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Article

Introduction

Lung cancer is the most common cause of cancer death in 
both men and women worldwide. Despite advances in treat-
ment, such as combination chemotherapy and chemoradia-
tion, survival has improved very little over the past few 
decades (Schiller 2001). Recently, many targeted agents 
have emerged (LoPiccolo et al. 2008), including gefitinib, 
the epidermal growth factor receptor (EGFR) tyrosine 
kinase inhibitor, which was approved in Japan for the treat-
ment of non-small cell lung cancer (NSCLC) in 2002. It 
appears to be more efficacious in specific populations. 
Tumor characteristics, such as the presence of EGFR muta-
tions and/or amplification, correlate with greater response 
rates. Mutations in members of the EGFR family induce 

oncogenic effects by activating signaling and anti-apoptotic 
pathways, notably those mediated by phosphatidylinositol 
3-kinase (PI3K)-AKT. However, over-expression of EGFR 
does not successfully predict for treatment advantage with 
targeted therapeutics and prognosis in NSCLC (Howard 
et al. 2004; Sasaki et al. 2008; Vergis et al. 2008). Two 
major signaling pathways downstream of EGFR have been 
identified: the mitogen-activated protein kinase (MAPK) 
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Summary
Activation of numerous pathways has been documented in non-small cell lung cancer (NSCLC). Epidermal growth factor 
receptor (EGFR) has emerged as a common therapeutic target. The mitogen-activated protein kinase (MAPK) and AKT 
signaling pathways are downstream of EGFR and deregulated via genetic and epigenetic mechanisms in many human cancers. 
We evaluated selected markers in the EGFR pathway with reference to outcome. Tissues from 220 cases of NSCLC patients 
presented in a tissue microarray were assayed with immunohistochemistry for phosphorylated AKT, phosphorylated MAPK, 
phosphorylated mTOR, and EGFR and then quantified by automated image analysis. Individually, the biomarkers did not 
predict. Combined as ratios, p-mTOR/p-AKT, and p-MAPK/EGFR function as prognostic markers of survival (p=0.008 and 
p=0.029, respectively), however, no significance was found after adjustment (p=0.221, p=0.103). The sum of these ratios 
demonstrates a stronger correlation with survival (p<0.001) and remained statistically significant after adjustment (p=0.026). 
The algebraic combination of biomarkers offer the capacity to understand factors that predict outcome better than current 
approaches of evaluating biomarkers individually or in pairs. Our results show the sum of p-mTOR/p-AKT and p-MAPK/
EGFR is a potential predictive marker of survival in NSCLC patients. (J Histochem Cytochem 62:335–346, 2014)
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pathway and the PI3K/AKT/mammalian target of rapamy-
cin (mTOR) pathway (Jorissen et al. 2003). AKT, activated 
by extracellular stimuli in a PI3K-dependent manner, plays 
a pivotal role in oncogenesis (Franke et al. 1997). Induction 
of these pathways is mediated by phosphorylation of the 
proteins involved. Numerous studies have independently 
examined the prognostic significance of members of these 
pathways (Pelloski et al. 2006; Herberger et al. 2007; 
Schmitz et al. 2007; Tsurutani et al. 2007; Guo et al. 2008; 
Hager et al. 2008; Schmitz et al. 2008; Al-Bazz et al. 2009; 
Galleges Ruiz et al. 2009; Scartozzi et al. 2012), but none 
has assayed these pathways as a group. Clinical trials with 
single molecularly targeted agents have demonstrated mod-
erate success, with longer patient survival; however, these 
results have not been as successful as anticipated (Pandya et 
al. 2007; Donev et al. 2011; Ramalingam et al. 2013). 
Recent efforts have focused on combining multiple molecu-
larly targeted agents, in acknowledgement of the pathway 
cross-talk that is common in many cancers.

