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ABSTRACT In past years, several Chlamydia-related bacteria have been discovered,
including Simkania negevensis, the founding member of the Simkaniaceae family.
We evaluated the antimicrobial susceptibility patterns of this emerging intracel-
lular bacterium and highlighted significant differences, compared with related
Chlamydiales members. S. negevensis was susceptible to macrolides, clindamycin,
cyclines, rifampin, and quinolones. Importantly, unlike other Chlamydiales mem-
bers, treatment with �-lactams and vancomycin did not induce the formation of
aberrant bodies, leading to a completely resistant phenotype.
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Rapid progress in diagnostic techniques has enabled the discovery of several novel
Chlamydia-related bacteria, including Simkania negevensis. Mostly known for the

pathogenic Chlamydia spp., the Chlamydiales order is now composed of at least 9
family-level lineages (1), each with specific biological characteristics. S. negevensis is the
founding member of the Simkaniaceae family and represents an emerging pathogen
previously associated with respiratory diseases, at least in the Middle East (2, 3).
Infections were empirically treated with a macrolide-based regimen (4). Several differ-
ences regarding antimicrobial susceptibility have been highlighted among the different
Chlamydiales family-level lineages (5, 6). Therefore, we investigated the antibiotic
susceptibility of the Simkaniaceae family, which remains poorly studied, using S.
negevensis as a model. We provide subsequent information on the evolution of
antimicrobial resistance in this order, as well as potential therapeutic options.

Simkania negevensis strain Z was grown at 37°C in Vero cells in 25-cm2 cell culture
flasks (Corning, USA), in Dulbecco’s modified essential medium (DMEM) (PAN Biotech,
Aidenbach, Germany) supplemented with 10% fetal calf serum (FCS), with 5% CO2. A 6-
or 7-day-old coculture, diluted 1:1,000, was used to inoculate fresh A549 cells or Vero
cells that had been seeded previously at 1.5 � 105 cells/ml on a 24-well plate (Corning),
as described previously (7). At 2 h postinfection, the medium was changed for medium
containing 2-fold serial dilutions of various antibiotics. Antibiotic-free wells served as
growth controls, while uninfected cells served as negative controls. Twelve antibiotics
from 8 different classes were used in this study. MICs were defined as the minimal
concentrations that prevented bacterial growth at day 6, compared to a control
infection performed in the absence of antibiotics. Growth at day 2 was also assessed for
�-lactams, fosfomycin, and vancomycin, to ensure the absence of effects due to
instability of the compounds after 48 h at 37°C. An in-house specific quantitative PCR
targeting the 16S rRNA gene was used to quantify S. negevensis DNA, as described
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previously (7). The absence of antibiotic toxicity toward cells was determined by
examining the microplates using an inverted microscope (Zeiss Axiovert 25; Carl Zeiss).
When solvents other than distilled water (i.e., dimethyl sulfoxide [DMSO], 0.1 M HCl, and
1 M NaOH) were used to suspend antibiotic solutions, the absence of effects of these
solvents on S. negevensis growth was assessed.

Like other Chlamydiales species, S. negevensis was susceptible to macrolides, clin-
damycin, cyclines, and rifampin (Table 1). Interestingly, S. negevensis was susceptible to
quinolones; while Chlamydiaceae are sensitive, other Chlamydia-related bacteria, such
as Waddlia chondrophila, Parachlamydia spp., and Estrella lausannensis, are resistant (5,
6, 8). Previous work suggested that S. negevensis was resistant to ciprofloxacin (9). In
that study, MICs were determined in amoebae, as the minimal concentrations that
prevented amoebal lysis. The observed results might have been due to the presence of
an efflux pump in amoebae and decreasing quinolone bioavailability. Although several
mutations in the gyrA and parC quinolone resistance-determining regions (QRDRs) were
identified, they differed from those observed in resistant Chlamydia-related bacteria,
which may explain the observed absence of resistance (6, 9).

