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Purpose: The underlying mechanism for radiation as a potentiator of immune checkpoint inhibition (ICI) is un- 

clear. We developed a novel murine model to investigate the effects of post-irradiation intratumoral heterogeneity 

(ITH) on response to ICI. 

Experimental design: Parental mouse melanoma B16F10 cells were irradiated in vitro (5Gy x 3 fractions), then an 

a priori determined number of resulting colonies were implanted in C57BL/6J immunocompetent mice creating 

syngeneic models of unirradiated (parental) and irradiated tumors with low (irradiated-L) and high (irradiated- 

H) ITH. Mice were treated with placebo, 𝛼-PD-L1, 𝛼-CTLA-4 or dual ICI. Murine tumors underwent whole exome 

sequencing (WES). Clinically correlated paired pre- and post-irradiation patient rectal adenocarcinoma samples 

underwent WES. 

Results: Irradiated-L tumors showed increased tumor mutational burden (TMB) and a sustained decrease in 

ITH. Irradiated-L tumors were predicted to express five neoantigens with high variant allele frequency/clonal 

distribution. Mice with irradiated-L and irradiated-H versus parental B16F10 tumors demonstrated longer overall 

survival with dual ICI. Only mice with irradiated-L tumors experienced an overall survival benefit with single 

agent ICI. Clinically correlated rectal adenocarcinoma samples showed similarly increased TMB and decreased 

ITH following irradiation. 

Conclusions: Post-irradiation ITH modulates ICI response in a murine melanoma model. Irradiation may offer a 

mechanism to widen the therapeutic window of ICI. 
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Immunotherapy yields a durable response and survival benefit in

any previously treatment refractory malignant tumors, yet response

ates remain low ( ∼15%-25% across tumor types) [ 1 ]. Thus, strate-

ies to overcome immunotherapy resistance are needed. Immune check-

oint inhibitors (ICI) in clinical use include monoclonal antibodies that

lock tumor programmed death ligand 1 (PD-L1) binding to T cell pro-

rammed death 1 (PD-1) and antigen-presenting cell B7 ligand binding

o T cell receptor CTLA-4. A growing body of evidence provides support

or combining radiation with ICI [ 2 , 3 ]. However, clinical trials results

how mixed results providing an impetus to characterize and exploit

resently unknown determinants of efficacy of ICI as part of radiation-

ased treatment paradigms. 

Proposed mechanisms of radiation-mediated potentiation of ICI in-

lude immunomodulation of the tumor microenvironment and in situ

accination – wherein neoantigens arising from patient-specific somatic

utations within the tumor stimulate an effective antitumor T cell re-

ponse [ 4 , 5 ]. Tumor mutational burden (TMB) is independently as-

ociated with improved response to immunotherapy, however, non-

rradiated tumors with high TMB have highly variable responses to

heckpoint inhibitors; the ability of radiation to induce TMB sufficient

o drive immunotherapy response is debated [ 6–8 ]. High levels of pre-

icted epitope producing immunogenic mutations correlate with anti-

umor cytotoxic T cell responses across various tumor types [ 9 , 10 ]. For

xample, in chemo-refractory metastatic NSCLC, radiation with anti-

TLA-4 therapy induced a systemic T cell response via a proposed mech-

nism of radiation-induced exposure of immunogenic mutations to the

mmune system [ 11 ]. Mutational intratumoral heterogeneity (ITH) may

acilitate tumor adaptation and poor treatment response via correspond-

ng heterogeneity in protein function [ 12 ] and neoantigen expression

 13 ]. High burden of clonal, but not subclonal, tumor neoantigens cor-

elate with T cell response and clinical benefit of checkpoint inhibitors

roviding support for a dominant role of clonal neoantigens [ 13 ]. In

elanoma, murine models and clinical data show tumors with low ITH,

ndependent of TMB, are more responsive to checkpoint inhibitors [ 14 ].