In this study, we focused on the MAPK and AKT/
mTOR pathway, utilizing immunohistochemistry to 
interrogate the phosphorylation status of MAPK, AKT, 
mTOR in combination with total EGFR expression on a 
lung cancer tissue microarray. Previously, we have dem-
onstrated that ratio-based biomarkers can provide 
enhanced discrimination of patient survival over assess-
ment of the biomarkers individually (Chung et al. 2009). 
This approach requires quantitative assessment of the 
biomarkers. Based on the ratio of biomarkers, where the 
downstream protein is the numerator to the upstream 
protein (denominator) for pathways of activation, we 
demonstrate that the ratio of phosphorylated mTOR 
(p-mTOR) to phosphorylated AKT (p-AKT) (p-mTOR/
p-AKT) and the ratio of phosphorylated MAPK 
(p-MAPK) to EGFR (p-MAPK/EGFR) are predictive of 
survival in NSCLC.

Materials & Methods

Clinical Samples

A total of 220 NSCLC cases were selected from the pathol-
ogy case archive of Toyama University Hospital based on 
the diagnosis and the quality of the available tissue on the 
paraffin blocks (Kitano et al. 2010; Chung et al. 2012). This 
study was approved by the ethics committee at Toyama 
University and a signed consent form was obtained from 
each subject. These patients underwent complete tumor 
resection between 1983 and 2003 and did not receive neoad-
juvant treatment. The double cancer patients were excluded. 
The tumors were staged according to the International Union 
against Cancer’s tumor-node-metastasis classification and 
histology was defined and graded according to 2004 WHO 
guidelines (Fukuoka et al. 2004).

TMA Construction, Immunohistochemistry and 
Scoring

Tissue microarray (TMA) was constructed using a TMA 
arrayer (Pathology Devices, Westminster, MD) as previ-
ously described (Kononen et al. 1998). For each case, areas 
with the most representative histology were selected from 
review of hematoxylin and eosin (H&E)-stained slides. 
Normal tissues are included in the TMA as controls. The 
cylindrical tissue samples (0.6 mm) were cored from the 
above described areas in the donor block and extruded into 
the recipient array. Multiple 5-µm-thick sections were cut 
with a microtome and H&E-stained TMA slides were 
examined every 50th section for the presence of tumor cells.

EGFR (M3563) antibody was purchased from DAKO 
(Carpinteria, CA), and p-AKT (T308), p-MAPK and 
p-mTOR antibodies were purchased from Cell Signaling 
(Beverly, MA). The tissue sections were deparaffinized in 
xylene and rehydrated through a graded alcohol series to 
distilled water. After optimization of immunohistochemis-
try conditions, antigen retrieval for EGFR was performed 
using Proteinase K (DAKO), for p-mTOR using pressure 
chamber (Pascal, DAKO) with pH 6 Target Retrieval 
Solution (DAKO), and for other antibodies using pH10 
Target Retrieval Solution (DAKO) pretreatment. These 
slides were blocked with hydrogen peroxide/methanol. 
After rinsing, the slides were incubated with the primary 
antibodies over night at 4C. The dilutions for each antibody 
were 1:1000 for EGFR, 1:100 for p-mTOR, 1:500 for 
p-MAPK, and 1:100 for p-AKT. Target signals were 
detected with LSAB peroxidase kit and DAB (DAKO) 
(Chung et al. 2009; Krishnan et al. 2006; Molinolo et al. 
2007). Negative controls where performed to demonstrate 
the specificity of staining. The stained slides were lightly 
counterstained with hematoxylin and then imaged using the 
Aperio ScanScope CS Slide Scanner (Aperio Technologies, 
Vista, CA) system. Tumor cells for quantification were 
selected manually via annotation (Farris et al. 2011) in 
ImageScope and the positive pixel count algorithm (v1.0) 
was run within the Spectrum Plus Database (Aperio 
Technologies) to quantify cytoplasmic expression of 
p-AKT, p-MAPK and p-mTOR, and the membrane v9 
algorithm was used to quantify the membranous expression 
of EGFR. The cutoff values were used for classification of 
pixels into four groups: strong positive, positive, weak posi-
tive and negative (Supplemental Table 1).

