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INTRODUCTION 
 

Ischemic stroke is a major cause of human morbidities 

and mortalities around the world [1, 2]. The prevalence 

of this disease is rising in recent years [1, 2]. It is 

therefore important to further understand the pathological 

mechanisms of neuronal cell injury in ischemic stroke [3, 

4], and to develop novel therapy strategies [2, 5, 6]. 

 

In cultured neurons, oxygen and glucose deprivation 

(OGD) re-oxygenation (OGDR) procedure is applied to 

mimic ischemia-reperfusion injury [7–10]. Sustained 

OGD (over 1h) will disrupt mitochondrial functions, 

and when coupled with re-oxygenation, significant 

reactive oxygen species (ROS) would be produced to 

cause severe oxidative injury [9, 11]. These events 

would lead to protein damage, lipid peroxidation, DNA 

breaks, and eventually neuronal cell necrosis and 

apoptosis [9, 11]. 

CPI-1189 (4-acetamido-N-(tert-butyl)-benzamide) is a 

tumor necrosis factor alpha (TNFα)-inhibiting 

compound. It has displayed cytoprotective and anti-

inflammatory actions in different cell culture and 

animal models [12–17]. In animal models of Parkinson's 

disease (PD) and AIDS dementia, CPI-1189 treatment 

attenuated the deterioration in cognitive and/or motor 

function with no relevant side effects [16, 17]. 

 

Studies have also implied that CPI-1189 represents a 

promising neuroprotective compound. As it can protect 

neuronal cells/primary neurons from various stimuli 

[12–17]. CPI-1189 was able to mitigate TNFα-induced 

cell apoptosis and quinolinic acid-induced cell necrosis 

[14, 16]. In addition, CPI-1189 alleviated cell death 

caused by supernatants from macrophages of patients 
with AIDS dementia [14, 16]. Furthermore, CPI-1189 

inhibited p38 phosphorylation and suppressed 

interleukin 1β (IL1β)-induced neuronal cell death [15]. 
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ABSTRACT 
 

Oxygen glucose deprivation (OGD)/re-oxygenation (OGDR) induces profound oxidative injury and neuronal cell 
death. It mimics ischemia-reperfusion neuronal injury. CPI-1189 is a novel tumor necrosis factor alpha-
inhibiting compound with potential neuroprotective function. Here in SH-SY5Y neuronal cells and primary 
murine cortical neurons, CPI-1189 pretreatment potently inhibited OGDR-induced viability reduction and cell 
death. In OGDR-stimulated neuronal cells, p38 phosphorylation was blocked by CPI-1189. In addition, CPI-1189 
alleviated OGDR-induced reactive oxygen species production, lipid peroxidation, and glutathione consumption. 
OGDR-induced neuronal cell apoptosis was also inhibited by CPI-1189 pretreatment. Furthermore, in SH-SY5Y 
cells and cortical neurons, CPI-1189 alleviated OGDR-induced programmed necrosis by inhibiting mitochondrial 
p53-cyclophilin D-adenine nucleotide translocase 1 association, mitochondrial depolarization, and lactate 
dehydrogenase release to the medium. In summary, CPI-1189 potently inhibited OGDR-induced oxidative injury 
and neuronal cell death. 
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Whether CPI-1189 can protect neuronal cells from 

OGDR-induced oxidative injury remains unknown. 

 

RESULTS 
 

CPI-1189 protects neuronal cells from OGDR-

induced cell death 

 

SH-SY5Y neuronal cells were treated with CPI-1189 at 

gradually-increased concentrations from 10 to 300 nM. 