We have developed a syngeneic model of unirradiated and irradi-

ted melanoma tumors with defined states of low- and high- ITH. In

he present study we characterize the role of ITH post-irradiation on

esponse to ICI. Our preclinical model is supported by corresponding

ndings in clinically correlated samples. 

ethods 

umor cell line and culture conditions 

Mouse skin melanoma cell line B16F10 (ATCC, Manassas, VA) was

aintained in Dulbecco’s Modified Eagle’s Medium supplemented with

0% fetal bovine serum, 2 mM L-glutamine, 100 U/mL penicillin and

00 𝜇g/mL streptomycin (Mediatech). Cells were incubated at 37°C in

 humidified chamber containing 5% CO2. 

ell line irradiation and characterization 

To develop models of unirradiated and irradiated tumors with low-

nd high- ITH (irradiated-L and irradiated-H, respectively), parental

16F10 cells were irradiated in vitro to control ITH at the time of implan-

ation and facilitate accurate TMB characterization of resultant tumors

 Fig. 1 A). Parental B16F10 cells were initially maintained in a 75cm 

2 

ask prior to irradiation with an X-RAD 320 irradiator (Precision X-Ray,

nc., North Branford, CT) to a total dose of 15 Gy given in 3 fractions.

o generate the irradiated-L model, following the first fraction of irra-

iation (5Gy) and recovery to 40-60% confluence, per clonogenic assay

rotocol, cells were seeded into six-well plates with 20 cells per well.

ollowing recovery to 40-60% confluence the cells were re-irradiated

5Gy). The latter step was repeated once again to reach a total dose of
2 
5Gy. To generate the irradiated-H model, following the first fraction of

rradiation (5Gy) and recovery to 40-60% confluence, 1000 irradiated

ells were seeded in a 75cm 

2 flask. Following recovery to 40-60% con-

uence the cells were re-irradiated (5Gy). The latter step was repeated

nce again to reach a total dose of 15Gy. The average final number of

olonies present in each well (irradiated-L) or flask (irradiated-H) that

ere harnessed for injection at the end of the full radiation course was

alculated based on the average surviving fraction wherein the number

f colonies present following each fraction is equal to the surviving frac-

ion multiplied by the number of cells seeded multiplied by the plating

fficiency. 

urine tumor models and in vivo experiments 

Female, 6-8 weeks old C57BL/6J mice (The Jackson Laboratory, Bar

arbor, Maine) were cared for per protocols approved by the University

f North Carolina Animal Care and Use Committee. Three mouse mod-

ls, unirradiated parental B16F10, irradiated-L, and irradiated-H were

stablished with right flank injection of 5.0 × 10 4 cells of the parental

16F10 cell line or an a priori determined number of colonies from irra-

iated cell lines suspended in FBS-free DMEM medium and Matrigel (BD

iosciences) in a 1:1 ratio on day 0. For each mouse model we estab-

ished four ICI treatment groups, control (placebo), 𝛼-PD-L1, 𝛼-CTLA4,

nd dual ICI. Mouse anti-PD-L1 ( 𝛼-PD-L1) 10ug/g (clone 10F.9G2),

ouse anti-CTLA4 ( 𝛼-CTLA4) 5ug/g (clone 9D9) antibodies (Bioxcell)

ere delivered via intraperitoneal injection on days 3, 6 and 9 [ Fig. 1 B).

Three times weekly, mice were monitored for toxicity and tumors

ere measured with digital calipers via two independent measurements

ncluding at least one measurement by a researcher blinded to treat-

ent group. Mice were euthanized with CO2 asphyxiation once tumors

eached 2000mm 

3 , exceeded 20mm in any dimension, or upon pres-

nce of moribund behavior. Tumors were dissected en bloc and frozen

n liquid nitrogen. 

urine model whole-exome sequencing and somatic mutation calling 

Genomic DNA isolation from fresh frozen tumors was performed per

anufacturer’s protocol with the DNeasy Blood & Tissue Kit (Qiagen).

