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Abstract
Linking synaptic connectivity to dynamics is key to understanding information processing in

neocortex. Circuit dynamics emerge from complex interactions of interconnected neurons,

necessitating that links between connectivity and dynamics be evaluated at the network

level. Here we map propagating activity in large neuronal ensembles from mouse neocortex

and compare it to a recurrent network model, where connectivity can be precisely measured

and manipulated. We find that a dynamical feature dominates statistical descriptions of

propagating activity for both neocortex and the model: convergent clusters comprised of

fan-in triangle motifs, where two input neurons are themselves connected. Fan-in triangles

coordinate the timing of presynaptic inputs during ongoing activity to effectively generate

postsynaptic spiking. As a result, paradoxically, fan-in triangles dominate the statistics of

spike propagation even in randomly connected recurrent networks. Interplay between

higher-order synaptic connectivity and the integrative properties of neurons constrains the

structure of network dynamics and shapes the routing of information in neocortex.

Author Summary

Active networks of neurons exhibit beyond-pairwise dynamical features. In this work, we
identify a canonical higher-order correlation in network dynamics and trace its emergence
to synaptic integration. We find that temporally coordinated firing preferentially occurs at
sites of fan-in triangles—a synaptic motif which coordinates presynaptic timing, leading to
greater likelihood of postsynaptic spiking. The influence of fan-in clustering leads to the
surprising emergence of non-random routing of spiking in random synaptic networks.
When synaptic weights are made artificially stronger in simulation, so that cooperative
input is less crucial, dynamics are no longer dominated by fan-in triangles but instead
more closely reflect the random synaptic network. Thus, the emergence of fan-in cluster-
ing in maps of synaptic recruitment is a collective property of individually weak connec-
tions in neuronal networks. Because higher-order interactions are necessary to shape the
timing of presynaptic inputs, activity does not propagate uniformly through the synaptic
network. Like water finding the deepest channels as it flows downhill, spiking activity fol-
lows the path of least resistance and is routed through triplet motifs of connectivity. These
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results argue that clustered fan-in triangles are a canonical network motif and mechanism
for spike routing in local neocortical circuitry.

Introduction
Understanding any complex system requires a mechanistic account of how dynamics arise
from underlying architecture. Patterns of connections shape dynamics in diverse settings rang-
ing from electric power grids to gene transcription networks[1–5]. It is critical to establish how
synaptic connectivity orchestrates the dynamics of propagating activity in neocortical circuitry,
since dynamics are closely tied to cortical computation. For example, trial-to-trial differences
in network dynamics[6–9] can be used to decode sensory inputs and behavioral choice[10,11].
It is particularly important to understand the transformation from connectivity to activity
within local populations of neurons since this is the scale at which the majority of connections
arise. Locally, neocortical neurons are highly interconnected, and their connectivity schemes
are characterized by the prevalence of specific motifs[12]. At the level of local populations,
functional coordination has been demonstrated in diverse ways, e.g. on the basis of active neu-
rons[13,14] and their correlation patterns[15]. Yet predicting population responses on the
basis of pairwise connections alone has proven to be difficult.

Establishing a mechanistic link between connectivity and dynamics in neocortical networks
is intricate and non-trivial because individual neurons themselves are complex computational
units[16–20]. Fundamentally, neurons are state dependent non-linear integrators of synaptic
input[21–23]. When neurons in neocortex process information, they are generally subjected to
numerous synaptic inputs which activate diverse receptors, and concomitant gating of voltage-
dependent channels[24–26]. In consequence, neocortical neurons tend to operate in a high-
conductance state, which lessens the impact of any one synaptic input[21,27]. Because inputs
are weak individually, collective synaptic bombardments are necessary to depolarize a neuron
to threshold for action potential generation. As a result, it is difficult to predict the flow of
activity through a synaptic network based solely on knowledge of single connections, without
the context of ongoing activity in the entirety of the system.

Network models are an important tool for linking synaptic connectivity to dynamics in neo-
cortex because they enable precise measurement and manipulation of simulated connectivity.
In this work, we generate networks comprised of leaky integrate-and-fire model neurons with
naturalistic dynamics that mimic recordings from superficial neocortical layers. Despite ran-
dom synaptic topology in the model network, we find that small-world topological organiza-
tion emerges in maps of propagating activity. This paradoxical divergence of dynamics from
synaptic connectivity is not explained by coactivity alone. Rather, recruitment preferentially
occurs in a selective subset of active connected pairs.

In the model, activity is preferentially routed through clustered fan-in triangles, despite
their statistical scarcity. Because they result in coordinated presynaptic timing, fan-in triangle
motifs are particularly effective for spike generation. By comparison, among neurons converg-
ing on a common target but lacking presynaptic interconnectivity, presynaptic timing is less
synchronous on average, and postsynaptic recruitment is less likely. Moreover, when we
decrease the need for cooperative presynaptic action, by doubling synaptic weights in network
models, the fan-in triangle motif becomes significantly less prevalent. We evaluate the predic-
tion of our model using high speed two-photon imaging of emergent network activity ex vivo,
in somatosensory cortex. We verify that propagating activity in real neuronal networks has
small-world characteristics and elevated clustering, Decomposing this clustering, we discover
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that neocortical circuitry also manifests propagating activity that is dominated by the fan-in tri-
angle motif. These results suggest a mechanistic account for the widespread findings of clus-
tered activity in neuronal populations [14,28–31]. We suggest that clustered fan-in triangles
are a canonical building block for reliable cortical dynamics.

