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Abstract

Motivation: Despite ongoing cancer research, available therapies are still limited in quantity and

effectiveness, and making treatment decisions for individual patients remains a hard problem.

Established subtypes, which help guide these decisions, are mainly based on individual data types.

However, the analysis of multidimensional patient data involving the measurements of various

molecular features could reveal intrinsic characteristics of the tumor. Large-scale projects accumu-

late this kind of data for various cancer types, but we still lack the computational methods to

reliably integrate this information in a meaningful manner. Therefore, we apply and extend current

multiple kernel learning for dimensionality reduction approaches. On the one hand, we add a regu-

larization term to avoid overfitting during the optimization procedure, and on the other hand, we

show that one can even use several kernels per data type and thereby alleviate the user from hav-

ing to choose the best kernel functions and kernel parameters for each data type beforehand.

Results: We have identified biologically meaningful subgroups for five different cancer types.

Survival analysis has revealed significant differences between the survival times of the identified

subtypes, with P values comparable or even better than state-of-the-art methods. Moreover, our re-

sulting subtypes reflect combined patterns from the different data sources, and we demonstrate

that input kernel matrices with only little information have less impact on the integrated kernel ma-

trix. Our subtypes show different responses to specific therapies, which could eventually assist in

treatment decision making.

Availability and implementation: An executable is available upon request.

Contact: nora@mpi-inf.mpg.de or npfeifer@mpi-inf.mpg.de

1 Introduction

Cancer is not only a very aggressive but also a very diverse disease.

Therefore, a number of approaches aim to identify subtypes of can-

cer in a specific tissue, where subtypes refer to groups of patients

with corresponding biological features or a correlation in a clinical

outcome, e.g. survival time or response to treatment. Nowadays,

most of these methods utilize single data types (e.g. gene expres-

sion). However, subtypes that are merely based on information from

one level can hardly capture the subtleties of a tumor. Therefore,

huge efforts are made to improve the comprehensive understanding

of tumorigenesis in the different tissue types. Large-scale projects,

e.g. The Cancer Genome Atlas (TCGA) (The Cancer Genome Atlas,

2008), provide a massive amount of data generated by diverse

platforms such as gene expression, DNA methylation and copy

number data for various cancer types. Still, we require computa-

tional methods that enable the comprehensive analysis of these

multidimensional data and the reliable integration of information

generated from different sources.

One simple and frequently applied method to combine biological

data consists of clustering the samples using each data type separ-

ately and subsequently integrating the different cluster assignments.

The latter step can be performed either manually or automatically,

e.g. using consensus clustering (Monti et al., 2003). Manual integra-

tion tends to be biased, leading to inconsistent results. However,

both manual and automatic integration cannot capture correlated

information between the data types because low signals might
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already vanish during the initial clustering. Therefore, more

advanced approaches bring forward the step of data integration to

make use of weak but concordant structures in different data sour-

ces. Shen et al. (2009, 2012) introduced iCluster, which allows for

data integration and dimensionality reduction at the same time. The

basis is a Gaussian latent variable model with regularization for

sparsity, in which the cluster assignment can be derived from the la-

tent variable vector. Because of the high computational complexity

of this approach, preselection of the features is necessary, so the

clustering result strongly depends on this preprocessing step. An ap-

proach that tackles both the problem of how to use correlation

between the data types and the problem of feature preselection is

Similarity Network Fusion (SNF) (Wang et al., 2014). First, a simi-

larity network of the samples is constructed from each input data

type. These networks are then fused into one combined similarity

network using an iterative approach based on message passing. This

way, the networks are updated in each iteration such that they be-

come more similar to each other, until the process converges. The re-

sulting network is then clustered by Spectral Clustering (von

Luxburg, 2007). An approach that uses the same clustering algo-

rithm is Affinity Aggregation for Spectral Clustering (Huang et al.,

2012). Here, the main idea is to extend Spectral Clustering to allow

for several affinity matrices as input. The matrices are fused using a

linear combination, with weights being optimized using multiple

kernel learning.