Cells were further cultured for 48h. Using CCK-8 cell 

viability and Trypan blue staining assays, we showed that 

CPI-1189, at tested concentrations, failed to significantly 

inhibit cell viability (Figure 1A) and induce cell death 

(Figure 1B). Next, OGDR was applied. SH-SY5Ycells 

were subjected to OGD for 4h, followed by re-

oxygenation for another 48h. OGDR procedure led to 

over 70% viability (CCK-8 OD) reduction (Figure 1A) 

and significant cell death (increased Trypan blue ratio, 

Figure 1B). CPI-1189 pretreatment (for 1h) largely 

alleviated OGDR-induced cytotoxicity (Figure 1A, 1B). 

CPI-1189 displayed a concentration-dependent manner in 

protecting SH-SY5Y cells from OGDR (Figure 1A, 1B), 

especially at 30-300 nM (Figure 1A, 1B). It was however 

ineffective at 10 nM, the lowest concentration tested 

(Figure 1A, 1B). Since 100 nM of CPI-1189 displayed a 

significant effect against OGDR (Figure 1A, 1B), this 

concentration was selected for further studies. 

 

OGDR-induced neuronal cell death is associated with 

p38 activation [18–20]. Inhibition of p38 can protect 

neuronal cells from OGDR-induced oxidative injury 

and cell death [18–20]. Studies have shown thatCPI-

1189 was able to inhibit p38 activation to exert 

neuroprotective activity [12, 15]. Here we found that 

OGDR stimulation induced robust p38 activation (p38α 

Thr180/Tyr182 phosphorylation) in SH-SY5Y cells 

(Figure 1C). It was largely inhibited by CPI-1189 (100 

nM) pretreatment (Figure 1C). 

 

In primary murine cortical neurons, OGDR procedure 

induced potent viability (CCK-8 OD) reduction (Figure 

1D) and cell death (Figure 1E). Both were attenuated by 

CPI-1189 (100 nM) pretreatment. OGDR-induced p38 

activation was almost blocked by CPI-1189 (Figure 1F). 

CPI-1189 single treatment did not alter cell viability 

(Figure 1A–1D), cell death (Figure 1B–1E), or p38 

activation (Figure 1C–1F) in SH-SY5Y cells and cortical 

neurons. These results showed that CPI-1189 protected 

neuronal cells from OGDR-induced cell death. 

 

CPI-1189 inhibits OGDR-induced oxidative injury 

in neuronal cells 

 

To test whether p38 inhibition is the primary 

mechanism of CPI-1189-induced neuroprotection 

against OGDR, we utilized the CRISPR/Cas9 strategy 

to knockout p38α. As described, a CRISPR/Cas9-

p38α-KO-GFP construct was transduced to SH-SY5Y 

cells. Single stable cells were established following 

GFP sorting and puromycin selection. These cells were 

namely as ko-p38α cells. As shown, p38α protein 

expression was depleted in ko-p38α cells (Figure 2A). 

OGDR-induced p38 activation, or p38α Thr180/ 

Tyr182 phosphorylation, was blocked (Figure 2A). In 

ko-p38α SH-SY5Y cells, OGDR-induced viability 

reduction (Figure 2B) and cell death (Figure 2C) were 

alleviated. Significantly, CPI-1189 could still protect 

ko-p38α SH-SY5Y cells from OGDR (Figure 2B, 2C), 

indicating that p38-independent mechanisms should 

participate in CPI-1189-induced neuroprotection 

against OGDR. 

 

OGDR is able to induce mitochondrial dysfunction 

and ROS production to mediate neuronal cell death 

[7–10, 20–22]. Conversely, antioxidants or other 

ROS scavenging strategies can protect neuronal cells 

from OGDR [7–10, 20–22]. By applying CellROX 

dye assay [23, 24], we found that OGDR stimulation 

in SH-SY5Y cells significantly increased cellular 

ROS contents (Figure 2D). It was largely inhibited by 

CPI-1189 (100 nM) pretreatment (Figure 2D). In 

addition, OGDR-induced lipid peroxidation (TBAR 

activity increase, Figure 2E) and GSH consumption 

(reflected by decreased GSH/GSSG ratio, Figure 2F) 

were inhibited by CPI-1189. These results implied 

that CPI-1189 inhibited OGDR-induced oxidative 

injury in SH-SY5Y cells. To mimic oxidative stress, 

hydrogen peroxide (H2O2) was added to cultured 

SH-SY5Y cells, resulting in significant viability 

reduction (Figure 2G) and cell death (Figure 2H). 

