig. 3c,d), at the intermediate frequency the phase angle values obtained are 
in the range of 38.9° to −59.8° for J55 steel and 39.1° to −61.2° for N80 steel. However, an ideal capacitor phase 

Inhibitor

EIS Tafel

Kads −∆G°ads Kads −∆G°ads

(104 M−1) (kJ mol−1) (104 M−1) (kJ mol−1)

Blank — — — —

PM + J55 13.01 37.29 0.75 33.64

PM + N80 1.41 35.32 0.49 32.60

Table 3.  Thermodynamic parameters for the adsorption of inhibitor on J55 and N80 steel in 3.5% NaCl 
saturated with CO2 in the absence and the presence of the optimum concentration of inhibitor.

Figure 6.  XRD spectra of (a) J55 sttel+ N80 steel in Inhibited solution and (b) J55 steel + N80 steel in 3.5% 
NaCl solution.
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angle at an intermediate frequency is −90°38. Thus, the approach of the phase angle to −90° with the addition of 
inhibitors suggests that the electrochemical behaviour of corrosion becomes more capacitive39.

Potentiodynamic polarization.  Potentiodynamic polarization curves for J55 and N80 steel in the absence and 
the presence of inhibitor in 3.5% NaCl solution saturated with CO2 at 3131 K temperature are shown in Fig. 4a,b. 
The linear portion of the cathodic and anodic Tafel line allows the calculation of some valuable potentiodynamic 
parameters such as corrosion current density (icorr), corrosion potential (Ecorr), cathodic and anodic Tafel slopes 
(bc, ba) and inhibition efficiency (η%). These parameters are tabulated in Table 2 40. The inhibition efficiency was 
calculated using the following equation:

Figure 7.  Contact angle versus inhibitor concentration plots for inhibitors.

Figure 8.  SEM images for (a) Blank J55 steel (b) PM+ J55 steel (c) Blank N80 steel (d) PM + N80 steel.
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% 1 100
(15)

corr(i)

corr
η =






−





×

where icorr and icorr(i) are the corrosion current density in the absence and the presence of inhibitor, respectively. 
Table 2 shows that as the inhibitor concentration is increased, there is a significant reduction in the corrosion cur-
rent densities occurring from 94.4 µA cm−2 to 9.1 µA cm−2 for J55 steel and from 106.3 µA cm−2 to 10.2 µA cm−2 
for J55 steel, which reflects that the corrosion reactions are inhibited. The shifts in the Ecorr values show an almost 
constant trend, with a maximum change of 53 mV. Such types of Ecorr value change have been attributed to a 
mixed type of inhibitor action41,42. The anodic and cathodic Tafel slope values in the presence of inhibitor for both 
steels (J55 and N80) shows some variations (Table 2) compared to the values in the absence of inhibitor, suggest-
ing that in the presence of inhibitor, both the anodic and cathodic corrosion reactions are affected. Additionally, 
with the increase in the inhibitor concentration the values of inhibition efficiency increase, due to the formation 
of an adsorbed film of inhibitor molecules over the metal surface.

Adsorption isotherm.  In the current investigation various isotherms were tried such as Temkin, Frumkin 
and Langmuir. However, the Langmuir isotherm was the best fit. The Langmuir isotherm is expressed by the 
following equation43:

C
K

C1
(16)

inh

ads
inhθ

= +

where Kads is the equilibrium adsorption constant, Cinh is the inhibitor concentration and θ is the fraction of the 
surface covered by inhibitor molecules. After plotting as a graph between Cinh/θ versus Cinh, a straight line was 
obtained (Fig. 5a,b), with a correlation coefficient (R2) for J55 steel ranging from 0.9969 for EIS and 0.9983 for 
Tafel polarization and N80 steel from 0.99968 for EIS and 0.99986 for Tafel polarization. Values of Kads represent 
the strength between adsorbate and adsorbent, i.e., larger values of Kads imply stronger adsorption and hence, 
better inhibition efficiency44–46. The equilibrium adsorption constant (Kads) is related to the standard free energy 
of adsorption (ΔG°ads) through the following equation:

G RT Kln(55 5 ) (17)ads ads∆ ° = − .