2 Approach

We propose to apply and extend multiple kernel learning for data in-

tegration and subsequently perform cancer subtype identification.

To this end, we adopt the multiple kernel learning for dimensional-

ity reduction (MKL-DR) framework (Lin et al., 2011) that enables

dimensionality reduction and data integration at the same time. This

way, the samples are projected into a lower dimensional, integrated

subspace where they can be analyzed further. We show that this rep-

resentation captures useful information that can be used for cluster-

ing samples, but other follow-up analyses are also possible from this

data representation. Compared to previous approaches, this proced-

ure offers several advantages: The framework provides high flexibil-

ity concerning the choice of the dimensionality reduction method,

i.e. not only unsupervised but also supervised and semi-supervised

methods can be adopted. Furthermore, the framework provides high

flexibility concerning the input data type, i.e. since the first step is a

kernelization of the input matrices, these can be of various formats,

such as sequences or numerical matrices. Moreover, in case one does

not have enough information from which to choose the best kernel

function for a data type or the best parameter combination for a

given kernel beforehand, it is possible to input several kernel

matrices per data type, based on different kernel functions or param-

eter settings. The multiple kernel learning approach will auto-

matically upweight the matrices with high information content

while downweighting those with low information content. To avoid

overfitting, especially in the scenario with many distinct input matri-

ces, we extend the MKL-DR approach by adding a regularization

term.

We use five different cancer sets for the evaluation of our

method. The resulting clusterings reflect characteristics from distinct

input data types and reveal differences between the clusters concern-

ing their response to specific treatments. Furthermore, we show that

kernel matrices with less information have less influence on the final

result. A comparison of the P values for survival differences between

our clusters and the SNF clusters shows that our method yields com-

parable results while offering a lot more flexibility.

3 Methods

To integrate several data types, we utilize multiple kernel learning,

extending the MKL-DR approach (Lin et al., 2011). This method is

based, on the one hand, on multiple kernel learning, and, on the

other hand, on the graph embedding framework for dimensionality

reduction. We add a constraint that leads to the regularization of the

vector controlling the kernel combinations, which, to our know-

ledge, is the first time this has been done for unsupervised multiple

kernel learning. We call this method regularized multiple kernel

learning for dimensionality reduction (rMKL-DR) in the following

discussion.

3.1 Multiple kernel learning
In general, multiple kernel learning optimizes the weights b that lin-

early combine a set of input kernel matrices fK1; . . . ;KMg to gener-

ate a unified kernel matrix K, such that

K ¼
XM
m¼1

bmKm; bm�0: (1)

Here, each input data type is represented as an individual kernel

matrix. Therefore, this approach can be used for data having differ-

ent feature representations.

3.2 Graph embedding
MKL-DR is described upon the graph embedding framework for

dimensionality reduction (Yan et al., 2007), which enables the in-

corporation of a large number of dimensionality reduction methods.

In this framework, the projection vector v (for the projection into a

one-dimensional subspace) or the projection matrix V (for the pro-

jection into higher dimensions) is optimized based on the graph-pre-

serving criterion:

minimize
v

XN
i;j¼1

jjvTxi � vTxjjj2wij (2)

subject to
XN
i¼1

jjvTxijj2dii ¼ const:; or (3)

XN
i;j¼1

jjvTxi � vTxjjj2w0ij ¼ const: (4)

with v being the projection vector, W a similarity matrix with entries

wij and D (or W0) a constraint matrix to avoid the trivial solution.

The choice of the matrices W and D (or W and W 0) determines the

dimensionality reduction scheme to be implemented. It also depends

on this scheme whether the first or the second constraint is used. In

the following, we will focus on the optimization problem with

Constraint (3), but the constructions are analogous when using

Constraint (4).