Results

Representing activity and connectivity with directed graphs
Multineuronal dynamics are the computational substrate for sensation and behavior, imple-
mented by synaptic architectures. Propagating multineuronal activity arises from three main
sources: the underlying connectivity itself, recent network history, and the non-linear integra-
tive properties of individual neurons. Here, multineuronal activity was modeled using conduc-
tance-based leaky integrate-and-fire neurons, stimulated with brief periods of Poisson input
and recorded during self-sustained firing (Fig 1A). Model neurons were connected with hetero-
geneous synaptic weights drawn from a heavy-tailed distribution, in a random arrangement
(Erdős-Rényi; pee = 0.2). Simulated dynamics were asynchronous, irregular, and sparse, with
critical branching (see Methods).

A synaptic network was constructed for each simulation, consisting of excitatory model
neurons and their synaptic connectivity. For each structural iteration of the model we gener-
ated three distinct maps of activity (and in two of the cases, multiplex connectivity and activ-
ity): a functional network, the active subnetwork, and a recruitment network (Fig 2). Edges in
the functional network summarized network dynamics and represented frequency of lagged
firing between every pair of nodes (with maximum interspike interval T = 25 ms; see Methods).
The active subnetwork was a subgraph of the synaptic network and consisted of model neurons
active at least once and all their interconnections (regardless of lagged firing relationships).
Finally, the recruitment network was a subgraph of the functional network defined by its inter-
section with the synaptic network, to map the routing of activity through synaptic interactions.
In this way, non-zero edges in the recruitment network linked synaptically connected nodes
that also spiked sequentially in the interval T at least once. For T = 25 ms, 10.9 ± 3.52 excitatory
presynaptic input spikes immediately preceded each postsynaptic spike (mean±std).

Surprisingly, although underlying synaptic connectivity was Erdős-Rényi (i.e. random),
functional activity networks were small world (Fig 1B)[32]. To judge the small world character
of these networks, global clustering coefficient and characteristic path were normalized by their
respective abundances in density-matched Erdős-Rényi networks and combined as a quotient
[33]. Comparison with density-matches was important given that sparseness itself results in
enhanced smallworldness[34].

Functional networks were marked by significantly increased small world scores (functional
network: 2.8±0.23; synaptic network: 1.0±0.035; n = 5, p = 0.0079,Wilcoxon rank-sum) resulting
from increased clustering (function: 2.8±0.23; synaptic network: 1.0±0.035, n = 5, p = 0.0079),
with characteristic path lengths similar to random-matches (function: 1.0±6.4x10-4; synaptic net-
work: 0.99±0.033; n = 5, p = 0.69). The lag interval T was chosen to encompass important net-
work timescales for synaptic plasticity and integration[35,36]. We also generated functional
networks using intervals of 10 and 50 ms, which showed that the emergence of non-random fea-
tures does not depend strongly on choice of T (functional network for T = 10ms: small world
ratio 3.2±0.24, n = 5, p = 0.0079; functional network for T = 50ms: small word ratio 2.6±0.22,
n = 5, p = 0.0079).

Given modest sampling conditions (e.g. binning near timescales of synaptic integration),
functional relationships can indicate locations of probable synaptic recruitment[35]. However,
a subset of edges in functional networks are 'false positives'—they reflect polysynaptic
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relationships and other combined statistical dependencies rather than monosynaptic connec-
tivity and recruitment[35,37]. To determine whether these measurement artifacts were respon-
sible for the statistical differences between functional and synaptic networks, we turned to
recruitment networks. Pruned of false positives, recruitment networks were significantly more

Fig 1. Emergent functional networks are structured despite random synaptic connectivity. (a)
Integrate-and-fire neurons with conductance-based synapses were connected randomly according to source
and target class (200 inhibitory and 1000 excitatory cells). Activity was initiated with 50 ms of independent
Poisson inputs. (b) Box plots of the fold change over random for the small world score, shortest path length
score, and clustering coefficient score in the synaptic network and the functional network. (c) Box plots of the
fold change over random for the small world score, shortest path length score, and clustering coefficient
score in the active subnetwork and the recruitment network.

doi:10.1371/journal.pcbi.1005078.g001

Fig 2. Glossary of network definitions.

doi:10.1371/journal.pcbi.1005078.g002
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small world than functional networks constructed from the same activity (4.6±0.87; n = 5,
p = 0.0079), with even shorter characteristic paths (recruitment: 0.65±0.072, n = 5, p = 0.0079
compared to function,Wilcoxon rank-sum) and a similar elevation in clustering (recruitment:
3.0±0.26; n = 5, p = 0.22). Thus, emergent statistical structure in the functional networks
reflected coordinated timing among multiple synaptically connected neurons.

Preferential routes for propagating activity
As demonstrated by non-random recruitment, i.e. clustering in the recruitment network, activ-
ity did not propagate homogeneously through the random topology. However, it remained a
possibility that the seemingly non-random routing of activity was simply the byproduct of
shared activity, without being selective on the basis of connectivity. As a control, the active sub-
network establishes the role of interactions among neurons with elevated firing rates (including
pairs of neurons which never recruited one another within the interval T). Compared to func-
tional networks, the corresponding active subnetwork exhibited reduced small world ratio
(active network: 2.2±0.26, n = 5, p = 0.0159) and reduced clustering (1.3±0.041, p = 0.0079),
despite somewhat shorter characteristic paths (0.60±0.055, n = 5, p = 0.0079).

If directed connections that never fired sequentially were pruned from the active subnet-
work, it would attain the same binary topology as the recruitment network. Comparing the
active network with the recruitment network, global clustering ratio was significantly increased
(from 1.3±0.041 to 3.0±0.26, n = 5, p = 0.0079,Wilcoxon rank-sum). Thus, the select connec-
tions which were directly involved in propagation of spiking activity were more clustered than
activated connections as a whole (Fig 1C).

We next evaluated whether neuronal pairs that never fired sequentially differed from those
that did. Comparisons were performed between in-degree matched samples. Connected neu-
rons that never fired in succession shared significantly fewer neighbors than those that did fire
sequentially at least once (n = 500 pairs, p = 3.1 x 10−17,Wilcoxon rank-sum). In the model,
activity was selectively routed through interconnected neighborhoods.