These were also inhibited by CPI-1189 pretreatment 

(Figure 2G, 2H). 

 

In the primary murine cortical neurons, the p38 

inhibitor SB203580 alleviated OGDR-induced cyto-

toxicity by restoring cell viability (Figure 2I) and 

inhibiting cell death (Figure 2J). Significantly, CPI-

1189 offered additional neuroprotection against OGDR 

in cortical neurons (Figure 2I, 2J), indicating the 

existence of p38-independent mechanisms. Indeed, 

OGDR stimulation induced oxidative injury. It caused 

increase in CellROX intensity (Figure 2K) and 

GSH/GSSG ratio reduction (Figure 2L). OGDR-

induced oxidative stress was potently inhibited by CPI-

1189 (100 nM, 1h pretreatment) (Figure 2K, 2L). 

Furthermore, H2O2 induced significant viability (CCK-

8 OD) reduction (Figure 2M) and cell death (Figure 2N) 

in cortical neurons, which were also attenuated by CPI-
1189 pretreatment (Figure 2M, 2N). Collectively, CPI-

1189 inhibited OGDR-induced oxidative injury in 

neuronal cells. 
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Figure 1. CPI-1189 protects neuronal cells from OGDR-induced cell death. SH-SY5Y neuronal cells (A–C) or primary murine cortical 
neurons (D–F) were pretreated for 1h with CPI-1189 (at applied concentrations) and subjected to OGDR procedure, cells were cultured for 
applied time periods, cell viability, cell death and p38 activation were tested by CCK-8 (A–D), Trypan blue staining (B–E) and Western blotting 
(C–F) assays, respectively. “Mock” stands for neuronal cells placed in norm-oxygenated regular medium containing glucose (same for all 
Figures). Quantified values were mean ± standard deviation (SD, n=5). * P < 0.05 vs. “Mock” cells. # P < 0.05 vs. cells with OGDR stimulation 
but “DMSO (0.1%)” pretreatment. Experiments were repeated three times, with similar results obtained. 
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CPI-1189 inhibits OGDR-induced apoptosis 

activation in neuronal cells 

 

OGDR-induced oxidative injury would lead to neuronal 

cell apoptosis [21, 22, 25, 26]. We thus tested the 

potential effect of CPI-1189 on cell apoptosis. 

Following OGDR stimulation, caspase-3 activity 

(Figure 3A) and caspase-9 activity (Figure 3B) were 

significantly increased in SH-SY5Y cells. In addition, 

cleavages of caspase-3, PARP (caspase-3’s substrate), 

 

 
 

Figure 2. CPI-1189 inhibits OGDR-induced oxidative injury in neuronal cells. Stable SH-SY5Y cells with CRISPR/Cas9-p38α-KO-GFP 