3.3 Multiple kernel learning for dimensionality

reduction
The kernelized version of the constrained optimization problem (2)

can be derived using an implicit feature mapping of the data to a

high-dimensional Hilbert space / : xi ! /ðxiÞ. Additionally, it can

be shown that the optimal projection vector v lies in the span of the
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data points xi, thus v ¼
PN

n¼1 an/ðxnÞ. Together with the kernel

function Kðx; x0Þ ¼ h/ðxÞ;/ðx0Þi and Formula (1), this yields the fol-

lowing optimization problem:

minimize
a;b

XN
i;j¼1

jjaTKib� aTKjbjj2wij (5)

subject to
XN
i;j¼1

jjaTKibjj2dij ¼ const: (6)

bm�0; m ¼ 1;2; . . . ;M: (7)

where

a ¼ ½a1 � � � aN �T 2 RN ; (8)

b ¼ ½b1 � � � bM�T 2 RM; (9)

Ki ¼

K1ð1; iÞ � � � KMð1; iÞ

..
. . .

.

..
.

K1ðN; iÞ � � � KMðN; iÞ

0
BBB@

1
CCCA 2 RN�M: (10)

Since we are applying several kernels and want to avoid overfit-

ting, we add the constraint jjbjj1 ¼ 1. Had we added the constraint

jjbjj1�1, this would amount to an Ivanov regularization. The corres-

ponding Tikhonov regularization would be to directly add the regu-

larization term kjjbjj1 to the minimization problem. The full

optimization problem for rMKL-DR is then:

minimize
a;b

XN
i;j¼1

jjaTKib� aTKjbjj2wij (11)

subject to
XN
i;j¼1

jjaTKibjj2dij ¼ const: (12)

jjbjj1 ¼ 1 (13)

bm �0; m ¼ 1; 2; . . . ;M: (14)

The optimization problem can easily be extended to the projec-

tion into more than one dimension. In that case, a projection matrix

A¼ ½a1 � � � ap� is optimized instead of the single projection vector a.

Then, A is optimized at the same time as the kernel weight vector b

according to a chosen dimensionality reduction method. Since the

simultaneous optimization of these two variables is difficult, coord-

inate descent is employed, i.e. A and b are iteratively optimized in

an alternating manner until convergence or a maximum number of

iterations is reached. One can start either with the optimization of

A, then b is initialized to equal weights for all kernel matrices sum-

ming up to one or with the optimization of b, then AAT is initialized

to I.

Using this framework, we apply the dimensionality reduction al-

gorithm Locality Preserving Projections (LPP) (He and Niyogi,

2004). This is an unsupervised local method that aims to conserve

the distances of each sample to its k nearest neighbors. The neigh-

borhood of a data point i is denoted as NðiÞ. For LPP, the matrices

W and D are then defined as

wij ¼
1; if i 2 N kðjÞ _ j 2 N kðiÞ

0; else

(
(15)

dij ¼
XN

n¼1
win; if i ¼ j

0; else:

8<
: (16)

The rMKL-DR approach with LPP will be called rMKL-LPP

from now on. The clustering process is performed using k-means.

For the evaluation of the clusterings, we use the silhouette width

(Rousseeuw, 1987), a measure that indicates, for each data point,

how well it fits into its own cluster, compared to how well it would

fit into the best other cluster. When averaged over all data points,

the resulting mean silhouette value gives a hint on how coherent a

clustering is and how well the clusters are separated.

The running time of the whole algorithm can be separated into the

dimensionality reduction step and the k-means clustering. The dimen-

sionality reduction is performed by iteratively updating the projection

matrix A and the kernel weight vector b. The optimization of b uses

semidefinite programming where the number of constraints is linear

in the number of input kernel matrices and the number of variables is

quadratic in the number of input kernel matrices. However, if

M� N, the bottleneck is the optimization of A. This involves solving

a generalized eigenvalue problem that has a complexity ofOðn3Þ.

3.4 Leave-one-out cross-validation
To assess the stability of the resulting clusterings, we applied a

leave-one-out cross-validation approach, i.e. we apply the pipeline

consisting of dimensionality reduction and subsequent clustering to

a reduced dataset that does not include patient i. The projection of

the left-out sample can be calculated using projðxiÞ¼ATKib 2 Rp,

and this patient is assigned to the cluster with the closest group

mean in the dimensionality reduced space. Finally, we compare this

leave-one-out clustering to the clustering of the full dataset using the

Rand index (Rand, 1971).