S. negevensis was resistant (MICs of �32 �g/ml) to three kinds of cell wall inhibitors,
i.e., �-lactams, fosfomycin, and vancomycin. Chlamydiales members lack the traditional
peptidoglycan (PG) layer. However, partial susceptibility to �-lactams is observed
among Chlamydia spp., which are known to form aberrant bodies when treated with

TABLE 1 Antibiotic susceptibility of Simkania negevensis, compared to others Chlamydialesa

Drug

MIC (�g/ml)

Simkaniaceae,
S. negevensis
(this study)b

Parachlamydiaceae,
Parachlamydia
acanthamoebae (8)c

Waddliaceae,
W. chondrophila
(5, 11)b

Criblamydiaceae,
E. lausannensis (6)b

Chlamydiaceae

C. trachomatis
(10, 21–24)b

Chlamydia
pneumoniae
(11, 21)b

Cyclines
Tetracycline 2 ND ND 0.25 0.25–0.5 0.125–0.5
Doxycycline 0.5 2–4 0.25 0.25 0.03–0.25 0.02–0.5

Lincosamide
Clindamycin 1 ND 2–4 ND 0.25–2 ND

Macrolides
Erythromycin ND 0.06 ND ND 0.02–2 0.02–0.25
Clarithromycin ND �0.06 ND ND 0.02–0.125 0.004–0.125
Azithromycin �0.06 ND 0.25 2 0.6–2 0.02–0.5

�-Lactams
Penicillin derivatives �1,000 �32 �32 �32 0.25–2 5
Ceftriaxone �1,000 �32 �32 �32 16–32 ND

Phosphonic acid
derivative

Fosfomycin �1,000 ND 500 NDd 500–1,000 �1,000

Glycopeptide
Vancomycin �1,000 ND ND ND 1,000 1,000

Fluoroquinolones
Ciprofloxacin 4 �16 �16 32 0.5–2 1–4
Ofloxacin 1 �16 �16 16 0.5–1 0.5–2
Levofloxacin 0.5 ND ND ND 0.12–0.5 0.25–1

Rifamycin
Rifampin �0.06 0.25–0.5 ND ND �0.125 to 1 �0.125

aShown are the MICs of various antibiotics against members of the Chlamydiales orders (5, 6, 8, 10, 11, 21–24). This table was adapted from reference 8 with
permission. ND, not done.

bTested in mammalian cells.
cTested in amoebae.
dCriblamydiaceae present the Cys115-to-Asp substitution in the active site of MurA, which is known to confer resistance to fosfomycin in Chlamydia spp.
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penicillin derivatives (10), while W. chondrophila is susceptible to high doses of fosfo-
mycin (11). Aberrant bodies represent enlarged forms of the bacterium, due to abnor-
mal division despite persisting DNA replication (11). Therefore, we evaluated the
morphology of S. negevensis particles treated with �-lactams, fosfomycin, and vanco-
mycin, in immunofluorescence assays using an in-house rabbit polyclonal anti-S. ne-
gevensis antibody, as described previously (7). As shown in Fig. 1A, no abnormal
morphological aspects of S. negevensis could be observed with �-lactam treatment,
even with concentrations as high as 1,000 �g/ml. This contrasted strikingly with the
abnormal morphology of Chlamydia trachomatis observed with 2 �g/ml �-lactams,
making S. negevensis unique among Chlamydiales members. Indeed, W. chondrophila (in
the Waddliaceae family) and E. lausannensis (in the Criblamydiaceae family) form
aberrant bodies with �-lactam treatment (500 �g/ml) (6, 12). Furthermore, unlike W.
chondrophila (11), S. negevensis replication was not inhibited by high doses of �-lactams
(1,000 �g/ml) (Table 1). This difference could not be explained by the slower replicative
cycle, as similar observations were made at day 6 postinfection (Fig. 1B). Several
�-lactamase motifs are included in the S. negevensis genome (13) and may contribute
to the phenotype. However, W. chondrophila exhibits partial sensitivity to high doses of
�-lactams despite having a class C �-lactamase encoded in its genome (14).

