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Abstract: Background. Alzheimer’s disease (AD) is a chronic and progressive neurodegenerative
disease which affects more than 50 million patients and represents 60–80% of all cases of dementia.
Mutations in the APP gene, mostly affecting the γ-secretase site of cleavage and presenilin mutations,
have been identified in inherited forms of AD. Methods. In the present study, we performed a meta-
analysis of the transcriptional signatures that characterize two familial AD mutations (APPV7171F

and PSEN1M146V) in order to characterize the common altered biomolecular pathways affected by
these mutations. Next, an anti-signature perturbation analysis was performed using the AD meta-
signature and the drug meta-signatures obtained from the L1000 database, using cosine similarity as
distance metrics. Results. Overall, the meta-analysis identified 1479 differentially expressed genes
(DEGs), 684 downregulated genes, and 795 upregulated genes. Additionally, we found 14 drugs
with a significant anti-similarity to the AD signature, with the top five drugs being naftifine, mori-
cizine, ketoconazole, perindopril, and fexofenadine. Conclusions. This study aimed to integrate
the transcriptional profiles associated with common familial AD mutations in neurons in order to
characterize the pathogenetic mechanisms involved in AD and to find more effective drugs for AD.

Keywords: Alzheimer’s disease; dementia; therapeutic targets; in silico pharmacology

1. Introduction

Alzheimer’s disease (AD) is a chronic and progressive neurodegenerative disease
which affects more than 50 million patients and represents 60–80% of all cases of demen-
tia [1]. The pathological feature of AD is the accumulation of extracellular amyloid-β (Aβ)
plaques and intracellular neurofibrillary tangles (NFTs) in the brain, leading to the loss of
neurons and synapses, and consequently to cognitive impairment and dementia [2,3].

Amyloid precursor protein (APP) is a type I transmembrane protein that is proteolyti-
cally cleaved by secretases to give rise to the Aβ peptides. Cleavage of APP by α-, β-, δ-,
and η-secretases results in the secretion of the large extracellular APP domain [4]. On the
other hand, γ-secretase gradually cleaves APP within its transmembrane domain, thereby
releasing 37–43 residue-long secreted Aβ peptides [4]. The γ-secretase consists of four
subunits—the proteolytically active subunit presenilin (PSEN) and three non-proteolytic
subunits (nicastrin, anterior pharynx defective 1, and presenilin enhancer 2)—necessary
for the assembly and stabilization of the quaternary structure [4]. AD mutations in the
APP gene mostly affect the γ-secretase site of cleavage. Furthermore, presenilin mutations
were identified in dominantly inherited forms of AD. The result of these mutations is
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the generation of abnormal Aβ peptides, which aggregate and constitute the amyloid
plaques [4].

In the present study, we performed a meta-analysis of the transcriptional signatures
that characterize two familial AD mutations (APPV7171F and PSEN1M146V) in a neuron
model. The causal role of mutations in the APP and PSEN1 genes has long been known, but
their precise consequences at the cellular level remain incompletely characterized, which
makes the identification of effective novel therapeutic strategies challenging.

Next, the identified AD-related gene expression pattern was used to predict a number
of drugs, which may potentially be able to revert the transcriptional changes associated
with the AD pathology (Figure 1 shows the overall layout of the experimental design).
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There are three major computational approaches for drug repositioning: ligand-based,
docking-based, and chemogenomic methods [5]. Ligand-based approaches determine the
similarity between target proteins’ ligands, in order to predict interactions [5]. Docking-
based approaches use the structure of drugs and proteins to compute the interaction
likelihood [5]. Chemogenomic approaches include feature-based techniques and similarity-
based techniques. Feature-based techniques use features and class labels, and employ
machine learning for classification purposes if an input instance corresponds to a pos-
itive or negative interaction. In the similarity-based methods, two similarity matrices
corresponding to drug and target similarity are used to compute a drug-target interaction
matrix [5].