3.5 Materials
We used data from five different cancer types from TCGA (The

Cancer Genome Atlas, 2008), preprocessed and provided by Wang

et al. (2014). The cancer types comprise glioblastoma multiforme

(GBM) with 213 samples, breast invasive carcinoma (BIC) with 105

samples, kidney renal clear cell carcinoma (KRCCC) with 122 sam-

ples, lung squamous cell carcinoma (LSCC) with 106 samples and

colon adenocarcinoma (COAD) with 92 samples. For each cancer

type, we used gene expression, DNA methylation and miRNA ex-

pression data in the clustering process. For the survival analysis, we

used the same quantities as were used in Wang et al. (2014), this

means, we used the number of days to the last follow-up, where

available. For COAD, these were combined with the number of days

to last known alive because of many missing values in the number of

days to the last follow-up data.

4 Results and discussion

We applied rMKL-LPP to five cancer datasets. For each dataset, we

ran the algorithm with both possible initializations, either starting

with the optimization of A or with the optimization of b. For both

dimensionality reduction results, the integrated data points were

then clustered using k-means with k 2 f2; :::; 15g. We chose the opti-

mal number of clusters using the average silhouette value of the clus-

tering result. This criterion was then also utilized to select the best

clustering among the two different initializations. In most cases, ini-

tializing b led to slightly better silhouette values, although the final

results for both initializations were highly similar concerning the

number of identified clusters and the cluster assignment.
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As a consequence, the method has only two free parameters, the

number of neighbors used in the dimensionality reduction method

LPP and the number of dimensions of the projection subspace. Our

initial analyses showed that the clusterings are fairly stable when

choosing the number of nearest neighbors between 5 and 15 (data

not shown). We chose 9 for all datasets to show the robustness of

this parameter, although specific optimization would be feasible in

terms of running time and memory requirements. The number of di-

mensions to project into was fixed to 5 for two reasons. First, be-

cause of the curse of dimensionality, samples with many dimensions

tend to lie far apart from each other, leading to sparse and dispersed

clusterings. Second, we wanted only a medium number of subtypes,

such that very high dimensionality was not necessary.

4.1 Comparison to state-of-the-art
For each data type, we used the Gaussian radial basis kernel func-

tion to calculate the kernel matrices and normalized them in the fea-

ture space. To investigate how well the method is able to handle

multiple input kernels for single data types, we generated two scen-

arios. The first contained one kernel matrix per data type where c1

was chosen according to the rule of thumb c ¼ 1
2d2, with d being the

number of features of the data. Since this results in three kernels, the

scenario is called 3K. For Scenario 2, we generated five kernel matri-

ces per data type by varying the kernel parameter c such that

cn ¼ cnc1, where cn 2 f10�6;10�3;1; 103; 106g. This scenario is

called 15K, consequently.

We compared the resulting clusterings with the results of SNF in

Table 1. Considering the P value for the log-rank test of the Cox re-

gression model (Hosmer et al., 2011), rMKL-LPP with one kernel per

data type has a comparable performance to SNF. Only for KRCCC,

the result was not significant when using one fixed value for c (signifi-

cance level a ¼ 0:05). As can be seen in the last column, the signifi-

cance for four out of the five datasets increased when using a set of

different values for the kernel parameter c, indicating that the method

is able to capture more information if provided. A further observation

when moving from one to five different c values is the increase of the

optimal number of clusters. A possible explanation for this could be

that more detailed information is contributed by the different kernel

matrices because, depending on the parameter setting, similarities be-

tween particular groups of patients can appear stronger while others

diminish. Overall, the performance of rMKL-LPP with five kernel

matrices was best. The median P value for this approach was 2.4E-4,

whereas it was 0.0011 for SNF and 0.028 for rMKL-LPP with one

kernel per data type. The product of all P values of each method

showed a similar trend (rMKL-LPP 15K: 5.9E-19, SNF: 1.1E-13,

rMKL-LPP 3K: 1.9E-10). Note that the higher number of clusters of

rMKL-LPP is controlled in the calculation of the log-rank test P value

by the higher number of degrees of freedom of the v2 distribution.