Deconstructing patterns of directed clustering
Connectivity within a triplet is the simplest way two nodes can share a common neighbor and
be clustered. However, this measure fails to account for the direction of connection. Since
direction is crucial in synaptic communication, we turned to a formulation which differentiates
directed triangle motifs[38]. From the perspective of a reference postsynaptic neuron, clustered
neighbors can be arranged into four kinds of three-edge triangle motifs: fan-in, fan-out, mid-
dleman, and cycle arrangements (Fig 3A). Taken in isolation, fan-in, middle-node, and cycle
triangles are isomorphic to one another through rotation, i.e. dependent on labeling the refer-
ence node (which is necessary to compute local clustering). Measures of undirected clustering
can be decomposed fractionally into these four components. Because the underlying model
synaptic connectivity was random, none of the four triangle motifs were more prevalent than
the others, and each contributed equally to synaptic clustering (Fig 3B). By contrast, in recruit-
ment networks, fan-in triangle motifs were highly overrepresented (Fig 3C). The overrepresen-
tation of fan-in triangle motif was also present in the functional network: for example, iterative
Bayesian inference[35] was sensitive to asymmetric directed clustering in model activity (fan-
in: 0.38±0.052, fan-out: 0.29±0.032, middleman: 0.19±0.016, cycle: 0.15±0.0076; mean±std,
threshold at the 95th percentile).

To understand whether these higher order asymmetric features emerge from chance corre-
lations tied to firing rates, we generated Poisson populations that were rate-matched on a neu-
ron-by-neuron and trial-by-trial basis. This resulted in an inhomogeneous distribution of
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firing rates across all trails. Our Poisson null populations had identical expected spike counts
as model activity in each 100ms bin but no synaptic interactions and no causal propagation of
activity. Undirected clustering was significantly lower in iterative Bayesian maps of uncoupled
Poisson rate-matched activity compared to connected network models (Poisson rate-match:
0.0052±3.6x10-4; simulated activity: 0.024±0.013;Wilcoxon rank-sum p = 0.036; n = 3), and the
fan-in triangle motif was not elevated relative to other clustering patterns (Fig 3D). The Pois-
son populations demonstrated that elevated fan-in triangle motifs do not result trivially from
the analysis procedure but instead are the result of synaptic interactions between neurons.
Interestingly, we found that model neurons with high fan-out clustering were characterized by
elevated firing rates (Fig 4A and 4B), but model neurons which comprised the fan-in triangle
motif actually contracted towards low firing rates (Fig 4C and 4D). Fan-in triangles were more
abundant in propagating activity than would be expected from their frequency in the synaptic
network or component firing rates alone.

Like undirected clustering, the emergence of fan-in clustering in maps of propagating activ-
ity was robust to choice of T. Fan-in clustering was highly elevated in recruitment maps for
T = 10 ms (undirected: 0.0068±0.0007; fan-in 0.011±0.0017; fan-out: 0.0028±0.0001; middle-
node: 0.0068±0.0007; cycle: 0.0052±0.0004; mean±std for 5 simulations) and T = 50 ms (undi-
rected: 0.019±0.0015; fan-in 0.027±0.0027; fan-out: 0.0077±0.0003; middle-node: 0.019
±0.0013; cycle: 0.015±0.0007; mean±std for 5 simulations). Because of the different levels of
sparseness in the numbers of connections these values should not be compared across values of
T. Instead these analyses demonstrate that the over-representation of fan-in triangles is robust
across a number of timescales.

Activity at fan-in triangle motifs is temporally organized
To investigate the mechanism for overrepresentation of fan-in triangles in recruitment net-
works, we measured spike timing at their locations. The signature of fan-in triangle motifs is
convergence from interconnected presynaptic neurons, a motif that could potentially facilitate
cooperative summation of synaptic inputs. Consistent with this postulate, presynaptic neurons
in fan-in triangle motifs were marked by increased probability of firing in the 10 ms prior to
postsynaptic spiking (Fig 5A and 5B).

We next compared differences in presynaptic timing relationships at loci of fan-in triangle
motifs compared to loci of simple convergence, to assess the role of presynaptic interconnectiv-
ity. For this analysis, random samples were obtained from epochs of coincident firing: 50 ms
windows where every neuron in a triplet was active, centered on a spike in the postsynaptic ref-
erence neuron. To avoid confounds from juxtaposing multiple motifs, neuron triplets with any
additional connections, including recurrent loops, were excluded for this specific analysis
alone. As a result only fan-in triangles with exactly three interconnections were analyzed in
this case. We found fan-in presynaptic neurons were stereotypically ordered in a manner con-
sistent with the direction of their interconnection, resulting in an asymmetric distribution of
intervals between their firing (Fig 5C). In addition to the temporal structure imposed by this
asymmetry, mean absolute timing difference between presynaptic neurons in clustered fan-in
motifs was modestly but significantly more temporally precise than were neurons in simple

Fig 3. Clustered fan-in triangle motifs dominate recruitment networks. (a) Scheme for factoring
transitive clustering into constituent directed patterns. (b) Boxplots of the prevalence of the directed patterns
in the randomly connected synaptic network. (c) Boxplots of the prevalence of the directed patterns in the
recruitment network. (d) Boxplots of the prevalence of directed patterns in nulls generated from rate-matched
Poisson populations without synaptic interactions analyzed with iterative Bayesian inference.

doi:10.1371/journal.pcbi.1005078.g003
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convergence motifs (13.5±10.2 ms compared to 14.9±10.7 ms;Wilcoxon rank-sum on mean-
absolute timing difference, p = 0.0035, n = 1000 samples).