hole exome libraries were constructed with genomic DNA and the

ureSelectXT Mouse All Exon kit (Agilent Technologies, CA, USA) de-

igned to enrich the complete mouse exome including 221,784 exons

rom 24,306 genes, covering 49.6 Mb per manufacturer’s protocol. Ge-

omic DNA was sheared to 200bp using a LE220 Focused-ultrasonicator

Covaris) prior to library construction. Genomic DNA library quality

nd quantity were assessed using a 2200 TapeStation and High Sen-

itivity D1000 ScreenTape (Agilent), respectively. Exome libraries were

equenced using the Illumina HiSeq 2500 platform. Paired-end reads

2 × 150 bp) were generated using a mean depth of 100X. Sequenc-

ng reads were mapped to the mouse genome (UCSC mm10) using the

urrows-Wheeler Alignment Maximal Exact Matches algorithm (BWA-

EM) (v2.18.29) [ 15 ] per developer default parameters. Duplicates

ere removed with Picard (v2.18.29). Somatic variations were called

ith GATK4 Mutect2 [ 16 ], filtered against C57BL/6c as a panel of nor-

al and variants were annotated using ANNOVAR [ 17 ] and Variant Ef-

ect Predictor (VEP v84) [ 18 ]. Changes in clonal architecture between

aired parental B16F10 and irradiated-L tumors were evaluated using

NVs detected using whole exome sequencing (WES) data for Irradiated-

 versus Parental B16F10 tumors following harvest and the fishplot

ackage for R analysis pipeline [ 19 ]. 

urine model prediction of candidate neoantigens 

Genes with < 10 transcripts on WES were filtered and neoantigen

redictions were performed using pVAC-Seq (version 1.5.1) with a MHC

inding affinity IC50 ≤ 500 nmol/L threshold following published guide-

ines [ 20 ]. Expression of predicted neoantigens was validated with RNA
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Fig. 1. Development of a murine melanoma model with defined states of tumor mutational burden and intratumoral heterogeneity (ITH) to elucidate the mechanisms 

through which irradiation potentiates checkpoint inhibition. A. Mouse skin melanoma B16F10 cells were irradiated in vitro with 5Gy x 3 fractions and passaged 

between fractions. Colonization assays were performed to facilitate clonal expansion of cells surviving irradiation. Three mouse models were established with right 

flank injection of 5.0 × 10 4 cells of parental cell line B16F10 (parental B16F10) or an a priori determined number of colonies from irradiated cell lines to generate 

tumors with low (irradiated-L) and high ITH (irradiated-H). B. For each mouse model we established four ICI treatment groups, control (placebo), 𝛼-PD-L1, 𝛼-CTLA4, 

and dual ICI. 
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equencing. Tumor messenger RNA was isolated with the RNeasy Mini

it (Qiagen) and heat fragmented for preparation of poly(A)-selected

NA libraries using the TruSeq RNA library (Illumina) per manufac-

urer’s protocol. Pooled, normalized c-DNA libraries were run on a HiSeq

500 sequencer (Illumina) with paired-end reads (2 × 150 bp). Sequenc-

ng reads were aligned to the mouse mm10 reference genome using

TAR (version 2.6.0c) [ 21 ] and transcript read counts were determined

sing RSEM (version 1.2.28) [ 22 ]. 

atient and sample characteristics 

To validate murine model results demonstrating the effect of ra-

iation on TMB and ITH with clinical correlates, 5 paired (pre- and

ost-radiation) tissue specimens (three intra-tumor locations to ensure

dequate spatial sampling) and peripheral blood mononuclear cells

PBMCs) were obtained from human subjects with pathologically con-

rmed rectal adenocarcinoma, cT3N0-2. Per standard of care at the

iaoning Cancer Hospital & Institute in China, patients received neoad-

uvant chemoradiation (2.14 Gy x 24 fractions = 51.36 Gy) with concur-

ent oral capecitabine then resection and subsequent adjuvant therapy

er provider’s discretion. Pre-radiation tissue specimens were Formalin-

ixed Paraffin-Embedded (FFPE) at time of biopsy. Post-radiation re-

ected tissue was frozen in liquid nitrogen. The Institutional Review

oard approved this study. 

hole Exome Sequencing and somatic mutation calling 

DNA was isolated using DNA FFPE, DNAeasy and DNA blood mini

its (Qiagen) for FFPE, fresh frozen tissue and PBMCs, respectively per

anufacturer’s protocols. Genomic DNA was fragmented to 200bp us-

ng the ME220 Focused-ultrasonicator (Covaris). WES libraries were

onstructed with the SureSelectXT Human All Exon Kit V6 (Agilent

echnologies, CA) and sequenced on the HiSeq 2500 (Illumina) with

aired-end reads (2 × 150bp), mean depth 200X. Genomic DNA library

uantity and quality were assessed using a Qubit fluorometer (Thermo

isher) and 2100 Bioanalyzer System (Agilent), respectively. High qual-

ty paired end reads were aligned to the NCBI human reference genome

GRCh38/hg38) using BWA-MEM, v0.7.15-r1140). Duplicates were re-

oved with Picard v.2.2.1 [ 23 ] and mutations were called using GATK

aplotypeCaller [ 24 ]. Somatic variants were detected using GATK4 Mu-

ect2 (v.4.0) [ 25 ], genetic variants were annotated with ANNOVAR
3 
 26 ], the effects of gene variants were predicted using Ensembl Vari-

nt Effect Predictor [ 18 ] and chromosome copy number alterations for

urine and human samples were characterized using Control-FREEC

 27 ]. 