Repositioning existing drugs for new indications is an effective approach used to
accelerate the establishment of novel pharmacological treatments for AD patients as the
drug candidates have already been through the stages of clinical development and have
well-known safety and pharmacokinetic profiles. In the current study, an anti-similarity
approach of in silico drug repurposing was employed. Overall, this study aimed at in-
tegrating the transcriptional profiles associated with common familial AD mutations in
neurons in order to characterize the pathogenetic mechanisms involved in AD and to find
more effective drugs for AD.
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2. Materials and Methods
2.1. Dataset Selection and Analysis

The NCBI Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/
geo/ (accessed on 5 December 2021)) was used to identify transcriptomic datasets for the
generation of an AD-related signature. The GSE137202 dataset was finally selected as it
included whole-genome expression profiles of SH-SY5Y cells, modified to harbor familial
AD mutations (APPV7171F and PSEN1M146V) [6]. The submitter-supplied data were used
for the analysis. Briefly, the dataset was generated using the Affymetrix PrimeView™
Human Gene Expression Arrays and raw data were normalized using the robust multichip
analysis (RMA) algorithm [6]. The web-based application ImaGEO was used to perform the
meta-analysis (http://bioinfo.genyo.es/imageo/ (accessed on 5 December 2021)) [7]. For
the meta-analysis of the AD signature, a random-effects model of effect size measure was
used to integrate gene expression patterns (the script employed by ImaGEO is supplied as
Supplementary File S1).

Functional enrichment and gene ontology analysis was performed using the web-
based software Metascape (accessed on 7 December 2021), using default specifications [8].
Unless otherwise specified, an adjusted (Benjamini–Hochberg-corrected) p-value (adj.
p-value or FDR—false discovery rate) of <0.05 was determined as the threshold for statisti-
cal significance.

2.2. In Silico Pharmacology

The drug meta-signatures were obtained from Himmelstein et al. [9], which were
generated using the Library of Integrated Network-Based Cellular Signatures (LINCS)
L1000 perturbation data (http://www.lincsproject.org (accessed on 10 December 2021)) [9].
To date, the L1000 database contains > 40,000 genetic and small molecule perturbations,
obtained on a number of established cell lines [10]. Briefly, for the generation of the
meta-signatures, the 978 measured landmark genes and the 6489 best-inferred genes were
used, and the Stouffer’s meta-analysis method was applied on the z-scores to calculate the
consensus drug meta-signature [11]. In the current study, we included only the drugs that
received FDA approval. Anti-signature perturbation analysis was performed using the
DEGs identified for AD and the drug meta-signatures by using cosine similarity as distance
metrics. Ten thousand perturbations were used for the assessment of statistical significance.
Hierarchical clustering and similarity matrices were constructed using cosine distance on
complete linkage. Analysis was performed using the Morpheus web-based application
(https://software.broadinstitute.org/morpheus/, accessed on 15 April 2022). Among
the predicted drugs, we identified those with blood–brain barrier (BBB) permeability by
interrogating the large benchmark data set, B3DB, which includes 7807 small molecules [12].

3. Results
3.1. Identification of the AD Gene Expression Profile

The GEO dataset GSE137202 was selected for the determination of the transcrip-
tional profiles that characterize the presence of two familial AD mutations (APPV7171F and
PSEN1M146V). A total of 641 DEGs were found to be associated with the APPV7171F muta-
tion and 584 DEGs were found to be associated with the PSEN1M146V mutation. Overall,
the meta-analysis identified 1479 DEGs—684 downregulated and 795 upregulated. The top
50 DEGs are provided in Table 1.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://bioinfo.genyo.es/imageo/
http://www.lincsproject.org
https://software.broadinstitute.org/morpheus/
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Table 1. Top 50 modulated genes in AD.