Moreover, we found that coincidence in fan-in triangle motifs occurred nearly twice as fre-
quently as in motifs of simple convergence (1.9 ± 0.17 times more frequent,mean ± std;Wil-
coxon rank-sum, p = 0.0079, n = 5 model datasets). Accounting for expected frequency of the
two connection patterns in the underlying synaptic network, coincident activity is far more
common at sites of fan-in triangles than at sites of simple convergence (linear regression: slope
3.0, y-intercept 0.00075, n = 5 simulations, r2 = 0.91, p = 0.011) (Fig 5D).

Increasing clustering among active inputs with depolarization
We postulated that clustering is efficacious for synaptic integration and examined whether the
prevalence of clustering was predictive of postsynaptic membrane potentials. Pooling over all
neurons and time bins, we binned the distribution of membrane voltages into segments that
contained equal numbers of samples (Fig 6A). On average, because the model was active in the
analyzed simulations, membrane voltages were depolarized from the resting equilibrium
potential of -65 mV (median: -60.2 mV; lower quartile: -63.6 mV; upper quartile: -56.8 mV).
To test our hypothesis, we generated functional networks that related recent presynaptic activ-
ity (within a 25 ms interval) to postsynaptic voltage (Fig 6B; see Methods), yielding one net-
work for each division of the voltage distribution (Fig 6C). These networks can be viewed as
reverse correlograms conditioned on postsynaptic voltage, and differed in the statistics of their
topologies across different voltage regimes. At more negative membrane potentials, the active
neurons which connected to the postsynaptic reference neuron (and accounted for its recent

Fig 4. Fan-in triangle motifs are not simply the result of firing rate. (a) Median firing rate across all fan-out clustering thresholds (middle
quartiles shaded). (b) Probability distribution of firing rates for fan out triangle motif. Firing rate distributions for subpopulations thresholded to
exclude the bottom 10% (mustard), 50% (light green), and 90% (dark green) of fan-out clustered model neurons. (c)median firing rate across all
fan-in clustering thresholds (middle quartiles shaded). (d) Probability distribution of firing rates for fan in triangle motif. Reference cells with high
fan-in clustering had lower firing rates than the population as a whole: bottom10% (light blue), 50% (blue), and 90% (purple) of fan-in clustered
model neurons.

doi:10.1371/journal.pcbi.1005078.g004
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excitatory synaptic drive) were only modestly more clustered than random sparseness-matched
controls. As the postsynaptic neuron depolarized, the presynaptic nodes driving that depolari-
zation became increasingly clustered, peaking at the threshold for firing (Fig 6D). Characteris-
tic paths were similar to random graphs at all subthreshold voltages. As a result of elevated
clustering during membrane depolarization, small world ratios peaked at the most depolarized
voltages corresponding to threshold for action potential generation. These data support the

Fig 5. Coordinated timing amongmodel neurons in fan-in triangle motifs. (a,b) Probablity distribution of spiking within
fan-in triangle motifs. Postsynaptic spiking at t = 0 (tall mark, center of mass; short mark, peak). (c) Probability versus
difference in presynaptic timing t2 –t1 during coincident epochs. (d) Rate of observing coincident firing (50 ms) in fan-in
triangle motifs versus simple convergence.

doi:10.1371/journal.pcbi.1005078.g005
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Fig 6. The prevalence of fan-in triangle motifs increased with post-synaptic voltage. (a) Distribution of
postsynaptic voltage. Shading corresponds to (b) and (c) and contain the same number of samples per
voltage bin. (b) Postsynaptic voltage was mapped in relation to presynaptic spiking. (c) One example
weighted directed topology for each division of the voltage distribution. (d) Ratio versus voltage (clustering
coefficient: blue, characteristic path: gray, shading reflects one standard deviation). (e) Small world ratio
versus voltage (shading reflects one standard deviation).

doi:10.1371/journal.pcbi.1005078.g006
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hypothesis that activity among clustered presynaptic neurons is particularly effective for
recruiting the postsynaptic neuron to spike.

Emergence of higher-order features depends on mean synaptic weight
The statistical incongruence of function and synaptic connectivity indicates that spiking activ-
ity does not flow in an egalitarian fashion through the synaptic network. Instead, patterns of
local clustering influence and direct where propagating activity occurs most frequently. That is,
patterns of activity are shaped by higher-order patterns in synaptic connectivity and not just
pairwise couplings. To further explore the dependence of activity flow on higher order synaptic
connections we evaluated postsynaptic recruitment in a network model with a modest increase
in mean synaptic strength. Synaptic connections were twice as strong on average compared to
the network models used throughout the remainder of this study but remained too weak to
drive spiking alone (Fig 7A). The two network designs did not differ in connection density.
After synaptic weights were doubled, functional networks became more similar in topology to
synaptic networks (small world ratio decreased; Wilcoxon rank-sum, p = 0.0079, n = 5) (Fig
7B). The double-strength models were less clustered (Fig 7C) (Wilcoxon rank-sum, p = 0.0079,
n = 5), and exhibited longer average path lengths (Wilcoxon rank-sum, p = 0.0079, n = 5).
Directed clustering was compared across the two families of models. Recruitment networks
were analyzed with binary edges to control for their distinct mean synaptic weights. In addition
to their decreased overall clustering, the fan-in triangle motif was significantly rarer in double-
strength recruitment networks (Fig 7D) (from 0.030±0.0051 to 0.022±0.0025, p = 0.030, n = 6),
while the fan-out triangle motif showed a small but significant increase in abundance (from
0.0040±2.0x10-4 to 0.0046±3.2x10-4, p = 0.0043, n = 6). Stronger presynaptic inputs reduced
the need for extensive postsynaptic integration, allowing individual presynaptic cells to have a
more independent impact on their postsynaptic partners. As a result, statistics of propagating
activity were more faithful to underlying pairwise connections in the models with increased
synaptic strength.