Figure 9.  SECM figures for (a) Blank y-axis 3D-J55 steel (b) Blank y-axis 3D-N80 steel (c) PM + J55 steel y-axis 
3D (c) PM + N80 steel y-axis 3D.
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where, R is the gas constant, and T is the absolute temperature. The value of 55.5 is the concentration of water 
in the solution in mol L−1. The values of Kads and ΔG°ads are given in Table 3. The negative values of ΔG°ads 
ensure the spontaneity of the adsorption process and the stability of the adsorbed film on the steel surface47. 
Generally, values of ΔG°ads ≤ −20 kJ mol−1 signify physisorption, and values more negative than −40 kJ mol−1 
signify chemisorption. The calculated value of ΔG°ads for J55 steel with inhibitor is in the range of –37.29 kJ/mol 
to −33.64 kJ/ mol and for N80 steel with inhibitor is in the range of −35.32 kJ/mol to −32.60 kJ/mol (Table 3), 
which probably indicate that both physical and chemical adsorption would occur.

X-Ray Diffraction (XRD).  The corrosion product over the surface of the carbon steel samples was deter-
mined by X-ray diffraction, and the results are shown in Fig. 6a,b. Peaks at 2θ = 33°, 40°, 44°, 48°, 51°, 52°, and 
66° can be assigned to the oxides of iron. The XRD patterns of the inhibited surface (Fig. 6b) show the presence of 
iron peaks only. The peaks due to oxides of iron are found to be absent48, attributed to the formation of a protec-
tive film of inhibitor over the metal surface.

Contact Angle.  The contact angle measurement was carried out in the absence and presence of inhibitor 
both for J55 and N80 steel and is shown in Fig. 7. The contact angle in the absence of inhibitor for J55 steel was 
measured as 21.2° and for N80 steel was 14.7°. In the absence of inhibitor, the value of the contact angle is lower, 
suggesting that the metal surface shows hydrophilic properties and favours water molecules to adsorb and cause 
more corrosion13. However, as the inhibitor is added, the contact angle values increased to 124.7° for J55 steel and 
88.5° for N80 steel, supporting that metal surfaces became hydrophobic and repelled water molecules, and thus 
the corrosion process is reduced. This result confirms that the inhibitor molecules are adsorbed and make a film 
over the metal surface49.

Figure 10.  Atomic force microscopy images for (a) Blank-J55 steel (b) Blank-N80 steel (c) PM + J55 steel and 
(d) PM + N80 steel.

Inhibitors EHOMO ELUMO χ η ∆N

PM −5.440 −1.577 3.508 1.931 0.339

PM+ −8.540 −5.616 7.078 1.462 −0.772

Table 4.  Calculated quantum chemical parameters of the inhibitor. All energy values are in eV; bσ is in eV−1; 
PM+ is the protonated inhibitor.
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Surface analysis.  Scanning Electron Microscopy (SEM).  The SEM micrograph of J55 and N80 steels in the 
absence and presence of the optimum concentration of the inhibitor is shown in Fig. 8a–d. In the absence of 
inhibitor, the steel surfaces are rough due to the damage caused by the corrosive attack of the carbonic acid 
(Fig. 8a,b). However, in the presence of the inhibitor, the steel surfaces become smooth50 (Fig. 8c,d). This result 
further supports the presence of an adsorbed inhibitor film over the metal surface51.

Scanning Electrochemical Microscopy (SECM).  Figure 9a–d shows the 3-D form of SECM images of J55 and N80 
steel samples immersed in 3.5% NaCl solution saturated with CO2

52–55. In absence of inhibitor, when the tip of 
the probe was brought near to the metal surface, the current started to increase, suggesting the conductive nature 
of the metal surface (Fig. 9a,c)56. However, in the presence of the inhibitor when the probe is brought near to the 
metal surface, the value of the current decreases (Fig. 9b,d), suggesting that the metal surface becomes insulating 
due to the adsorbed inhibitor film57.