tatistical analysis 

Tumor growth curves were analyzed using two-way ANOVA for vari-

bles of time and tumor volume with Bonferroni’s multiple-comparison

orrection. Survival curves were generated per the Kaplan–Meier

ethod and compared with the log-rank (Mantel-Cox) test. Statistical

nalyses were performed in GraphPad Prism 8.0. P-values ≤ 0.05 were

onsidered significant and are indicated on figures as ∗ p ≤ 0.05, ∗∗ p <

.01, ∗∗∗ p < 0.005. 

tudy Approval 

Murine studies were performed per protocols approved by the Uni-

ersity of North Carolina Animal Care and Use Committee. The Institu-

ional Review Board of the Liaoning Cancer Hospital & Institute in China

pproved the human tissue studies. 

esults 

We established a syngeneic murine melanoma model with de-

ned states of heterogeneity to enable characterization of functional

rradiation-induced increases in TMB and the impact of ITH on tu-

or growth and survival in response to 𝛼-CTLA-4 and 𝛼-PD-L1 therapy

 Fig. 1 ). Following irradiation of the parental B16F10 cell line (5 Gy x 3

ractions), we implanted a uniform number of tumor cells pooled from a

nown number of colonies, 5.4 and 256, respectively, to establish flank

umors in immunocompetent mice with defined states of low (irradiated-

) and high (irradiated-H) ITH. WES of parental and irradiated-L tu-

ors showed irradiation increased TMB by 618 exon mutations includ-

ng 587 single nucleotide variants (SNV), 31 insertion/deletions (indel),

ig. 2 A, and induced chromosome copy number alterations (Supple-

entary Figure 1A). The most common SNV were T > G (32%) and C > T

21%), Fig. 2 B. Irradiation led to predicted expression of five neoanti-

ens in the following genes: Olfr344, Serpina3a, Pcdhb4, Olfr1318 and

erpud2 ( Table 1 ). Three of the five mutant epitopes had higher pre-

icted binding affinity than the corresponding wild type epitope. Each
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Fig. 2. Tumor mutation burden and variant allele frequency shifts between parental B16F10 and irradiated-L tumors on whole exome sequencing. A. Histogram with 

frequency of identified mutational classes B. Histogram with frequency of single nucleotide variants C. Violin plot of variant allele frequencies in irradiated-L versus 

parental B16F10 tumors. Exome sequencing detected substantial increases in variant allele frequency (median 0.24, interquartile range 0.19-0.31, minimum 0.028, 

maximum 0.49). D. Fish plot showing a bottleneck followed by subsequent clonal evolution and diminished intratumoral genetic heterogeneity between parental 

B16F10 and irradiated-L tumors. Informative SNVs and corresponding displayed VAF detected during whole-exome sequencing were used for subclonal detection. 
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T  
eoantigen was predicted to have a public/clonal distribution (variant

llele frequency, VAF, > 0.25). Expression of predicted neoantigens was

onfirmed on messenger RNA sequencing. On exome-wide comparison,

omatic mutation VAF increased between irradiated-L versus parental

umors reflecting decreased ITH (median increase 0.24, interquartile

ange 0.19-0.31, minimum 0.028, maximum 0.49), Fig. 2 C. To evaluate

hether detected neoantigens arose de novo or reflected clonal expan-

ion, we compared SNV profiles on WES and predicted neoantigen VAF
4 
etween irradiated-L versus parental tumors after harvest. Following a

ottleneck due to inoculation of a limited number of colonies, irradiated-

 tumors showed clonal expansion of both irradiation-induced de novo

eoantigens and a subset of neoantigens harbored in parental tumors

ith high VAF reflecting a sustained decrease in neoantigen heterogene-

ty ( Fig. 2 D). 