Fig 7. Increased synaptic weights reduced higher-order functional coordination. (a) Distribution of model synaptic weights (excitatory-
excitatory: green, excitatory-inhibitory: blue, inhibitory-excitatory: orange, inhibitory-inhibitory: gray). Top: naturalistic model. Bottom: double-
strength model. Inset in both cases shows zoom to better illustrate heavy tail. (b) Box plot of clustering coefficient in the two models. 2X indicated
double-strength synaptic connections. (c) Box plot of small worldness in the two models. 2X indicated double-strength synaptic connections. (d)
Comparison of mean directed clustering with each model iteration on either side. Each class of directed clustering is labeled in the plot.

doi:10.1371/journal.pcbi.1005078.g007
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Fan-in triangles characterize neocortical circuit dynamics
In model simulations, fan-in triangle motifs were abundant in maps of function and recruit-
ment. We next evaluated whether the preponderance of fan-in triangle motifs would be robust
to additional complexity in single-neurons and their connections. Unlike the simple model
neurons that we used for simulation, real neurons are complex elements[16] and the connec-
tions between them are structured[12,39]. If clustered fan-in triangle motifs are a general fea-
ture of high-conductance nodes in a complex system, where coordinated inputs drive
integration, the fan-in triangle will be overabundant in experimental dynamics. This postulate
would be falsified if all directed clustering motifs were equally common in functional networks.
To investigate, we analyzed high speed imaging data (20 Hz) of spontaneous circuit activity
collected ex vivo in mouse somatosensory cortex (Fig 8A) (following [40]). We generated func-
tional networks from the imaged experimental data using an iterative Bayesian approach
which is robust to relatively small numbers of observations [33]. We then measured the

Fig 8. Clustering in experimentally recorded emergent cortical circuit activity was characterized by the fan-in triangle motif. (a)
Two photon image of Ca2+ indicator dye in a slice of mouse somatosensory cortex. (b) Example z-scored fluorescent traces among
functionally related neurons identified as members in a fan-in triangle motif. (c) Relative abundance of both fan-in (blue) and fan-out
(green) clustering relative to density-matched random graphs as a function of inclusion threshold on inferred connections. Shading
reflects one standard deviation based on bootstrap resampling for a 30% false positives rate (n = 100). (d) Top 5% of functional edges
(light grey) and corresponding neurons (green) collected from the same field of view as a. Grey neurons were also active but were not
connected with edges exceeding the cut-off. Three example fan-in triangles are illustrated with directed edges (blue arrows) and blue
shading (motif specific neurons). Circle indicates reference neuron in each triangle. (e) Separate functional analysis of triplet motifs
using cross-correlation. For each triplet, the product of the z-scored presynaptic traces were compared to the postsynaptic trace. Fan-in
triangle motifs were characterized by higher levels of coordination than motifs of simple convergence.

doi:10.1371/journal.pcbi.1005078.g008
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prevalence of fan-in motifs in the functional topology (Fig 8B). Importantly, iterative Bayesian
inference was not biased toward detection of fan-in triangle motifs, as demonstrated with rate-
matched Poisson spiking (see Fig 3D).

Though imperfect indicators, functional weights probabilistically identify the likelihood of
true monosynaptic excitatory connectivity[35]. As a result, expected error rate for inferred con-
nections can be adjusted with a sliding threshold on functional weight. Stricter thresholds yield
a more accurate approximation of the underlying recruitment network at the cost of restricted
sampling. Using inferred recruitment networks, beginning at the top quartile of inferred
weights, directed clustering was computed in five-percentile increments. Confidence intervals
were obtained using bootstrap resampling under the assumption of a 30% false-positive rate.
As confidence of synaptic connectivity increased, the fan-in triangle motif became increasingly
abundant and fan-out triangles less so (Fig 8C). Differences between the two motifs were sig-
nificant (threshold at 95th percentile, p = 4.8x10-34, n = 100 bootstrap resampled functional net-
works,Wilcoxon ranksum).

We next measured whether strong functionally coupled neurons were more spatially proxi-
mal than random pairs. We defined strong functional connections as those exceeding a 95%
threshold on non-zero weights since previous work has indicated that these particular func-
tional connections are more likely to reflect a causal synaptic connection[35]. We found that
the median pairwise distance separating strong functionally connected cells was 249 μm,
whereas randomly chosen pairs of neurons were separated by a median 263 μm (Wilcoxon-
ranksum p = 0.0336, nfunctional = 638, nrandom = 10000). We then measured triplets of neurons
with functional connections that form triangles to determine whether these neurons were more
spatially proximal to one another than randomly chosen triplets of neurons. To investigate,
proximity was quantified as the perimeter around the triangle formed by vertices at the spatial
location of each neuron. Neurons in functional triangles with mutual connectivity and at least
three functional connections were inscribed by perimeters of median length 807 μm, compared
to median perimeter of 823 μm for randomly selected triplets that were unconstrained by direc-
tion and number of edges (Wilcoxon rank-sum p = 0.0097, ntriangles = 2556, nrandom = 10,000).
Interestingly, triplets of neurons connected into arrangements of either simple divergence or
simple convergence (i.e. neurons in wedges, lacking interconnectedness between the common
neighbors), were even more distant, inscribed by a perimeter of median 839 μm (Wilcoxon
rank-sum, ntriangles = 2556, nwedges = 14,882). Thus, clustered triplets (triangles) tended to be
arranged significantly more locally than simple convergent or simple divergent triplets
(wedges).