Atomic Force Microscopy (AFM).  The 3-D AFM images of steel surfaces in the absence and presence of inhibitor are 
shown in Fig. 10a–d. In the absence of the inhibitor, the metal surface was damaged. The damage is strongly attributed 
to the dissolution of the oxide film and the maximum height scale reaching up to 200 nm and 82 nm for N80 and J55 
steels respectively (Fig. 10a,b). However, in the presence of the inhibitor, the metal surface appears flatter, homogeneous 

Figure 11.  (a,b) Optimized geometries (a) neutral (b) protonated. (c,d) Frontier molecular orbitals of the 
neutral inhibitor (c) HOMO (d) LUMO. (e,f) Frontier molecular orbitals of the protonated inhibitor (c) HOMO 
(d) LUMO.
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and uniform, and the maximum height scale decreases to 40 nm and 3.35 nm for N80 and J55 steels, respectively 
(Fig. 10b,d)58. These results further support the formation of an inhibitor film over the metal surface.

Quantum chemical calculations.  The optimized geometry and frontier orbital energy of neutral and pro-
tonated inhibitor are shown in Fig. 11a–f. The quantum chemical parameters are tabulated in Table 4. The adsorp-
tion of inhibitor molecules over the metal surface depends upon the position of the frontier orbital energy level 
between the inhibitor molecules and the Fermi level of the iron metal59.The frontier orbital energies of inhibitor 

Figure 12.  (a,b) Frontier orbital energetic positions of inhibitor molecule with iron surface (a) neutral inhibitor 
(b) protonated inhibitor.

Atoms fk
− fk

+

C1 0.0219 0.075

C2 0.1709 0.0115

C3 −0.2410 0.0423

C4 0.1735 0.0789

C5 0.0226 −0.0033

N6 −0.0039 0.0654

N7 0.0591 0.0003

N8 0.0824 0.1057

C9 0.0067 0.0005

C10 0.0480 0.0001

C11 0.0123 0.2949

C12 0.0860 0.0166

C13 0.0066 0.0681

C14 0.0452 −0.0067

C15 0.0523 0.1192

C16 0.0362 −0.0089

C17 0.0150 0.1240

C18 0.0037 0.0000

C19 0.0253 0.0000

C20 0.0293 0.0001

C21 0.0204 0.0000

C22 0.0085 0.0001

O23 0.0389 0.0000

C24 −0.0004 0.0000

O25 0.0693 0.0222

C26 −0.0006 −0.0001

Table 5.  Calculated Fukui functions for the studied inhibitor molecules in neutral form.
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molecules in neutral and protonated forms and the Fermi level of iron are shown in Fig. 12a,b. Figure 12a shows 
that in the neutral form of the inhibitor, the EHOMO energy level is at −5.440 eV, very close to the Fermi level 
of iron, i.e., −5.177 eV. However, the ELUMO energy level is at −1.577 eV, far away from the Fermi level of iron. 
Therefore, the transfer of an electron from the HOMO energy level to the iron surface can easily take place. The 
energy gap between the Fermi level of iron and the ELUMO of the inhibitor molecule is large. Thus, the transfer of 
an electron from the iron surface to the LUMO orbital of the inhibitor molecule is very difficult.

In the case of the protonated form of the inhibitor molecule (Fig. 12b), the Fermi level of iron (−5.177 eV) is 
very close to the ELUMO energy level (−5.616 eV), while the EHOMO energy level (−8.540 eV) is far from the Fermi 
level of iron. Thus, it could be very difficult for the electron transfer from the HOMO orbital to the iron surface 
to occur. However, the electron transfer occurs from the iron surface to the LUMO energy level. Furthermore, 
Table 4 reveals that the calculated ΔN value in the neutral form is positive, suggesting that the electron-donating 
capacity of the inhibitor molecules, while in the protonated form, becomes negative, which indicate that inhibitor 
molecules cannot donate electrons rather than accepting electrons from the metal.