(ko-p38α cells) were pretreated with or without CPI-1189 (100 nM, 1h pretreatment), control cells were transduced with the empty vector 
(“Cas9-C”), cells were subjected to OGDR procedure and cultured for applied time periods; Expression of listed proteins was shown (A); Cell 
viability and death were tested by CCK-8 (B) and Trypan blue staining (C) assays, respectively. SH-SY5Y cells (D–H) or primary murine cortical 
neurons (K–N) were pretreated for 1h with CPI-1189 (100 nM), followed by OGDR or hydrogen peroxide (H2O2, 300 μM) stimulation, cells 
were then cultured for applied time periods, cellular ROS contents (CellROX dye intensity, D, K), lipid peroxidation (by recording TBAR  
activity, E), and GSH/GSSG ratio (F–L) were tested. For cells with H2O2 stimulation, cell viability and death were tested by CCK-8 (G–M) and 
Trypan blue staining (H–N) assays, respectively. The primary murine cortical neurons were pretreated for 1h with SB203580 (5 μM) or plus 
CPI-1189 (100 nM), followed by OGDR stimulation and cells were then cultured for 48h; Cell viability and death were tested by CCK-8 (I) and 
Trypan blue staining (J) assays, respectively. * P < 0.05 vs. “Mock” cells. # P < 0.05 vs. cells with OGDR stimulation/H2O2 treatment but “DMSO 
(0.1%)” pretreatment. ** P < 0.05 (B, C, I, J). Quantified values were mean ± standard deviation (SD, n=5). Experiments were repeated three 
times, with similar results obtained. Scale bar= 100 μm (D). 
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and caspase-9 were detected in OGDR-stimulated cells 

(Figure 3C). Single strand DNA (ssDNA) accumulation 

was investigated (indicating DNA breaks, Figure 3D). 

These results implied activation of mitochondrial 

apoptosis cascade in OGDR-stimulated SH-SY5Y cells. 

Importantly, CPI-1189 (100 nM, 1h pretreatment) 

potently inhibited OGDR-induced caspase-3/-9 

activation (Figure 3A–3C) and ssDNA accumulation 

(Figure 3D) in SH-SY5Y cells. 

 

Further confirming apoptosis activation in SH-SY5Y 

cells, TUNEL-positive nuclei (labeled with yellow 

stars) ratio was significantly increased following OGDR 

stimulation (Figure 3E). Also, cells with positive 

Annexin V staining were increased after OGDR (Figure 

3F). CPI-1189 pretreatment largely attenuated OGDR-

induced apoptosis activation in SH-SY5Y cells (Figure 

3E, 3F). CPI-1189 single treatment failed to induce 

caspase (Figure 3A–3D) and apoptosis (Figure 3E, 3F) 

activation in SH-SY5Y cells. 

 

In primary murine cortical neurons, OGDR stimulation 

increased caspase-3 activity (Figure 3G) and TUNEL- 

positive nuclei ratio (Figure 3H), which were largely 

 

 
 

Figure 3. CPI-1189 inhibits OGDR-induced apoptosis activation in neuronal cells. SH-SY5Y neuronal cells (A–F, I–K) or primary 

murine cortical neurons (G, H, J–L) were pretreated for 1h with CPI-1189 (100 nM) and stimulated with OGDR or hydrogen peroxide (H2O2, 
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300 μM), cells were cultured for applied time periods, caspase activation and cell apoptosis were tested by the assays mentioned in the text. 
Quantified values were mean ± standard deviation (SD, n=5). * P < 0.05 vs. “Mock” cells. # P < 0.05 vs. cells with OGDR stimulation/H2O2 
treatment but “DMSO (0.1%)” pretreatment. Experiments were repeated three times, with similar results obtained. Scale bar= 100 μm (E). 

attenuated byCPI-1189 (100 nM, 1h pretreatment, 

Figure 3G, 3H). As the positive control, H2O2 was 

utilized to increase caspase-3 activation (Figure 3I, 3J) 

and TUNEL-positive nuclei ratio (Figure 3K, 3L) in 

SH-SY5Y neuronal cells and primary neurons. 

Importantly, CPI-1189 pretreatment largely inhibited 

H2O2-induced apoptosis activation in neuronal cells 

(Figure 3I–3L). Thus, CPI-1189 inhibited OGDR-

induced apoptosis activation in neuronal cells. 

 

CPI-1189 inhibits OGDR-induced programmed 

necrosis in neuronal cells 

 

In SH-SY5Y cells, the caspase-3 inhibitor z-DEVD-fmk 

and the pan caspase inhibitor z-VAD-fmk were only 

alleviated and not abolished OGDR-induced viability 

reduction (Figure 4A) and cell death (Figure 4B). 