Similarly to Chlamydia spp. (11), S. negevensis replication was not inhibited by high
doses of fosfomycin, which targets the enzyme MurA (implicated in the early steps of
PG biosynthesis). However, a small fraction of S. negevensis particles, which increased by

FIG 1 Effects of cell wall inhibitors on Simkania negevensis infection and morphology. The growth of S. negevensis was observed by
immunofluorescence, in the presence or absence of cell wall inhibitors. (A) Effects of �-lactam, fosfomycin, and vancomycin treatment
in Vero cells at 48 h postinfection. S. negevensis, Chlamydia trachomatis strain UW-3/Cx, and Waddlia chondrophila strain WSU 86-1044
(ATCC VR-1470) were detected using a polyclonal anti-S. negevensis rabbit antibody (1:2,500), a mouse anti-major outer membrane
porin (MOMP) antibody (1:50) (ab20881; Abcam, Cambridge, UK), or an anti-W. chondrophila rabbit antibody (1:2,000), respectively
(green), followed by a secondary antibody (Alexa Fluor 488-conjugated goat anti-mouse or anti-rabbit antibody [1:500]; Molecular
Probes, Thermo Fisher Scientific, Waltham, MA), mammalian cells were stained with Texas red-conjugated concanavalin A (1:50) (red),
and nucleic acids were stained with 4=,6-diamidino-2-phenylindole (DAPI) (1:1,000) (blue). (B) Effects of fosfomycin and penicillin
treatment in Vero cells at day 6 postinfection.
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day 6, showed abnormal morphological features consistent with aberrant bodies (Fig.
1A and B), although remaining significantly less important than observed for W.
chondrophila (11). Chlamydia resistance to fosfomycin is suspected to be related to a
single substitution (Cys115 to Asp) in the active site of MurA (11, 15). This mutation was
not found in S. negevensis, supporting the observed partially sensitive phenotype.
Finally, we did not observe aberrant bodies with vancomycin treatment, a drug that
inhibits transpeptidation through high-affinity binding to the D-alanine precursor
(Fig. 1A).

Recently, several works have demonstrated the presence of a modified version of
PG, which is required for cell division (12, 16, 17), in Chlamydiales members, thus
explaining their partial sensitivity to cell wall inhibitors. Interestingly, a recent study
failed to isolate PG-like structures in S. negevensis (18), while such structures were
identified in Protochlamydia amoebophila (18) and C. trachomatis (17). In the same work,
incorporation of fluorescently labeled D-alanine could not be highlighted in S. negeven-
sis (18), which correlates with the absence of vancomycin effects observed here.
However, a previous work showed that, similarly to C. trachomatis, S. negevensis was
susceptible to D-cycloserine, a molecule that inhibits the alanine racemase Alr and the
alanine ligase Ddl, which are required for D-alanine formation (19). While a predicted
Ddl enzyme is encoded in the S. negevensis genome, no Alr coding sequence is present,
similarly to Chlamydiaceae (12). It is not known whether the serine hydroxymethyl-
transferase GlyA encoded in the S. negevensis genome could compensate for the
absence of Alr, as described for Chlamydiaceae (20).

Despite the absence of PG-like structures, the activity of two PG-remodeling en-
zymes, NlpD and AmiA, was documented in S. negevensis (16), and enzymes implicated
in PG biosynthesis are highly conserved among Chlamydiales members, including S.
negevensis, which supports their crucial role (12). However, the different responses to
different cell wall inhibitors, each targeting a specific step of PG biosynthesis, indicate
that, despite the likely requirement for a modified form of PG for cell division, some
significant differences exist in the PG biosynthesis pathway of S. negevensis, which
might bring further insights into the mechanisms of Chlamydiales cell division.

In conclusion, in this work we highlighted several differences in the antimicrobial
responses of S. negevensis, compared to other Chlamydiales members. Although the
pathogenic role of Simkania spp. remains to be better defined, the precise knowledge
of their antimicrobial susceptibility patterns provides significant information regarding
the biology and evolution of the Chlamydiales order.
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