To discriminate between the functional effects of irradiation-induced

MB and ITH on tumor growth in vivo , we quantified tumor growth
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Table 1 

Murine neoantigen prediction in irradiated-L tumors. 

Gene Name Olfr344 Serpina3a Pcdhb4 Olfr1318 Herpud2 

Mutation L/P D/Y F/L K/T F/V 

Protein Position 63 198 708 128 390 

Mutation Position 6 3 4 2 9 

Mutant Epitope Sequence PMYFFPSHL VSYLHRNTS VLLLMGARL CTPLHYLTI SAWSFITTV 

Best mutant epitope score ∗ 46.07 166.96 250.1 114.95 33.4 

Wild type epitope score † 23.18 8571.13 197.8 1183.39 60.5 

Fold Change 𝛼 0.503 51.336 0.791 10.295 1.811 

Tumor DNA Depth 572 320 366 295 171 

Tumor DNA VAF 0.259 0.412 0.287 0.312 0.263 

∗ Lowest half maximal inhibitory concentration (IC50) binding affinity of all prediction algorithms 

used. 
† IC50 binding affinity of the wild type epitope. 
𝛼 IC50 binding affinity of the wild type epitope divided by the best mutant epitope score.VAF: Variant 

allele frequency. 

Fig. 3. Tumor growth curves for parental B16F10 tumors, irradiated-L and irradiated-H according to treatment groups: control, 𝛼-PD-L1, 𝛼-CTLA-4 and combination 

𝛼-PD-L1/ 𝛼-CTLA-4. Number of mice per treatment group, n = 10 for parental B16F10 and irradiated L, n = 8 for irradiated-H. Tumors were measured 3 times per 

week. Mice were euthanized once tumors reached 2000mm 

3 , exceeded 20mm in any dimension, or upon presence of moribund behavior. When treated with dual 

checkpoint inhibition, tumors derived from irradiated-L grew at a significantly lower rate versus control (p < 0.0001, Bonferroni’s multiple comparisons test). Error 

bars denote the standard error of the mean (SEM). 
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m  

2  

I  
ate and survival in parental, irradiated-L and irradiated-H control co-

orts receiving placebo and cohorts receiving treatment with 𝛼-CTLA-

, 𝛼-PD-L1, or dual 𝛼-PD-L1/ 𝛼-CTLA-4 checkpoint blockade ( Fig. 3 ).

rradiated-L and irradiated-H tumors grew slower than parental tumors

 Fig. 3 , Supplementary Figure 2). Average tumor volumes on day

4 were as follows parental 1196 mm 

3 , irradiated-L 519 mm 

3 (ver-

us parental, p = 0.001) and irradiated-H 716 mm 

3 (versus parental
5 
 = 0.0291) corresponding to a modest improvement in median over-

ll survival for mice with irradiated tumors treated with placebo

irradiated-L 22.5d, irradiated-H 22d, parental 18d, p = 0.0015). 

Mice with unirradiated parental tumors did not benefit from treat-

ent with ICI (median survival, control: 18d, 𝛼-PD-L1: 20d, 𝛼-CTLA4:

1.5d, dual ICI: 21, p = 0.066), Fig. 4 . When treated with dual

CI, irradiated-L tumors grew significantly slower than control tumors
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Fig. 4. Survival curves for parental B16F10 tumors, irradiated-L and irradiated- 

H by treatment groups: control, 𝛼-PD-L1, 𝛼-CTLA-4 and combination 𝛼-PD-L1/ 𝛼- 

CTLA-4. Number of mice per treatment group, n = 10 for parental B16F10 and 

irradiated-L, n = 8 for irradiated-H. Mice with irradiated-L tumors had a sur- 

vival benefit (versus control median 22.5d) with single agent 𝛼-PD-L1 (median 

26d, p = 0.046), 𝛼-CTLA-4 (median 34d, p = 0.0004) and dual checkpoint in- 

hibitor therapy (median 38.5d, p = 0.0005). Mice with irradiated-H tumors ex- 

perienced increased survival (versus control 22d) with combination 𝛼-PD-L1/ 𝛼- 

CTLA-4 (median 28.5d, p = 0.0075). 
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 Fig. 3 ) and overall survival was highest in the irradiated-L model