We then compared measures of clustering between the model, which was comprised of ran-
dom connections, and the experimental data which almost certainly contained structured con-
nectivity [12, 39] to evaluate how the measure of fan in and fan-out triangles depend on the
underlying structural topology. To do so we used a measure of clustering propensity[41] which
allowed us to make comparisons of networks which have very different connection densities.
Clustering propensity (1-ΔCfan-in and 1-ΔCfan-out) results in a normalized value where 1 is
extreme clustering as seen in lattices, and 0 indicates no clustering above that expected in
Erdős-Rényi random networks. For the model, fan-in clustering was scored at 0.18 ± 0.019;
and for the experimental data, fan-in clustering was scored at 0.20 ± 2.0x10-4 (Wilcoxon rank-
sum p = 1.74x10-4, nmodel = 5 simulations; ndata = 100 bootstrap samples). Thus, fan-in cluster-
ing was modestly but significantly more abundant in maps of propagating activity based on
experimental recordings. We note that we compared thresholded graphs at the 80%-level (i.e.
top 20% of non-zero edges) for this measure because the experimentally derived functional net-
works were not well-matched by regular lattices below this density.
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Finally, we measured timing relationships among imaged active neurons. Reliable timing
relationships were measured independent of other functional analyses, using cross-correlations
on the normalized fluorescence traces (Methods). Presynaptic coactivity was assessed as the
product of the two z-scored presynaptic traces and compared to postsynaptic fluorescence as a
straightforward cross correlation. The resulting average cross-correlogram for fan-in triangles
was stronger and more asymmetric than those measured from simple-convergence motifs (Fig
8D).

Thus, presynaptic activity in fan-in triangles was more predictive of postsynaptic firing than
presynaptic activity in motifs of simple convergence. These results are consistent with fan-in
triangles supporting coincident input and favoring reliable propagation of activity. Results
from the model indicated that the fan-in triangle motif temporally coordinates presynaptic
inputs, rendering them more capable of driving recipient neurons to threshold. Supporting our
prediction of its fundamental importance for reliable recruitment, in acutely dissected neocor-
tical tissue with more complex patterns of connectivity and intrinsic neuronal properties, we
find a robust elevation of the same directed motif.

Discussion
Using a model composed of random connections among leaky integrate-and-fire neurons with
conductance-based synapses, we found that maps of propagating activity were structured and
non-random. Small-world patterning in the dynamics emerged because a specific higher-order
connection pattern was particularly effective for postsynaptic integration: convergence of syn-
aptic input from connected neighbors. Synaptic connections between neighbors favored coinci-
dent timing of inputs onto their targets. This coincident activation led to efficient postsynaptic
integration. As a consequence, clustering among active presynaptic cells tracked depolarization
of model postsynaptic neurons. Thus, activity was preferentially routed through fan-in triangle
motifs.

In experimental recordings of emergent activity in hundreds of neurons ex vivo, after map-
ping inferred recruitment patterns [33], we found that fan-in triangles were even more dramat-
ically overrepresented than in the model. These results are contextualized by increasing
recognition of non-random functional structure in networks of neurons: Rich club structure
has been reported ex vivo and in vivo[31]. Clustered[30], small world functional networks[28],
and nucleation of dynamics[29] have also been observed in neuronal cultures. Since cultured
populations differ from neocortex in the details of their topological makeup, these findings
across model systems further suggest that clustering in general and the fan-in triangle motif in
particular may be a canonical feature of propagating activity among interconnected neurons.
Despite differences in details of connectivity and neuronal intrinsic properties, dynamics are
constrained by the requirement for coincident summation of individually weak inputs. Con-
straining dynamics with beyond-pairwise relationships can be helpful for cortical computation.
Theoretical work has shown that non-uniform features of connection topology impact infor-
mation transfer[42], and higher-order correlations were particularly impactful in low spike-
rate regimes[43]. These complementary results from complex networks, statistical physics and
network biology suggest that, by shaping feasible dynamics, the fan-in triangle motif could
enhance information transfer from inputs to outputs.

We hypothesize that local circuits are organized around fan-in triangle motifs, promoting
cooperative patterns of firing and stabilizing[44] the propagation of activity despite individu-
ally unreliable neurons. This canonical mechanism provides the coordination necessary to
propagate signal despite weak synaptic connections. Indeed, reliable sequential firing was asso-
ciated with number of fan-in triangles even after controlling for overall in-degree. Although
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clustering among fan-in triangles has not been tested directly until now, paired patch clamp
recordings have shown that local neocortical circuitry is characterized structurally by abundant
triplet motifs[12,39]. Our data and modeling suggest a functional consequence for a subset of
these synaptic motifs: connected presynaptic neurons help establish coordinated timing among
convergent inputs, leading to cooperative summation at the postsynaptic membrane. Such
cooperativity has been shown to be one potential mechanism capable of generating spike trains
that are consistent with experimental observations in vivo[45].

While there are certainly explicit developmental rules that govern neuron to neuron con-
nectivity, our results suggest that higher-order connectivity need not require specification a pri-
ori. It could emerge autonomously if fan-in triangle motifs within a random network were
stabilized and magnified during network development, e.g. by pruning non-recruiting connec-
tions through activity-dependent plasticity. Thus, higher-order synaptic motifs that are partic-
ularly effective for postsynaptic recruitment could potentially self-organize[46].

These results do not indicate a complete schism between synaptic connectivity and dynam-
ics—one clearly depends on the other. However, their relationship is complicated by the inte-
grative properties of single neurons. Synaptic integration constrains feasible dynamics, and
distributed synaptic motifs route the propagation of activity. These interactions are a source of
higher-order dynamical structure. The routing of information is coordinated by higher-order
synaptic patterns and the context of ongoing activity because the routing of spikes is deter-
mined by relative timing and collective interactions.

Materials and Methods

Local cortical population model
Simulations were implemented using the Brian Brain Simulator[47]. Model populations con-
sisted of 1000 excitatory neurons, 200 inhibitory neurons and 50 Poisson input units. Connec-
tion probabilities depended on source and target identity. For example, inhibitory-excitatory
connections occurred with probability 0.25 (Pee = 0.2, Pei = 0.35, Pie = 0.25, Pii = 0.3).