ID fdr_pval Pval zval Qval Qpval Gene_Name

40979 0.0029 4.9 × 10-6 −4.6 0.74 0.39 NA

ABCC10 0.0029 5.9 × 10-6 4.5 0.22 0.64 ATP-binding cassette
subfamily C member 10

ARID3B 0.0029 3.6 × 10-6 4.6 0.053 0.82 AT-rich interaction
domain 3B

AVEN 0.0029 7.2 × 10-6 4.5 0.015 0.9 apoptosis and caspase
activation inhibitor

C17orf28 0.0029 4.1 × 10-6 4.6 0.014 0.91 NA
C18orf1 0.0029 2.4 × 10-6 −4.7 0.06 0.81 NA
C9orf123 0.0029 3.1 × 10-6 4.7 0.049 0.82 NA
CALB1 0.0029 3 × 10-6 −4.7 0.12 0.73 calbindin 1
CASP9 0.0029 7.3 × 10-6 4.5 0.095 0.76 caspase 9

CCDC74B 0.0029 1.9 × 10-6 −4.8 0.49 0.48 coiled-coil domain
containing 74B

CD9 0.0029 5 × 10-6 −4.6 0.078 0.78 CD9 molecule

CMTM7 0.0029 7.5 × 10-6 −4.5 0.019 0.89
CKLF-like MARVEL

transmembrane domain
containing 7

CNTNAP2 0.0029 2.2 × 10-6 4.7 0.000046 0.99 contactin-associated
protein-like 2

CUX2 0.0029 1.3 × 10-6 −4.8 0.2 0.65 cut-like homeobox 2

DNER 0.0029 6.2 × 10-6 −4.5 0.48 0.49 delta/notch-like EGF
repeat containing

EBF3 0.0029 5.4 × 10-6 4.5 1 0.31 early B cell factor 3

EDNRA 0.0029 1.5 × 10-6 −4.8 0.083 0.77 endothelin receptor type
A

FEZ1 0.0029 7.5 × 10-6 −4.5 0.014 0.9 fasciculation and
elongation protein zeta 1

FOXD1 0.0029 2.7 × 10-6 4.7 0.26 0.61 forkhead box D1

GAS2L3 0.0029 8.1 × 10-6 −4.5 0.16 0.69 growth arrest specific 2
like 3

GRIK4 0.0029 5.8 × 10-6 −4.5 0.0041 0.95
glutamate ionotropic
receptor kainate type

subunit 4

GRIP1 0.0029 7.3 × 10-6 −4.5 0.2 0.65
glutamate

receptor-interacting
protein 1

GRM8 0.0029 6.5 × 10-6 −4.5 0.5 0.48 glutamate metabotropic
receptor 8

HIST1H3F 0.0029 6.4 × 10-6 −4.5 0.00057 0.98 histone cluster 1 H3
family member f

HOXA5 0.0029 7.9 × 10-6 −4.5 1.1 0.3 homeobox A5
IGF2AS 0.0029 1.8 × 10-6 4.8 0.02 0.89 NA

ISLR 0.0029 3.9 × 10-6 −4.6 0.17 0.68
immunoglobulin

superfamily containing
leucine-rich repeat

ITGA2 0.0029 4.7 × 10-6 −4.6 0.34 0.56 integrin subunit alpha 2
KAL1 0.0029 5.3 × 10-6 4.6 0.45 0.5 NA

KCNC4 0.0029 8 × 10-6 4.5 0.78 0.38
potassium voltage-gated

channel subfamily C
member 4

KCNH2 0.0029 7.2 × 10-6 −4.5 0.000082 0.99
potassium voltage-gated

channel subfamily H
member 2

KIF20A 0.0029 6.6 × 10-6 −4.5 0.054 0.82 kinesin family member
20A

LEF1 0.0029 7 × 10-6 −4.5 0.95 0.33
lymphoid

enhancer-binding
factor 1
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Table 1. Cont.