Besides apoptosis studies have shown that OGDR can 

simultaneously induce programmed necrosis in 

neuronal cells [22, 25]. In OGDR-treated SH-SY5Y 

cells, p53 translocated to mitochondria (Figure 4C, 

“Mito Inputs”) and immunoprecipitated with CyPD and 

ANT1 (Figure 4C, “Mito-IP”), two key components of 

mPTP [27, 28]. Furthermore, mitochondrial 

depolarization, evidenced by mitochondrial JC-1 green 

monomers accumulation (Figure 4D), was detected in 

OGDR-treated SH-SY5Y cells. It was followed by 

medium LDH release (Figure 4E). These results 

confirmed the activation of mitochondrial programmed 

necrosis cascade in OGDR-treated SH-SY5Y cells (see 

other studies reporting the same cascade [28, 29]). 

Significantly, CPI-1189 pretreatment largely attenuated 

OGDR-induced programmed necrosis activation in SH-

SY5Y cells, inhibiting p53-CyPD-ANT1 association 

(Figure 4C), mitochondrial depolarization (Figure 4D), 

and LDH release to the medium (Figure 4E). 

 

Similar results were obtained in primary murine cortical 

neurons. CPI-1189 pretreatment inhibited OGDR-

induced mitochondrial p53-CyPD-ANT1 association 

(Figure 4F), JC-1 green monomers accumulation 

(Figure 4G), and cell necrosis (Figure 4H). CPI-1189 by 

itself, as expected, did not induce programmed necrosis 

cascade in SH-SY5Y cells and cortical neurons (Figure 

4C-H). Following H2O2 stimulation, mitochondrial 

depolarization (JC-1 green monomers accumulation) 

was detected in SH-SY5Y cells and primary cortical 

neurons (Figure 4I). Cell necrosis, evidenced by 

medium LDH release, was detected as well (Figure 4J). 
CPI-1189 pretreatment inhibited H2O2-induced actions 

above in SH-SY5Y cells and cortical neurons (Figure 

4I, 4J). Therefore CPI-1189 inhibited OGDR-induced 

programmed necrosis in neuronal cells. Necrostatin-1 

(Nec-1) is a specific necrosis inhibitor and it directly 

blocks receptor-interacting serine/threonine-protein 

kinase 1/3 (RIPK1/3) [30]. Further supporting our 

hypothesis, we found that Nec-1 reduced OGDR-

induced viability reduction in SH-SY5Y cells (Figure 

4K) and primary cortical neurons (Figure 4L). 

 

DISCUSSION 
 

CPI-1189 is a compound clinically evaluated as a 

potential therapy for AIDS patients with dementia [13, 

17]. Recent in vitro and in vivo studies have proposed 

the potential neuroprotective property of this compound 

[14–16]. Supporting its potential function in protecting 

neurons, we found that CPI-1189 pretreatment, at only 

nM concentrations, potently inhibited OGDR-induced 

viability reduction and death in SH-SY5Y cells and 

murine cortical neurons. CPI-1189 blocked OGDR-

induced p38 activation. This compound was also 

neuroprotective in p38α-KO SH-SY5Y cells and p38-

inhibited cortical neurons, indicating the possibility of 

p38-independent mechanisms. 

 

OGDR-induced neuronal cell injury is associated with 

oxidative stress [9, 11, 21, 22]. OGD can severely 

impair mitochondrial functions, and ROS produced by 

re-oxygenation would then cause significant oxidative 

stress, DNA breaks, protein damage, inflammation, 

lipid peroxidation, and eventually neuronal cell death. 

Conversely, ROS scavenging is able to protect neuronal 

cells from OGDR [21, 22, 25]. 