A further advantage of the rMKL-LPP method with five kernels

per data type is that one does not have to decide on the best similar-

ity measure for the data type beforehand, which makes this method

more applicable out of the box. Additionally, the results suggest that

it might even be beneficial in some scenarios to have more than one

kernel matrix per data type to capture different degrees of similarity

between data points (patients in this application scenario).

As shown in Wang et al. (2014), the running time of iCluster scales

exponentially in the number of genes, which makes the analysis of the

cancer datasets infeasible if no gene preselection is performed. For SNF,

this preprocessing step is not necessary, and it is significantly faster than

iCluster. We compared the run time for the data integration in SNF and

rMKL-LPP (15K), which precedes the clustering step in both methods.

The SNF approach with the standard parameter settings completes the

network fusion procedure for each cancer type within a few seconds,

whereas the data integration with rMKL-LPP (15K) was slightly slower

with running times up to one minute. However, just like SNF, rMKL-

LPP does not require a gene preselection, which suggests that using

datasets with a higher number of samples and including more kernel

matrices should be feasible in terms of running times.

4.2 Contribution of individual kernel matrices to the

combined kernel matrix
For rMKL-LPP with five kernels per data type, Figure 1 shows the influ-

ence of every kernel matrix on the final integrated matrix. The top bar

Table 1. Survival analysis of clustering results of similarity net-

work fusion (SNF) and rMKL-LPP with one and five kernels per

data type

Cancer type SNF rMKL-LPP

3K 15K

GBM 2.0E-4 (3) 4.5E-2 (5) 6.5E-6 (6)

BIC 1.1E-3 (5) 3.0E-4 (6) 3.4E-3 (7)

KRCCC 2.9E-2 (3) 0.23 (6) 4.0E-5 (14)

LSCC 2.0E-2 (4) 2.2E-3 (2) 2.4E-4 (6)

COAD 8.8E-4 (3) 2.8E-2 (2) 2.8E-3 (6)

The numbers in brackets denote the number of clusters. For SNF, these are

determined using the eigenrotation method (Wang et al., 2014), and for

rMKL-LPP, by the silhouette value.

Fig. 1. Contribution of the different kernel matrices to each entry in the unified ensemble kernel matrix. The three colors represent gene expression (blue), DNA

methylation (yellow) and miRNA expression (red). The intensities represent the kernel parameter c, starting from c ¼ 1
2d2 	 10�6 (high intensity) to 1

2d2 	 106 (low

intensity)
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shows what the graphic would look like for an equal contribution of all

kernel matrices. In comparison to this, we can see that kernel matrices

using high values for the parameter c ¼ c1 	 106 have a very low impact

for all cancer types. These results agree with the rule of thumb that c
should be chosen in the order of magnitude of 1

2d2 or lower, which was

used for the choice of c1 (Gärtner et al., 2002). Furthermore, all data

types contribute to the combined kernel matrix, and we can observe dif-

ferences for the individual cancer types, e.g. for BIC, DNA methylation

data has a higher impact, whereas for KRCCC, there is more informa-

tion taken from the gene expression data.

4.3 Robustness analysis
To assess the robustness of the approach to small changes in the

dataset, we performed a leave-one-out cross-validation approach

(cf. Section 3.4). Figure 2 shows the stability of the clustering when

using one kernel matrix per data source (Scenario 1) and five kernel

matrices per data source (Scenario 2). Although we can observe for

GBM and LSCC almost no perturbation in cluster structure in

Scenario 1, for the other three cancer types, there is some deviation

to the full clustering and some variance among the leave-one-out re-

sults. Especially for the COAD dataset, we observed for a number of

leave-one-out clusterings that, compared with the full clustering,

one of the clusters was split up into two distinct groups, which in-

creases the overall number of clusters from two to three and leads to

a decrease in the Rand index. The opposite happens for BIC, where

we have a full clustering consisting of six groups, while in some of

the leave-one-out runs, two of the groups are collapsed, resulting in

five different clusters and, therefore, a lowered Rand index.