ID fdr_pval Pval zval Qval Qpval Gene_Name

LHFPL3 0.0029 3.5 × 10-6 −4.6 0.68 0.41 LHFPL tetraspan
subfamily member 3

LMO2 0.0029 7 × 10-6 4.5 0.65 0.42 LIM domain only 2
LOX 0.0029 5.1 × 10-6 −4.6 0.075 0.78 lysyl oxidase

NEDD9 0.0029 1.8 × 10-6 −4.8 0.0085 0.93

neural precursor cell
expressed,

developmentally
downregulated 9

NEK6 0.0029 6.3 × 10-6 −4.5 0.011 0.92 NIMA-related kinase 6

PPEF1 0.0029 6.7 × 10-6 −4.5 0.057 0.81 protein phosphatase
with EF-hand domain 1

RAP1A 0.0029 1.3 × 10-6 4.8 0.00039 0.98 RAP1A, member of the
RAS oncogene family

RASL11B 0.0029 8.2 × 10-6 −4.5 0.017 0.9 RAS-like family 11
member B

RGS16 0.0029 1.5 × 10-6 4.8 0.01 0.92 regulator of G protein
signaling 16

RNF152 0.0029 6.9 × 10-6 −4.5 0.47 0.49 ring finger protein 152

RUNX1T1 0.0029 2.8 × 10-6 4.7 0.073 0.79 RUNX1 translocation
partner 1

SERPINF1 0.0029 3.1 × 10-6 4.7 0.05 0.82 serpin family F
member 1

SIK3 0.0029 3.1 × 10-6 4.7 0.25 0.62 SIK family kinase 3
SLIT1 0.0029 5.7 × 10-6 −4.5 0.0099 0.92 slit guidance ligand 1
SLIT2 0.0029 2 × 10-6 −4.8 0.02 0.89 slit guidance ligand 2

TCEAL2 0.0029 5.8 × 10-6 −4.5 0.067 0.8 transcription elongation
factor A like 2

TCTA 0.0029 4.1 × 10-6 4.6 0.18 0.67 T cell leukemia
translocation altered

Gene ontology analysis revealed several pathways enriched by the AD DEGs (Figure 2A).
A number of enriched processes were enriched by both the up- and downregulated DEGs
(Figure 2A,B). The top five most significant enrichment processes were: HDACs deacety-
late histones (R-HSA-3214815); blood vessel development (GO:0001568); head development
(GO:0060322); signaling by receptor tyrosine kinases (R-HSA-9006934); and cell junction or-
ganization (GO:0034330). A network of the connections among the most enriched processes
is provided in Figure 2C). Interestingly, HDACs deacetylate histones (R-HSA-3214815) and
(GO:0001666) response to hypoxia were the most enriched processes among the downregu-
lated DEGs, while exocytosis (GO:0006887) and autophagy (GO:0006914) hypoxia were the
most enriched processes among the upregulated DEGs (Figure 2).

3.2. Prediction of Novel Chemotherapeutics for AD

Anti-signature perturbation analysis was performed using the DEGs identified in
the meta-analysis and the meta-signature of drugs from the L1000 database. Only the
FDA- approved drugs were used for the current analysis. In total, the pairwise similarity
was calculated between the AD signature and 752 approved drugs (p value distribution
is presented as Supplementary Figure S1). Overall, we found 14 drugs with significant
anti-similarity to the AD signature (FDR < 0.05) (Figure 3, Table 2). The top five drugs with
significant anti-similarity to AD were: naftifine, an anti-mycotic drug; moricizine, used to
treat arrhythmias; ketoconazole, an anti-mycotic drug; perindopril, an ACE inhibitor; and
fexofenadine, an antihistamine drug (Figure 3, Table 2).
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Figure 2. (A) Heatmap showing the top 100 enriched terms among the upregulated and down-
regulated DEGs identified in the meta-analysis; (B) Circos plot showing the enriched biological
processes overlapping among the up- and downregulated DEGs identified in the meta-analysis;
(C) network showing the connection among the most enriched pathways by the genes identified in
the meta-analysis.

3.3. Prediction of Drugs That May Predispose to AD

Among the screened drugs, some showed a transcriptomic profile concordant with
that of AD, which may suggest the potential effect of these drugs to potentially induce
drug-related AD-like conditions. In particular, we found 39 drugs with a significant
concordant signature with the AD profile (FDR < 0.05) (Figure 4, Table 3). The top five
drugs in this category were: irinotecan, an anticancer chemotherapeutic; cyproheptadine,
an antihistamine; teniposide, an anti-cancer drug; phenoxybenzamine, an alpha-receptor
blocking agent used for the treatment of hypertension; and pitavastatin, an HMG-CoA
reductase inhibitor (Figure 4, Table 3).
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Table 2. Predicted drugs for AD, based on anti-similarity.