 

Di et al., showed that in neuronal cells, microRNA-613 

silencing upregulated its target SphK2 and inhibited 

OGDR-induced oxidative stress [21]. The same group 

reported that the SphK1 activator K6PC-5 provoked 

SphK1-Nrf2 signaling to inhibit OGDR-induced 

oxidative injury in neuronal cells [22]. Zhang et al., 

showed that plumbagin improved OGDR-induced SH-

SY5Y cell injury by inhibiting ROS [31]. 

 

In the present study, we show that CPI-1189-induced 

anti-OGDR activity was associated with ROS 

scavenging. CPI-1189 largely inhibited OGDR-induced 

ROS production, lipid peroxidation, and GSH 

consumption in SH-SY5Y cells and cortical neurons. 

Importantly, OGDR-induced neuronal cell apoptosis, 

the consequence of oxidative injury [21, 22, 25], was 

inhibited by CPI-1189 as well. Therefore, ROS 

scavenging should be one important mechanism of CPI-

1189 protecting against OGDR. 
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Figure 4. CPI-1189 inhibits OGDR-induced programmed necrosis in neuronal cells. SH-SY5Y cells were pretreated for 1h with z-
DEVD-fmk or z-VAD-fmk (each at 50 μM), followed by OGDR stimulation; Cells were cultured for another 48h, cell viability and death were 
tested by CCK-8 (A) and Trypan blue staining (B) assays, respectively. SH-SY5Y neuronal cells (C–E) or primary murine cortical neurons (F–H) 
were pretreated for 1h with CPI-1189 (100 nM) and treated with OGDR, cells were cultured for applied time periods, mitochondrial p53-
CyPD-ANT1 association (“Mito-IP: CyPD”) and their expression (“Mito Inputs”) were tested (C–F); Mitochondrial depolarization and cell 
necrosis were tested by JC-1 dye assay (D–G) and medium LDH release (E–H), respectively. SH-SY5Y neuronal cells or primary murine cortical 
neurons were pretreated for 1h with CPI-1189 (100 nM) and stimulated with hydrogen peroxide (H2O2, 300 μM); Cells were cultured for 
applied time periods, mitochondrial depolarization (I) and cell necrosis (J) were tested similarly. SH-SY5Y cells or primary cortical neurons 
were pre-treated for 1 hour with 25 μM of necrostatin-1 (“Nec-1”), followed by OGDR stimulation and cells were then cultured for 48h; Cell 
viability was tested by CCK-8 assays (K, L). Quantified values were mean ± standard deviation (SD, n=5). * P < 0.05 vs. “Mock” cells. # P < 0.05 
vs. cells with OGDR stimulation/H2O2 treatment but “DMSO (0.1%)” pretreatment. Experiments were repeated three times, with similar 
results obtained. Scale bar= 100 μm (D–G). 
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Besides apoptosis OGDR can also provoke 

programmed necrosis in neuronal cells. Wang et al., 

found that OGDR induced NKILA (NF-κB Interacting 

LncRNA) upregulation to promote neuronal cell 

necrosis [25]. SphK1 activation by K6PC-5 inhibited 

OGDR-induced programmed necrosis in neuronal cells 

[22]. Here in SH-SY5Y cells and murine cortical 

neurons, CPI-1189 suppressed OGDR-induced 

programmed necrosis by inhibiting mitochondrial p53-

CyPD-ANT1 association, mitochondrial depolarization, 

and LDH release to the medium. These results 

suggested a novel mechanism (inhibition of 

programmed necrosis) of anti-OGDR by CPI-1189. 

Future studies with concurrent inhibition of OGDR-

induced cell necrosis and apoptosis should explain the 

superior neuroprotective activity by CPI-1189. 

 

MATERIALS AND METHODS 
 

Chemicals and reagents 

 

CPI-1189 was provided by Selleck (Shanghai, China). 