However, when using five kernel matrices per data source, the re-

sults seem to be more stable, which appears, on the one hand, in the

increased agreement with the full clustering and, on the other hand,

in the reduced variance among the leave-one-out results.

To further investigate the impact of the regularization constraint,

we compared the robustness of the results obtained using rMKL-

LPP to the robustness of the results from MKL-LPP. In general,

overfitting is expected especially for datasets with a small number of

samples or a high number of predictors. Therefore, we generated

from each cancer dataset smaller datasets using 50% of the samples.

In this setting, the unregularized MKL-LPP showed some instabil-

ities for GBM and KRCCC, with an increased variance among the

clustering results compared to rMKL-LPP for most cancer types (cf.

Fig. 3). This trend continued when the number of samples was fur-

ther reduced, as shown in Figure 4. Although the results without

regularization seem robust when using the complete dataset for each

cancer type, we could observe that the robustness decreased when

the number of samples decreased. The regularized approach, how-

ever, showed only a slight decrease in robustness when half the sam-

ples of each dataset were deleted and remained at this level when

only one third or one quarter of the data were used. This suggests

that rMKL-LPP has advantages in scenarios where MKL-LPP would

overfit, while being comparable when no regularization is required.

4.4 Comparison of clusterings to established subtypes
In the following, we look further into the results generated by the

use of five kernel matrices per data type (Scenario 2) for the GBM

dataset. For this cancer type, there exist four established subtypes

determined by their gene expression profiles (Verhaak et al., 2010)

as well as one subtype called Glioma-CpG island methylator pheno-

type (G-CIMP), which is one out of three groups that emerged from

a clustering of DNA methylation (Noushmehr et al., 2010). The

comparison of our GBM clustering to these existing subtypes (cf.

Table 2) shows that our method does not only reflect evidence from

one data type, but finds a clustering that takes both gene expression

and DNA methylation information into account.
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Fig. 2. Robustness of clustering for leave-one-out datasets measured using

Rand index. Each patient is left out once in the dimensionality reduction and

clustering procedure and afterwards added to the cluster with the closest

mean based on the learned projection for this data point, which is given by

projðxi Þ¼ATKi b. The resulting cluster assignment is then compared with the

clustering of the whole dataset. The error bars represent one standard

deviation
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Fig. 3. Robustness of clustering for leave-one-out cross-validation applied to

reduced sized datasets measured using Rand index. For each cancer type, we

sampled 20 times half of the patients and applied leave-one-out cross-valid-

ation as described in Section 3.4. The error bars represent one standard

deviation
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We can observe that Cluster 1 is strongly enriched for the mesen-

chymal subtype, whereas Cluster 2 contains mainly samples that be-

long to the classical and the neural subtype. Samples of the

proneural subtype are mainly distributed over Cluster 3 and Cluster

4, where these two clusters also reflect the G-CIMP status. While

Cluster 3 consists almost only of G-CIMP positive samples, Cluster

4 contains samples that belong to the proneural subtype but are G-

CIMP negative. This shows that in this scenario, evaluating expres-

sion and DNA methylation data together can be very beneficial since

an analysis based on gene expression data alone would have prob-

ably led to a union of Cluster 3 and Cluster 4.

4.5 Clinical implications from clusterings
To gain further insights into the biological consequences of the iden-

tified clusters, we have investigated how patients of the individual

clusters respond to different treatments. Of the 213 glioblastoma

patients, 94 were treated with Temozolomide, an alkylating agent

which leads to thymine mispairing during DNA replication (Patel

et al., 2014). Figure 5 shows for each cluster the survival time of pa-

tients treated versus those not treated with this drug. We can see

that this treatment was effective only in a subset of the identified

groups. Patients belonging to Cluster 5 had a significantly increased

survival time when treated with Temozolomide (P value after

Bonferroni correction < 0:01). For Cluster 1 and Cluster 2, we can

see a weaker tendency of treated patients living longer than un-

treated ones (P value after Bonferroni correction < 0:05), whereas

for the other clusters, we did not detect significant differences in sur-

vival time between treated and untreated patients after correcting

for multiple testing. Survival analysis for other medications could

show their effectiveness in different groups.