Statistical Analysis

Statistical analysis was performed using JMP Statistical 
Discovery Software, Version 7.0.1 (SAS Institute, Cary, 
NC). Weight Score (WS) was defined as WS = [(the number 
of strong positive pixels) ×1000 + (the number of positive 
pixels) ×100 + (the number of weak positive pixels) ×10 + 
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(the number of strong negative pixels) ×1] / (the total num-
ber of pixels). WS above 10% of the highest score was con-
sidered high score group to evaluate each antibody. Using 
the chi-square test, the antibodies were evaluated in associa-
tion with each other within each category. Overall survival 
was analyzed according to the Kaplan-Meier product-limit 
method, and the survival curves were compared with the 
log-rank test. p-mTOR/p-AKT and p-MAPK/EGFR were 
divided by each of the highest ratio value for normalization 
and dichotomized as positive or negative based on a cut-off 
value of above or below 0.01, respectively. The sum of ratios 
was defined as “algebraic biomarker”. The cut-off value for 
dichotomization was 0.015. We used a Cox proportional 
hazards model stratified by trial and adjusted for the follow-
ing clinical prognostic variables: age at diagnosis (<60 
years; ≥60 years), gender, cancer type, differentiation and 
stage. P values were considered significant when less than 
0.05. Chi-square tests were used to compare the positive and 
negative score groups of the algebraic biomarker. 
Hierarchical clustering was performed based on the WS of 

four antibodies using JMP Statistical Discovery Software, 
Version 7.0.1 (SAS Institute). Based on the dendogram clus-
ter analysis, four categories were evaluated for an associa-
tion between clinicopathological factors and four categories 
using chi-square test.

Results

Patient Characteristics and Image Analysis

The number of cases eventually extracted for the final anal-
ysis is listed in Table 1, along with the associated clinical 
data. Smoking status was available as “smoker” (n=61), 
“non-smoker” (n=79) or unknown (n=80). No data is avail-
able on EGFR or RAS mutation status. The TMA was 
stained for p-AKT, p-mTOR, EGFR and p-MAPK. Slides 
were manually reviewed for quality of staining (Fig. 1A & 
B), and imaged with an Aperio Scanscope CS with a 20× 
objective. The TMAs were subsequently de-arrayed in 
Spectrum Plus, and tumor features were annotated by hand 
for each TMA core for image analysis. Cores with inade-
quate tumor were excluded. After tuning of the ‘positive-
pixel’ and ‘membrane’ image analysis algorithms and 
annotation to select tumor regions, image analysis was per-
formed on the TMA images (Fig. 1C). Statistical analysis of 
the expression of the biomarkers with reference to smoking 
history was not significant.

Survival analysis

Examination of patient survival was performed by means of 
Kaplan-Meier plots and log-rank analysis. Individually, 
p-mTOR, p-AKT, p-MAPK and EGFR did not predict sur-
vival (Fig. 2A) when the average score was used as a cut-off 
point for dichotomization. Based on a previous approach, 
we described with ratiometric biomarkers with continuous 
data (Chung et al. 2009). We analyzed the data with the 
ratios of p-mTOR/p-AKT and p-MAPK/EGFR. Similar to 
the previous metrics, the downstream targets are the numer-
ators within the ratio. Using a cut-off value of 0.01, the nor-
malized data was selected for both ratiometric biomarkers, 
based on inspection of the distribution of the calculated val-
ues. p-mTOR/p-AKT and p-MAPK/EGFR were statisti-
cally significant by log-rank analysis (p=0.008 and p=0.029) 
(Fig. 2B). After adjusting for covariates in a Cox hazards 
model, no significance was found (p=0.221 and p=0.103).

Algebraic Biomarker (p-mTOR/p-AKT) + 
(p-MAPK/EGFR)

Acknowledging that the results were of limited utility 
even though statistically significant, as well as the previ-
ously identified cross-talk between these pathways, we 
sought to combine the two ratio-based biomarkers into a 

Table 1.  Clinicopathological Characteristics of Patients with 
Non-small Cell Lung Cancer.