Conductance based synaptic weights were drawn from a heavy-tailed distribution and
assigned randomly[48,49]. Weights were drawn randomly from a lognormal distribution with
mu = -0.64 and sigma = 0.51. These parameters are the mean and standard deviation of the
corresponding normal curve. The resulting lognormal ensemble has expected mean of 0.60 and
variance of 0.11, in multiples of the leak conductance. Connections from inhibitory to excit-
atory cells were scaled by a further 50% to simulate efficacious somatic contacts. A small tonic
excitatory drive gt was supplied to all units to help stabilize sparse spiking. Synaptic bombard-
ments induced exponentially shaped membrane conductances with leaky-integrate-and-fire
summation. Conductance-based synapses are important for recapitulating synaptic integration
in the high-conductance state[21,50]. We used sparse and randomly connected networks in
which we did not impose any synaptic organization beyond cell-type dependent connection
probabilities.

Trials began with 50 ms of activity in the input pool at 15 Hz, exciting the network via ran-
dom input projections. After input units were silenced, the recording period began, and activity
flowed through the network for 100 ms. Input units projecting to excitatory cells randomly and
independently with probability 0.1. Every 100 trials (an epoch), new random projections were
drawn from the input pool to the excitatory population, simulating a diversity of activity. Par-
ticipation during a single input epoch totaled 64±0.98% of neurons (mean ± std), growing to
encompass 85.5% of neurons when all sets of input projections were considered (i.e. over all
epochs).
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Excitatory reversal potential Ee was 0 mV, as was Et. Inhibitory reversal potential Ei was -90
mV. Reversal potential for leak current Eleak was -65 mV. Firing threshold was -48 mV, and
post-spike reset was -70 mV. In addition to after spike hyperpolarization induced by the reset
potential, a 1 ms absolute refractory period was imposed on model neurons. Leak conductance
gleak was fixed at 0.20 mS. Tonic depolarizing conductance gt was equal in magnitude to the
leak conductance. Membrane time constant τm was 20 ms; excitatory synaptic time constant τe
was 10 ms; and inhibitory synaptic time constant τi was 5 ms. Additional description can be
found in[35].

Quantification of simulated dynamics
Spiking dynamics were compared to in vivo activity according to the following criteria: asyn-
chrony[51] was measured with spike-rate correlations, by convolving spike times with a Guas-
sian kernel of width σ = 3 ms. Among excitatory neurons in the recording period, mean
correlation coefficient was 0.0019[50]. This asynchrony emerged in the presence of heteroge-
neous connection strengths, raising the possibility of combining stable propagation with rich
internal dynamics[49,52]. Irregularity was measured with interspike-intervals, which were
observed to have mean squared-coefficient of variation of 0.81, consistent with other reports of
irregular activity[53]. To measure inter-spike intervals, model activity was stimulated with
Poisson firing for 50 ms, then allowed to evolve for 950 ms in isolation. This procedure was
repeated 100 times. Excitatory spiking activity was characterized by a median branching coeffi-
cient of 1.00 (for 10 ms bins), indicating near-critical dynamics[54–57]. Firing rates in the
excitatory population during the recording period were 1.33 ± 3.15 Hz (mean ± std) consistent
with findings in awake behaving mice[58]. Collective spiking generated spike-driven conduc-
tances that dwarfed the leak conductance, in keeping with definitions of high-conductance
state[21].

Network construction
Call the directed network of synaptic connections among excitatory neurons Esyn and the pop-
ulation of excitatory cells Ve. Construct the directed graph of synaptic connections:

Gstructural � ðVe; EsynÞ

To map functional relationships using lagged firing, define recent activity for neuron i at
time t as firing at least once in the 25 ms preceding t.

Elag
ij � Pðj active j i recently activeÞ

Gfunctional � ðVe; ElagÞ
More formally, we can define random variable Si representing the activity of neuron i such

that

sti �
2 if neuron i is firing at time t

1 if neuron i is not firing but was active within the last 25 ms

0 otherwise

)8>><
>>:
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In that case,

Elag
ij � Pðsj ¼ 2 jsi > 0Þ

The recruitment network encompassed synaptically connected neurons manifesting lagged
patterns:

Eomniscient
ij �

(
Elag
ij if Esyn

ij > 0

0 otherwise

)

Grecruitment � ðVe; EomniscientÞ

Iterative Bayesian networks were measured with a heuristic optimization procedure,
described further below and in [35], following [28].

Global network statistics
Since shortest path measurements assume a cost matrix, edge weights were first inverted so
strong connections were cheap and zero-weighted connections were infinitely costly. Shortest
paths between all pairs were computed using Dijkstra’s algorithm. Mean path length was com-
pared to sparseness-matched Erdős-Rényi graphs analyzed in the same way. Local clustering
coefficients were computed using the neighbors of neighbors formulation[32] and aggregated
as the mean over all neurons. Sparseness-matched Erdős-Rényi graphs were analyzed in the
same fashion. Clustering score was the ratio of the actual mean to sparseness-matched null
mean. Small-world topologies can be quantified as a ratio of ratios, clustering elevation divided
by mean path length reduction[33].

Transitive clustering and directed clustering
Clustering was also investigated using a related definition, the number of connected undirected
triangles as a fraction of all possible undirected triangles (transitivity formulation). Directed
clustering was computed in the same way, using directed triangles instead of undirected[38].

To compare clustering between data and model networks, across connection densities that
were very different, we followed the small-world propensity approach[41]. In that work, clus-
tering levels ΔC are normalized as the fractional distance between density-matched lattice and
random graphs. We termed this measure clustering propensity, expressing it as 1 – ΔC so that
1 signified extreme clustering and 0 signified no clustering beyond that expected at random.
We made a straightforward extension to this approach to account for directed clustering, sim-
ply substituting directed triangle counts for undirected triangle counts, with appropriate nor-
malizations[38]. Quantifications based on clustering propensity recapitulated our findings
quantifying clustering as fractional abundance over random expectation.