Cluster 3 consists mainly of patients belonging to the proneural

expression subtype and the G-CIMP methylation subtype. Patients

Table 2. Comparison of clusters identified by rMKL-LPP to gene expression and DNA methylation subtypes of

GBM (Rand indices of 0.75 and 0.64, respectively)

rMKL-LPP clusters

Gene expression subtypes

(Verhaak et al., 2010)

DNA methylation subtypes

(Noushmehr et al., 2010)

Classical Mesenchymal Neural Proneural G-CIMPþ #2 #3

#1 0 36 5 1 0 7 37

#2 31 7 13 2 0 46 6

#3 1 0 1 15 16 1 1

#4 1 1 5 22 0 13 27

#5 9 8 2 3 0 19 18

#6 6 1 2 9 3 7 9
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Fig. 5. Survival analysis of GBM patients for treatment with Temozolomide in the different clusterings. The numbers in brackets denote the number of patients in

the respective group; the specified P values are corrected for multiple testing using the Bonferroni method
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from this cluster show in general an increased survival time;

however, they do not benefit significantly from the treatment with

Temozolomide. We have determined differentially expressed

genes between these patients and all other patients using the

Kruskal–Wallis rank sum test. Table 3 (column 1) shows the top

15 terms of a Gene Ontology enrichment analysis of the set of

overexpressed genes. The results are very similar to those found by

Noushmehr et al. (2010) for their identified G-CIMP positive

subtype. In addition, we found the set of underexpressed genes to

be highly enriched for processes associated to the immune sys-

tem and inflammation [cf. Table 3 (column 2)]. Since chronic in-

flammation is generally related to cancer progression and is thought

to play an important role in the construction of the tumor micro-

environment (Hanahan and Weinberg, 2011), these downregula-

tions might be a reason for the favorable outcome of patients from

this cluster.

5 Conclusion

Because of the large amount of different biological measurements, it

is now possible to study diseases on many different levels such as

comparing differences in DNA methylation, gene expression or copy

number variation. For the unsupervised analysis of samples to detect

interesting subgroups, it is not in general clear how to weight the im-

portance of the different types of information. In this work, we have

proposed to use unsupervised multiple kernel learning in this setting.

For patient data from five different cancers, we have shown that our

approach can find subgroups that are more interesting according to

the log-rank test than are the ones found by state-of-the-art meth-

ods. Furthermore, we have demonstrated that we can even utilize

several kernel matrices per data type, not only to improve perform-

ance but also to remove the burden of selecting the optimal kernel

matrix from the practitioner. The visualizations of the contributions

of the individual kernels suggest that using more than one kernel

matrix per data type can even be beneficial, and the stability analysis

shows that the method does not overfit when more kernels are

added. In contrast to the unregularized MKL-DR, rMKL-DR re-

mains stable also for small datasets. For a wide applicability of the

method, this is especially important, since in many potential applica-

tion scenarios the number of available samples is smaller than in this

study. Furthermore, as we used the graph embedding framework, it

is straightforward to perform semi-supervised learning (e.g. use the

treatment data as labels where available and evaluate how unlabeled

data points distribute over the different clusters). The clustering of

GBM patients displayed concordance to previous clusterings based

on expression as well as on DNA methylation data, which shows

that our approach is able to capture this diverse information within

one clustering. For the same clustering, we also analyzed the re-

sponse of the patients to the drug Temozolomide, revealing that pa-

tients belonging to specific clusters significantly benefit from this

therapy while others do not. The GO enrichments for the interesting

clusters of the GBM patient samples showed, on the one hand, simi-

lar results to what was known from the biological literature and, on

the other hand, down-regulation of the immune system in the sub-

group of cancer patients who survived longer. This suggests that

down-regulation of parts of the immune system could be beneficial

in some scenarios. Further follow-up studies on the results of the dif-

ferent clusterings are necessary to assess their biological significance

and implications.
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