Fukui index analysis.  Fukui index analysis was used to analyse the sites present over the inhibitor mole-
cules, which are participating in the donor-acceptor interactions with the metal surface. The sites on the inhibitor 
molecules that donate and accept electrons are represented by fk

− (nucleophilic site) and fk
+ (electrophilic site), 

respectively60. Thus, the higher the values of fk
− and fk

+, the greater would be the electron donation and accept-
ance tendency, respectively. The calculated Fukui indices are presented in Table 5. In the studied inhibitor C(1), 
C(2), C(4), C(5), N(7), N (8), C(10), C(11), C(12), C(14), C(15), C(16), C(17), C(19), C(20), C(21), O(23) and 

Figure 13.  Top and side views of the most stable configurations for adsorption of inhibitor on Fe (110) surface 
calculated using Monte Carlo simulations.

Figure 14.  Mechanism of corrosion mitigation of steel in the presence of inhibitor in 3.5% NaCl solution 
saturated with CO2.
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O(25) atoms are more susceptible sites for donation of electron and C(1), C(2),C(3), C(4), N(6), N(8), C(11), 
C(12), C(13), C(15), C(17) and O(25), atoms are the most favourable sites for electron acceptance. Thus, het-
erocyclic rings along with the phenyl rings are most reactive sites for electron donor-acceptor interactions and 
facilitate inhibitor adsorption onto the steel surfaces.

Molecular dynamics simulations.  The interaction between the metal and inhibitor was studied using molec-
ular dynamics simulations, and the results are shown in Fig. 13. The parameters such as total energy, adsorption 
energy, rigid adsorption energy, and deformation energy are tabulated in Table 6. All energies are in kJ/mol.

Inspection of the figure suggests that the inhibitor molecule adsorbs over the metal surface with a complete 
planar configuration. The adsorption energy in the present study is negative (−111.01 kJ/mol), which reveals 
stronger adsorption of the inhibitor molecule. Thus, the result of MD is in good agreement with the quantum 
chemical calculations and experimental results.

Mechanism of corrosion mitigation
The adsorption of inhibitor molecule on the metal surface can be explained by the ideas obtained from the experimen-
tal in addition to quantum chemical study, and it could be taking place either physically or chemically or as a combina-
tion of both. Physical adsorption can be explained based on electrostatic interaction between the charged metal surface 
and the charged inhibitor molecules. Chemical adsorption occurs by donor-acceptor interactions between the lone pair 
electrons on the heteroatoms, π-electrons of multiple bonds as well as the phenyl group with the vacant d-orbitals of 
Fe61,62. Quantum chemical calculation shows that the inhibitor molecules exist in both neutral and protonated forms, 
so adsorption also occurs by a combination of both physical and chemical adsorption. In an acidic medium, the steel 
surface becomes positively charged after losing the electrons, as in Fig. 14. Thus, at the first stage, the Cl− ions become 
adsorbed on the steel surface. Then protonated inhibitor molecules become adsorbed through electrostatic interactions 
(physical adsorption). At the same time, lone pair of electrons on the heteroatoms, and the π-electrons of the benzene 
ring are donated to vacant 3d-orbitals of iron atoms (chemical adsorption). Additionally, the filled metal orbitals give 
the electrons to the LUMO of the inhibitor molecules through reterodonation63.

Conclusions

	 1.	 The Rp values increase with the increase in the concentration of the inhibitor, thus increasing inhibition 
efficiency.

	 2.	 Potentiodynamic polarization measurements indicate that the inhibitor action is mixed type.
	 3.	 The adsorption of the inhibitor on the J55/N80 steel surface obey the Langmuir adsorption isotherm.
	 4.	 ΔG°ads results reveal that the adsorption of the inhibitors on the metal surface is spontaneous.
	 5.	 The AFM, SEM, XRD and contact angle analyses show that the inhibition of J55/N80 steel corrosion oc-

curs due to the formation of an inhibitor film.
	 6.	 Quantum chemical study reveals that the neutral form of the inhibitor can donate the electrons to the 

metal, and the protonated form can accept electrons from the metal. Molecular dynamic simulation also 
corroborated the experimental results.
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