Antibodies were obtained from Santa Cruz 

Biotechnology (Santa Cruz, CA, USA). DMSO, 

caspase-3 inhibitor z-DEVD-fmk, hydrogen peroxide 

(H2O2), necrostatin-1 (“Nec-1”), SB203580, the pan 

caspase inhibitor z-VAD-fmk, and puromycin were 

provided by Sigma-Aldrich (St. Louis, MO, USA). 

 

Cell culture 

 

SH-SY5Y neuronal cells were provided by Dr. Di [32] 

and were cultured as described [32]. SH-SY5Y cells 

were differentiated by the incubation in BDNF plus 

glutamine medium (serum free) [32]. The primary 

murine cortical neurons were also provided by Dr. Di, 

and were cultured using previously described protocols 

[32]. At day-10 (DIV-10), over 95% of cells were 

cortical neurons. The protocols of using primary murine 

cells were approved by the Ethics Committee and 

IACUC of authors’ institution. 

 

Cell viability 

 

Cell Counting Kit-8 (CCK-8, Dojindo Laboratories, 

Kumamoto, Japan) was utilized to test cell viability. 

Neuronal cells were seeded into 96-well plates at 4, 000 

cells per well. After treatment, neuronal cells were 

incubated with CCK-8 reagent for 3h. In each well, 

CCK-8 optical density (OD) was tested at 450 nm. 

 

Cell death 

 

Neuronal cells were seeded into 96-well plates at 4, 000 

cells per well. Following treatment, dead cells were 

positively stained with Trypan blue. The ratio was 

recorded by an automatic cell counter (Roche, 

Shanghai, China). 

 

Lactate dehydrogenase (LDH) assay 

 

Neuronal cells were seeded into six-well plates at 1×105 

cells per well. With the applied treatment, LDH contents in 

culture medium were analyzed through a two-step 

enzymatic reaction LDH assay kit (Takara, Tokyo, Japan), 

which were then normalized to total LDH contents. 

 

OGD/re-oxygenation 

 

As reported [7], neuronal cells were placed in an airtight 

chamber with a continuous flux of gas (95% N2/5% CO2). 

The chamber was sealed and the cells were incubated 

under OGD for 4h. Cells were then re-oxygenated 

(OGDR) and cultured in regular medium for applied time 

period. “Mock” neuronal cells were placed in norm-

oxygenated with regular medium containing glucose. 

 

Lipid peroxidation assay 

 

Following treatment, thiobarbituric acid reactive 

substances (TBAR) assay was carried out to examine 

the cellular lipid peroxidation contents. The detailed 

protocol was reported before [21, 33]. 

 

Western blotting 

 

Protocols for Western blotting were described 

previously [34]. In brief, 30 μg protein lysates per 

treatment were loaded to 10-12% SDS-PAGE gels and 

transfected to PVDF blots. The blots were then blocked 

and incubated with the applied primary and secondary 

antibodies. ECL reagents were utilized to examine the 

targeted protein band. The ImageJ software (NIH) was 

utilized to quantify the protein band. 

 

Caspase-3/-9 activity 

 

Previously describe protocol was used [7, 32]. In brief 20 

μg of cytosolic protein lysates from neuronal cells with 

applied treatment were incubated with caspase-3/-9 

substrate in the assay buffer [7]. Substrates were 

conjugated with 7-amido-4-(trifluoromethyl)-coumarin 

(AFC) (Calbiochem-EMD Millipore). An Fluoroskan 

Ascent FL machine was utilized to quantify the intensity 

of released AFC under 355 nm excitation and 525 nm 

emission. 

 

TUNEL (terminal deoxynucleotidyl transferase 

dUTP nick end labeling) assay 

 

Neuronal cells were seeded into12-well plates (at 5 × 104 

cells per well). Following treatment, a TUNEL In Situ 
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Cell Death Detection Kit (Roche) was applied to measure 

apoptotic nuclei. Nuclei were co-stained with TUNEL 

and DAPI. Cells were then visualized under a confocal 

microscope (Leica). For each treatment, 1000 cells in five 

random views (1×100 magnification) were counted to 

calculate the average TUNEL ratio (% vs. DAPI). 