ID Cosine Similarity FDR(BH) BBB*

Naftifine −0.18 0.01 BBB-
Moricizine −0.18 0.02 BBB-

Ketoconazole −0.18 0.02 BBB+
Perindopril −0.17 0.02 BBB-

Fexofenadine −0.17 0.02 BBB-
Vecuronium −0.17 0.03 n.a.

Mesoridazine −0.16 0.02 BBB+
Raltegravir −0.16 0.03 n.a.
Sapropterin −0.15 0.03 n.a.
Entacapone −0.15 0.03 BBB+
Etanercept −0.15 0.03 n.a.

Trimipramine −0.14 0.03 BBB+
Trifluoperazine −0.14 0.04 BBB+

Itraconazole −0.14 0.04 BBB+
BBB+: permeable to the blood–brain barrier; BBB-: not permeable to the blood–brain barrier; n.a.: not available.
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Table 3. Predicted drugs predisposed to AD.

ID Cosine Similarity FDR(BH) BBB

Irinotecan 0.24 0.01 BBB-
Cyproheptadine 0.22 0.01 BBB+

Teniposide 0.22 0.01 BBB+
Phenoxybenzamine 0.22 0.01 BBB-

Pitavastatin 0.22 0.01 n.a.
Mitomycin 0.21 0.01 BBB-
Etoposide 0.21 0.01 BBB-
Busulfan 0.19 0.02 BBB+
Sorafenib 0.18 0.01 BBB+
Prazosin 0.18 0.02 BBB+

Fluocinolone
acetonide 0.18 0.02 n.a.

Dirithromycin 0.17 0.01 BBB-
Bortezomib 0.17 0.02 n.a.
Podofilox 0.17 0.02 n.a.

Interferon alfa-n3 0.17 0.02 n.a.
Vinblastine 0.17 0.03 BBB+
Carbidopa 0.16 0.02 BBB-

Pentobarbital 0.16 0.02 BBB+
Acetaminophen 0.16 0.02 n.a.

Vincristine 0.16 0.02 BBB-
Methoxsalen 0.16 0.02 BBB-
Propranolol 0.16 0.02 BBB-
Clofarabine 0.16 0.02 BBB-
Gatifloxacin 0.16 0.02 BBB-

Mebendazole 0.16 0.03 BBB-
Benzonatate 0.16 0.03 BBB-
Azacitidine 0.16 0.03 n.a.
Dicloxacillin 0.15 0.02 BBB-

Tenofovir disoproxil 0.15 0.03 n.a.
Floxuridine 0.15 0.03 BBB-

Miglitol 0.15 0.03 BBB-
Diazoxide 0.15 0.03 BBB-
Bupropion 0.15 0.03 BBB+

Dexrazoxane 0.15 0.04 BBB-
Kanamycin 0.15 0.04 BBB-

Montelukast 0.14 0.03 n.a.
Nafcillin 0.14 0.03 BBB-
Sunitinib 0.14 0.03 BBB+
Tramadol 0.14 0.04 BBB+

Cephalexin 0.14 0.04 BBB-
Prednicarbate 0.14 0.04 BBB+
Clopidogrel 0.13 0.03 BBB-

BBB+: permeable to the blood–brain barrier; BBB-: not permeable to the blood–brain barrier; n.a.: not available.

4. Discussion

AD, the most common form of age-related dementia, occurs either sporadically or
as the early-onset familial form of AD (fAD). Heterozygous germline mutations in either
the APP gene or the presenilin (PSEN1 and PSEN2) genes are responsible for fAD. More
than 200 fAD mutations in APP, PSEN1, and PSEN2 have been identified, which are
responsible for aberrant APP metabolism, with consequent accumulation of abnormal Aβ

peptides. This impairs synaptic transmission and causes neurotoxicity. APP duplication or
N-terminal mutations lead to an indiscriminate increase in Aβ levels, while mutations at the
C-terminal of APP, mostly affecting the γ-secretase site, increase the amount of longer and
more hydrophobic Aβ peptides [13]. Mutations in PSEN1 also affect Aβ production [14].