Case No.

Gender  
  Male 149
  Female 71
Age  
  Mean ± SD 65 ± 9.0
Smoking History  
  Ever 61
  Never 79
  Unknown 80
Stage  
  I 126
  II 43
  III 49
  IV 2
T Status  
  pT1 89
  pT2-4 131
Lymph Node Metastasis  
  negative 138
  positive 82
Tumor Type  
  Adenocarcinoma 138
  Squamous Cell Carcinoma 78
  Large Cell Carcinoma 4
Differentiation  
  Well 90
  Moderate 86
  Poor 37
  Other 7
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single biomarker. Analysis of the two biomarkers into 
three groups—both positive, discordant, or both negative—
resulted in median 5-year survival rates of 78%, 72%, and 
44%, respectively (p=0.004) (Fig. 2C). In an effort to fur-
ther refine this, we added the two ratios, generating a  
formula of: (p–mTOR/p–AKT) + (p–MAPK/EGFR) = 
outcome value.

Utilizing a cut-off point of 0.015 for dichotomization—
selected by evaluation of the distribution of values—the 
double ratio output demonstrates a more significant differ-
ence, with a 5-year survival rate of 75% for the algebraic 
biomarker positive patients and 46% for negative patients 
(Fig. 2D and Supplemental Fig. 1). The log-rank test of the 
Kaplan-Meier analysis was strengthened (p<0.001). The 
algebraic biomarker was associated with gender (p<0.001), 
T status (p<0.001), cancer type (p<0.001) and differentia-
tion (p = 0.012), but not associated with smoking history, 
stage or lymph node metastasis. After adjustment for gen-
der, age, cancer type, differentiation and stage, by Cox pro-
portional hazards regression model, the algebraic biomarker 
remained significant (p=0.026) (Table 2).

Hierarchical Clustering and Correlations 
between Biomarkers

A total of 220 NSCLC cases were analyzed by hierarchical 
clustering with the continuous results from the immunohis-
tochemistry imaging analysis. As shown in Figure 3, four 
categories were defined. Box plots of the scores for the indi-
vidual biomarkers are presented in Figure 4. Category 1, 
(n=28) indicates signaling via the AKT-mTOR axis, with 
higher expression of p-AKT and p-mTOR than that in the 
other groups. In contrast, category 4 (n=27) indicates sig-
naling via the EGFR pathway, with higher expression of 
EGFR and p-MAPK. Categories 2 (n=71) and 3 (n=94) rep-
resent the majority of patients and are largely separated 
because patients in category 2 have greater overall signal-
ing activity across all four biomarkers than patients in 

Figure 1.  (A and B) Immunohistochemical staining of represen-
tative cores from two different patients for the panel of markers 
investigated: phosphorylated mammalian target of rapamycin (p-
mTOR), phosphorylated protein kinase B (p-AKT; T308), phos-
phorylated mitogen-activated protein kinase (p-MAPK), and the 
epidermal growth factor receptor (EGFR). EGFR showed mem-
brane staining, whereas p-AKT, p-mTOR and p-MAPK showed 
cytoplasmic staining. (C) Immunohistochemical staining and quan-
titative imaging: strong positive pixels are red, positive pixels are 
orange, weak positive pixels are yellow. The region of the tissue 
core used for the analysis is outlined in black, with excluded inter-
nal regions shaded-out in grey. Scale bars = 100 µm.
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Figure 2.  Kaplan-Meier survival analysis of non-small cell lung cancer patients. (A) Correlation of each single antibody expression with 
patient outcome. (B) Correlation of the ratio p-mTOR to p-AKT (p-mTOR/p-AKT) and the ratio of p-MAPK to EGFR (p-MAPK/EGFR) 
with patient outcome. (C) Correlation of three groups: both of the ratios were high (H/H), one was high (H/L), or both were low (L/L). 
(D) Correlation of double ratio with patient outcome.