Mapping presynaptic ensemble in relation to postsynaptic voltage
For the set of voltage bins with lower bounds a and upper bounds b, construct one network
for each bin k, where edge (i, j)k is quantifying the probability model neuron j will have post-
synaptic potential Mj between ak and bk conditioned on presynaptic model neuron i being
recently active. Recently active was defined as firing within 25 ms relative to postsynaptic volt-
age measurement. A final condition was imposed: that connected pairs also share a synaptic
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connection, a convenience of measurement unique to simulated networks.

Gk � ðVe; EkÞ

Ek
j �

(
Pðak < Mj < bk j i recently activeÞ if Esyn

ij > 0

0 otherwise

)

Scaled synaptic topologies
Functional topologies were measured for simulations having typical synaptic weight distribu-
tions (n = 5) and for simulations where random draws from the synaptic weight distributions
were scaled to double strength (n = 6). Ratios for global clustering, characteristic path, and
smallworldness were quantified following[33], as above, on the two sets of weighted, symme-
trized topologies. Directed clustering was measured following[38]. The directed clustering
measurements were conducted on binary topologies to control for potential differences stem-
ming from their different underlying mean synaptic weights.

Preparation of Ca2+-dye loaded slices
All procedures were performed in accordance with and approved by the Institutional Animal
Care and Use Committee at the University of Chicago. One juvenile mouse (postnatal day 14,
of strain C57BL/6) was anesthetized by intraperitoneal injection of ketamine-xylazine and
rapidly decapitated. The brain was dissected and placed in oxygenated, ice-cold artificial cere-
brospinal fluid (Cut-ACSF; contents contain the following in mM: 3 KCl, 26 NaHCO3, 1
NaH2PO4, 0.5 CaCl2, 3.5 MgSO4 25 dextrose, and 123 sucrose). The brain was then sliced cor-
onally using a vibratome (VT1000S; Leica) into 450 μm thick slices. These slices encompassed
the mouse whisker somatosensory cortex. Slices were then transferred into 35°C oxygenated
incubation fluid (Incu-ACSF; contents contain the following, in mM: 123 NaCl, 3 KCl, 26
NaHCO3, 1 NaH2PO4, 2 CaCl2, 6 MgSO4, 25 dextrose) for 30 min. Bulk loading of Ca2+ dye
was then performed, via transfer of slices into a Petri dish containing*2 ml of Incu-ACSF and
an aliquot of 50 μg Fura-2AM (Product code, Invitrogen, location) dissolved in 13 μl DMSO
and 2 μl of Pluronic F-127 (Code, Invitrogen, location) (following [9]).

Ca2+-imaging procedure
Throughout the duration of imaging, slices were continuously perfused with a standard ACSF
solution (contents contain the following, in mM: 123 NaCl, 3 KCl, 26 NaHCO3, 1 NaH2PO4, 2
CaCl2, 2 MgSO4, and 25 dextrose, which was continuously aerated with 95% O2, 5% CO2).
Visualization of Fura-2AM loaded neurons was performed via serial 5 min recordings, col-
lected using the HOPS scanning technique (a suite of software and custom microscopy setup
developed in-house, see [40]). This method allowed us to monitor action potential generation
within individual neurons, by detecting contours of loaded cells from a raster image, then com-
puting an efficient traveling salesman tour over those cell bodies. Our dwell time parameter
was fixed at a value of 16 samples/cell/frame. Population framerate was 20 Hz, resulting in
~450 neurons sampled once every ~50 ms. Changes in emitted fluorescence were analyzed
with a threshold-crossing approach. First, a signal-to-noise cutoff was implemented by measur-
ing the ratio of the 99th percentile divided by the mean for the fluorescence trace of each cell.
Cells exceeding 1.55 by this metric were retained for further analysis. Of the 444 sampled
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neurons, 189 exceeded our strict criterion on signal-to-noise (see Methods). Among these cells
with clean fluorescent signals, instances of elevated firing were identified from excursions in the
signal exceeding two-sigma, with inflection points more precisely identified by following these
excursions backwards to the bin of their most recent median-crossing. The resulting binary vec-
tor identified high-probability periods of spiking activity across the imaged population[14,59].

Inferring connectivity
Recurring timing relationships can be used to identify likely synaptic connections between
individual pairs, particularly lagged firing near the timescale of synaptic integration. We used
an iterative Bayesian inference algorithm to parse these lagged firing patterns[28,35]. The infer-
ence algorithm was initialized five times, and final weights were pooled as an average. The
combined network was thresholded to isolate its strongest relationships. With increasing
threshold, functional relationships became more precise in indicating true monosynaptic con-
nectivity, and also more confidently overabundant in the fan-in triangle motif.

To understand the impact of mistaken inferences from a different perspective, independent
of relationships between functional weight and true connectivity, bootstrap resampling was
used to estimate how errors in inferred connectivity affected estimates of directed clustering
measures. For an error rate of 30% estimated from simulated experimental constraints[35], dif-
ferences in directed clustering were significant even after redacting possible false positives (100
bootstrap-resampled topologies; Fig 8C and 8E).

In a typical simulated network, the density of the recruitment network was 0.049, meaning
only about one quarter of synaptic connections were a site of propagating activity. Since only
those pairs are visible in patterns of lagged firing, the density of recruiting connections was
shown for an additional definition of optimal performance (one potentially more appropriate
for models with sparse firing).

Validating inferred relationships with cross-correlation
Average cross-correlations were computed over a two-second sliding window using z-scored
fluorescence traces. The first signal was computed as the product of two putative presynaptic
fluorescence traces, as a simple score of their activity and/or coactivity. The second signal was
the postsynaptic fluorescence trace. Their raw cross-correlation measures the timing offsets
between putative presynaptic activity and postsynaptic firing. The functional relationships
used to define fan-in triangle motifs versus simple convergence motifs inferred using iterative
Bayesian inference, on the basis of single-frame lagged activity, measured in 50 ms bins.
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