 

ROS assay 

 

Neuronal cells were seeded into six-well plates. 

Following treatment, cells were stained with fluorescent 

dye CellROX (Sigma, 7.5 μM for 1h). CellROX intensity 

was tested by a fluorescence spectrofluorometer 

(Molecular Devices, San Jose, CA, USA). Representative 

CellROX fluorescence images were presented. 

 

Glutathione (GSH) contents 

 

Following treatment, a GSH/GSSG assay kit (Beyotime, 

Wuxi, China) was utilized to calculate the ratio of 

reduced glutathione to oxidized GSSG 

(GSH/GSSG×100%). 

 

DNA breaks 

 

Neuronal cells were seeded into six-well plates. 

Following treatment, single strand DNA (ssDNA) 

contents, indicating DNA breaks, were measured 

through ssDNA ApoStrandTM ELISA kit (BIOMOL 

International, Plymouth Meeting, PA, USA). ELISA 

OD was examined at 450 nm. 

 

CRISPR-Cas9-induced p38α knockout (KO) 

 

A CRISPR-Cas9-p38α-KO-GFP-puromycin construct 

was designed by Genechem (Shanghai, China) and 

transfected into cultured SH-SY5Y cells (in polybrene 

medium). GFP-positive SH-SY5Y cells were sorted by 

FACS and distributed to 96-well plates to achieve single 

cells. Stable cells were further selected by puromycin. 

In the stable cells, p38α KO was verified by Western 

blotting. The target DNA sequence of p38α sgRNA is 

TGGACGTTTTTACACCTGCA (PAM: AGG). 

 

Mitochondrial 

 

immunoprecipitation (Mito-IP). As described [25], 

following the applied treatment, a “Mitochondria 

Isolation Kit for Cultured Cells” (Pierce, Rockford, IL) 

was utilized to isolate mitochondria of neuronal cells 

(via high-speed centrifugation). The resulting 

mitochondrial fraction lysates (300 μg) were pre-cleared 

and incubated with anti-Cyclophilin D (CyPD) antibody 

[35]. Afterwards, protein IgG beads (30 μL per 

treatment, Sigma) were added to obtain CyPD-

immunoprecipitated proteins, which were then tested by 

Western blotting. The mitochondrial CyPD-ANT1 

(adenine nucleotide translocase 1)-p53 association was 

analyzed. 
 

Mitochondrial depolarization 

 

JC-1 fluorescence dye aggregates into mitochondria to 

form green monomers in cells with mitochondrial 

depolarization [36]. Neuronal cells were seeded into 12-

well plates. Following treatment, cells were stained with 

JC-1 (15 μg/mL, Sigma), and then washed and 

examined under a fluorescence spectrofluorometer (F-

7000, Hitachi, Japan) at 488 nm (green). The 

representative JC-1 fluorescence images integrating 

both green (at 488 nm) and red (at 625 nm) fluorescence 

channels were presented as well. 
 

Annexin V-FACS 
 

Neuronal cells were seeded into six-well plates at 1×105 

cells per well. With the applied treatment, cells were co-

stained with Annexin V (15 μg/mL) and Propidium Iodide 

(PI, 15 μg/mL), and measured under a FACS machine 

(BD, Shanghai, China). Annexin V-positive cells 

(apoptotic cells) were gated and its ratio was recorded. 
 

Statistics 
 

Data were expressed as means ± standard deviation (SD). 

Statistical analyses among different groups were tested by 

one-way analysis of variance (ANOVA) and Tukey’s post 

hoc multiple comparison tests (SPSS 23.0, SPSS, 

Chicago, IL, USA). The Student t test (Excel2007) was 

applied to compare statistical difference between two 

groups. P< 0.05 was considered as statistically significant. 
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