Although the causal role of these mutations in the APP and PSEN1 genes has long been
known, their precise consequences at the cellular level remain incompletely characterized,
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which makes the identification of effective novel therapeutic strategies more challenging.
In the present study, by using a meta-analysis approach, we carried out the profiling of
mutant cells bearing two fAD mutations (APPV7171F and PSEN1M146V) in order to identify
commonly perturbed disease-associated transcripts and relevant molecular processes. In
silico approaches for the establishment of pathogenetic pathways and for the identification
of potential novel pharmacological strategies have largely been employed in recent years
by our group and others in a wide range of settings, from cancer to autoimmunity to
neurodegeneration [1,15–25].

It is assumed that Aβ plaque accumulation exerts neurotoxicity by hindering the
normal synaptic transmission; therefore, the gene expression changes observed in mutant
cells likely reflect compensatory feedback aimed at overcoming the effect of pathological
Aβ production. However, the neurotoxicity of Aβ plaque is also partially mediated by
inflammatory responses, sustained by local microglial cells and astrocytes [26], which
further worsens synapse degeneration and neuronal death. Future studies are hence
necessary to determine whether the selective targeting of altered pathways of fAD mutant
neurons is sufficient for effectively managing the progression of neuropathological changes
in AD and the clinical features of the disease.

At present, in silico approaches have largely been exploited for the selection of promis-
ing drugs for bench investigations. Drug repurposing, i.e., the use of drugs already
approved with different indications, allows us to expedite the search for novel thera-
peutic treatments [27,28], as the safety and therapeutic range are already known [27,28].
Up to now, the available treatments for AD, such as anticholinesterase inhibitors and
N-methyl-D-aspartate receptor antagonists, are able to offer only short-term symptomatic
improvement, but cannot inhibit disease progression. Currently, the only target-specific
drug, aducanumab, an anti-Aβ monoclonal antibody, first approved by the Food and Drug
Administration (FDA) in 2021, has shown limited efficacy and has not received marketing
authorization by the European Medicines Agency. Hence, greater efforts are needed to
identify more effective therapeutic strategies for better management of AD patients.

Here, we identified potential anti-AD drugs by means of an in silico approach that
relies on the anti-similarity between the transcriptional signature of the drugs and the
AD-related gene expression profile [29–33]. Among the short-listed drugs, the angiotensin-
converting enzyme (ACE) inhibitor, perindopril, was found to be one of the top five
predicted drugs. Interestingly, Dong et al. have previously shown that by inhibiting
hippocampal ACE, perindropil was able to significantly prevent cognitive impairment in a
model of AD induced by intracerebroventricular injection of Aβ1–40, as well as in PS2APP-
transgenic mice, and was associated with the suppression of microglia and astrocyte
activation, and a reduction in oxidative stress [34].

Among the other predicted drugs, fexofenadine was also found to have potential.
Fexofenadine is a third-generation antihistamine used for seasonal allergic rhinitis. In a
previous study performed on healthy subjects, fexofenadine did not demonstrate impair-
ment of cognitive or psychomotor performance, but positively affected the reaction time
for performance of the word memory task [35].

A significant anti-similarity was also observed between the anti-TNF-alpha, etanercept,
and the AD signature. Neuroinflammation is a feature of AD brain pathology [36], and
the role of the pro-inflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha), in the
pathogenesis AD has long been presumed [37,38]. On this basis, a single-center, open-label,
pilot (proof-of-concept) study was conducted, which included 15 patients with mild-to-
severe AD treated for 6 months with etanercept, 25–50 mg, once weekly, by perispinal
administration. In accordance with our findings which suggest the beneficial potential of
etanercept, at the end of the treatment schedule, a significant improvement was observed
for all the outcome measures, including the Mini-Mental State Examination (MMSE), the
Alzheimer’s Disease Assessment Scale—Cognitive Subscale (ADAS-Cog), and the Severe
Impairment Battery (SIB) [39]. In any case, early diagnosis and treatment may constitute the
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optimum strategy for preserving the patient’s quality of life and delaying the development
of the disease [40].