irradiated-L 38.5d, irradiated-H 28.5d, parental 21d, p = 0.0004),

ig. 4 . Only the irradiated-L model showed a survival benefit with sin-

le agent 𝛼-PD-L1 (median survival 26d, p = 0.046), 𝛼-CTLA-4 (me-

ian survival 34d, p = 0.0004) and dual ICI (median survival 38.5d,

 = 0.0005), Fig. 4 . The irradiated-H model showed increased over-

ll survival with combination 𝛼-PD-L1/ 𝛼-CTLA-4 (irradiated-H, median

urvival 28.5d, p = 0.0075). On pairwise comparison, the irradiated-

 model showed a greater improvement in overall survival with dual

CI than the irradiated-H model (median survival 38.5d versus 28.5d,

 = 0.045). 

The treatment paradigm for rectal adenocarcinoma includes neoad-

uvant irradiation, resection and consideration of adjuvant therapy of-

ering an opportunity to investigate irradiation-induced changes in TMB
6 
nd ITH through comparison of pre- and post-irradiation tissue from

iopsy and resection, respectively. Five sets of paired tissue were ob-

ained from patients with pathologically confirmed rectal cancer prior to

nd following neoadjuvant radiation with concurrent oral capecitabine,

 radiosensitizer. Matched normal PBMCs from each patient served as

 paired control during sequencing analysis. WES of pre- and post-

eoadjuvant therapy tumors showed neoadjuvant therapy caused chro-

osome copy number alterations (Supplementary Figure 1B), and in-

reased TMB by a median of 209 exon mutations (range 168-246) in-

luding SNV (median 173, range 154-221) and indel (median 14, range

-73) leading primarily to missense mutations ( Fig. 5 A). The most com-

on mutation signatures were T > C (31%) and C > T (38%) ( Fig. 5 B).

utations were most common in MUC12, PCDHB10, OR1S2, OR1S1,

ARP4, PRAMEF10, NBPF9, ATP8, ANKRD36C , and AGAP4 ( Fig. 5 C).

n exome-wide comparison for each of the five paired samples, somatic

utation VAF increased following neoadjuvant chemoradiation reflect-

ng decreased ITH ( Fig. 5 D). 

iscussion 

We developed a murine model to control for irradiation-induced

MB while varying defined states of ITH, thereby enabling investiga-

ion of their causal effects on tumor immunogenicity as assessed by re-

ponse to ICI ( Fig. 1 ). Irradiation induced a sustained increase in TMB

nd resulting de novo neoantigens in tumor forming daughter cells. Dur-

ng tumor evolution, mutations in the founding cell are propagated as

lonal/public (VAF > 0.25) whereas mutations arising within a subset

re subclonal/private [ 28 ]. Irradiated-L tumors showed a sustained de-

rease in clonal diversity and ITH as evidenced by substantial shifts in

umor somatic mutation VAF and oligoclonal expansion of neoantigens

 Fig. 2 ). Irradiated-L and irradiated-H tumors grew slower than unirra-

iated parental tumors ( Fig. 3 ), but in the absence of subsequent ICI, im-

lantation of previously irradiated cells alone conferred only a modest

urvival benefit ( Fig. 4 , Supplementary Figure 2). Unirradiated parental

umors failed to respond to single or dual 𝛼-PD-L1 and 𝛼-CTLA-4 ther-

py ( Figs. 3 and 4 ). However, the irradiated-H and irradiated-L mod-

ls showed significantly improved overall survival with dual ICI; the

rradiated-L model showed the most robust improvement with a near

oubling of median overall survival ( Fig. 4 ). Only the irradiated-L model

howed a benefit from single agent ICI ( Fig. 4 ). Clinically correlated data

rom patients with rectal adenocarcinoma showed an increase in TMB

nd decrease in ITH following neoadjuvant radiotherapy consistent with

ndings in our murine model ( Fig. 5 ). 

The identification of ITH as a modulator of response to ICI follow-

ng irradiation has important translational implications. Multiple studies

emonstrate an enhanced response to ICI among patients with prior ra-

iation. However, the etiology of this synergy is debated and primarily

enters on mechanisms of in situ vaccination via induction of immuno-

enic tumor death, release of tumor-specific antigens/pro-inflammatory

ytokines, and alterations to the tumor microenvironment, among oth-

rs [ 2 , 29–33 ]. Low ITH and high TMB in the de novo treatment setting

re potential predictors of response to ICI [ 13 , 14 ]. TMB, irrespective

f prior irradiation, has been investigated as a predictor of therapeutic

esponse across various histologies but alone is typically insufficient to

redict benefit from ICI [ 6 , 13 , 34–40 ]. 