It is worth mentioning that some of the identified drugs are not able to cross the
BBB. Although this may be a limitation of our study, it should be considered that several
biomaterial-based strategies are under development to overcome the BBB and deliver the
drug into the brain, such as polymeric nanoparticles, liposomes, and nanogels [41]. Hence,
proper delivery strategies are warranted as part of translational drug research for AD.

In our analysis, we also identified drugs whose expression profiles are concordantly
modulated to the AD signature. Among them, we found the epigenetic drug, azacytidine.
This finding is in accordance with the previous investigation into the role of DNA hy-
pomethylation in AD. Indeed, high levels of S-adenosylhomocysteine, which inhibits DNA
methyltransferases, have been found in AD brains and negatively correlate with patient
cognitive abilities. Furthermore, DNA hypomethylation of APP, BACE1, and PSEN1 has
been observed in the AD brain [42,43].

Moreover, bortezomib was found to induce an expression profile concordant with the
AD transcriptomic signature. Bortezomib is a proteasome inhibitor used for the treatment
of multiple myeloma. In support of our prediction, it was previously observed in in vitro
neuronal models that bortezomib increased the levels of ubiquitin-conjugated proteins
and augmented the levels of the pro-apoptotic proteins, PUMA and Noxa. In addition,
it increased neuronal cell death, partly via a caspase 3-dependent pathway [44]. We may
hence speculate that these drugs may promote the development of AD in susceptible
individuals or at least worsen disease progression.

Unexpectedly however, some of the drugs predicted to have a concordant signature
with AD have previously been shown to be able to ameliorate the AD condition, as is the
case for sorafenib [45] and montelukast [46]. Although this observation requires careful
attention and validation in the in vivo setting, we may hypothesize that the pathways
targeted by these drugs, rather than being pathological, may instead represent compen-
satory responses to the concomitant aberrant processes associated with the presence of fAD
mutations. Moreover, biomolecular pathways may be differently induced in the different
brain cells; hence, the protective effect of such drugs may be related to the targeting of cells
other than the neurons (i.e., microglia and astrocyte) which are directly involved in AD
pathogenesis.

Still, it is worth emphasizing that while the pathogenetic pathways in AD and the
potential therapeutic drugs need to be unequivocally identified, drug treatment supporting
psychological interventions, including group activities for patients, should be carefully
considered by clinicians as well [47]. Psychological interventions for AD caregivers, such
as time-limited group therapy, are also paramount [48,49].

5. Conclusions

Overall, this study aimed to integrate the transcriptional profiles associated with
common fAD mutations in neurons in order to find more effective drugs for AD. Because of
the high number of existing drugs, in silico approaches are a valuable tool for short-listing
potential drug candidates to be validated in biological experiments and in patients [36].
There are, however, some limitations in this approach. First, AD is a complex disease with
pathological features that arise from the continuous cross-talk among the different brain
cell populations, which cannot be fully recapitulated in vitro. Second, the efficacy of a drug
is determined by several factors and does not depend on the simple match of expression
profiles. Indeed, in the case of AD, drugs have to reach the CNS tissue at the appropriate
concentrations in order to exert an effect; hence, the dosage and schedule of administration
should be carefully selected and possibly personalized to the patients. On a final note, the
drug meta-signatures come from in vitro data generated from established/cancer cell lines
that do not fully mimic the central nervous system neural cells. It is also likely that many
of the prioritized drugs may have adverse or off-target effects. However, these drugs are in
current clinical use and have already been characterized for their pharmacokinetics and
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toxicity. Despite these limitations, our study sets the basis for future investigations into the
pathogenetic processes occurring in AD, and proposes the repurposing of drugs for the
treatment of AD to be validated, first in in vivo animal models and subsequently in phase
II clinical trials.
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