The present study proposes radiation as a modality to augment TMB

nd clonal neoantigen burden while decreasing ITH to intentionally

otentiate ICI response building upon prior studies that show radia-

ion widens the therapeutic window of ICI by increasing expression

f immunogenic neoantigens [ 41 , 42 ]. In our murine model irradiation-

nduced changes in neoantigen expression and alterations in TMB were

ustained throughout subsequent tumor formation and growth consis-

ent with prior investigations showing lasting effects of irradiation and

ytoreductive treatments on tumor evolution including subclonal expan-

ion and reduced subclonal heterogeneity in glioblastoma multiforme

nd neuroblastoma [ 43 , 44 ]. Optimization of radiation dose and frac-
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Fig. 5. Tumor mutation burden and variant allele frequency shifts between matched pretreatment primary and post-neoadjuvant irradiation rectal adenocarcinoma 

samples on whole exome sequencing. A. Histogram with frequency of identified mutational classes B. Histogram with frequency of single nucleotide variants C. 

Ten genes most frequently mutated following irradiation D. Violin plot of changes in variant allele frequencies between matched pretreatment primary and post- 

neoadjuvant irradiation rectal adenocarcinoma samples. Exome sequencing detected increases in single nucleotide variant allele frequency post-irradiation across all 

5 paired samples (metric, range): median 0.06-0.43, lower quartile 0.03-0.19, upper quartile 0.13-0.53, minimum 0.004-0.01, maximum 0.27-1.00. 
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ionation to promote in situ vaccination is an active area of research

 2 , 41 , 45–47 ]. For example, in preclinical models, the PULSAR approach

 ablative radiation doses given in temporally spaced pulses) achieved

etter tumor control in combination with ICI compared to traditionally

ractionated radiation [ 47 ]. Our data is compatible with the hypothe-

is that low ITH versus high ITH facilitates sustained immune recog-

ition of clonal tumor neoantigens [ 12–14 ]. Further, irradiation has

een shown to induce increased expression of PD-L1 and immunosup-

ressive checkpoint ligands which may further contribute to the syn-

rgy of radiotherapy and ICI observed in our murine model [ 48 , 49 ]. In

ontext with the preceding literature, our study, suggests investigation

f combined-modality treatment regimens should consider methods to

everage radiation-induced changes in TMB and ITH to maximize re-

ponses to ICI. 

Our study has several important strengths and limitations. Irradi-

tion of tumor cells prior to implantation enabled definition of precise

tates of ITH in our model and control for non-genetic irradiation effects

ncluding target volume and dose-dependent alterations to the tumor

icroenvironment that influence tumor immunogenicity [ 50 ]. We per-

ormed WES on parental and irradiated tumors grown in vivo rather than

mmediately post-irradiation in vitro facilitating analysis of sustained

nd therefore likely therapeutically relevant alterations in patterns of

MB and ITH. While the present murine model may not directly sim-

late the de novo treatment setting, it bears fidelity to critical clinical
7 
cenarios including use of adjuvant immunotherapy, treatment of lo-

al/metastatic post-irradiation recurrences and suggests that previously

rradiated relapsed or residual tumors may be more likely to respond

o ICI. Our murine model studies were limited to one cell line – the

ell-characterized B16F10 cell line. Additional validation of pre-clinical

tudies would demonstrate the reproducibility of our findings. Though

he sample size for our clinically correlated data was limited, our data

rom patients with rectal cancer underscores a similar effect of radiation

n TMB and ITH across a spectrum of histologies. 

In conclusion, we demonstrate ITH modulates response to ICI fol-

owing irradiation. Tumors derived from irradiated cells with low ITH

esponded most robustly to ICI. Our data suggests irradiation is a mech-

nism via which ITH may be modulated to optimize response to ICI

nd in concert with prior preclinical and clinical studies further sup-

orts therapy paradigms and clinical trials that integrate radiation and

mmunotherapy. 
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