340	 Kitano et al. ﻿

category 3, who demonstrate the lowest average activity in 
three of the four biomarkers assayed.

Analysis of the categories with reference to the clini-
copathological factors failed to demonstrate a difference 
in survival based on category (Table 3), but did demon-
strate differences in gender (excess men in categories 1 
and 4) and stage (state I associated with category 1, and 
stages II-IV associated with category 4). Notably, cate-
gory 4 had a substantially lower fraction of adenocarcino-
mas. Lastly, category 1 demonstrated the smallest fraction 
of smokers.

Category 1 of the hierarchical clustering contained 
patients with a good overall survival (88%), low stage, rare 
metastasis and high p-MAPK/EGFR and p-mTOR/p-AKT 
ratios, which is reflected in a high double ratio. Categories 
2 and 3 were intermediate for all survival, stage and lymph 
node metastasis but different in molecular phenotype. In 
category 2, p-MAPK/EGFR was much lower, while the 
p-mTOR/p-AKT was elevated, with a similar proportion of 
double ratio-positive cases. In contrast, category 3 showed 
a reversal in the signaling pattern, low p-MAPK/EGFR and 
intermediate p-mTOR/p-AKT. Lastly, category 4 clinically 
had the poorest outcome, with shorter survival, despite sim-
ilar stage and lymph node status within the cohort. Category 
4 had the lowest double ratio and as well as lowest ratios for 
both p-MAPK/EGFR and p-mTOR/p-AKT, as well as the 
lowest proportion of patients with adenocarcinoma and the 
highest proportion of smokers.

Discussion

The capacity to combine biomarkers into a single output 
offers many advantages, most importantly, simplified deci-
sion processes to direct care. We have previously demon-
strated that the ratio of markers within a defined pathway 
improves prognostication (Chung et al. 2009). In this paper, 
we have expanded upon this approach and demonstrated the 
combination of four antibody biomarkers into a single bio-
marker by way of addition of two ratio-based biomarkers. 
Each ratio is based on the measurements of proteins within 
a single pathway, and the combination of the two is an effort 
to account for concurrent signaling pathways. In the past, 
Kaplan-Meier analyses of multiple biomarkers produced 
graphs with two lines for each biomarker, resulting in mul-
tiple potential outcomes, which lessened their utility. The 
goal of this approach is to leverage biomarker information 
by combining multiple biomarkers that are physiologically 
related into a single metric, and to refine the outcome mod-
els. The developed biomarker is prognostic in nature, but as 
the proteins measured are drug targets, or downstream of 
drug targets, there may be a role in the identification of 
patients for targeted therapies.

Although we failed to define any of these proteins indi-
vidually as prognostic biomarkers, we demonstrated that 
ratios of proteins in a signaling pathway can function as a 
biomarker of survival (Fig. 2C, D). The simple ratios of 
p-mTOR/p-AKT and p-MAPK/EGFR provide confirma-
tion that the pathways are active and that the amplitude of 
the signal through a pathway is a better model than a single 
measurement of protein levels in reference to the outcome. 
p-mTOR/p-AKT contributes, in the majority of cases, more 
to the survival function than does the p-MAPK/EGFR ratio 
(Supplemental Figure 1). However, there is no clear trend 
as to which ratio contributes the most to the final biomarker, 
suggesting that information from both ratios is critical. We 
also applied Cox-proportional hazards analysis. Although 
the single ratios were insignificant in a Cox hazards model, 
the combination of the two demonstrated statistical signifi-
cance. The algebraic biomarker was associated with 
decreased risk of death, differentiation and T status, but not 
with stage or lymph node metastasis. Subsequently, we uti-
lized hierarchical cluster analysis in an effort to better 
understand the relationships between the biomarkers. We 
defined four groups that reflected differences in signaling. 
However, these groups failed to predict survival. The link-
age of gender, stage, tumor histology and smoking history 
to these categories is not surprising (Tsurutani et al. 2007). 
Category 1 signifies those tumors with good clinical behav-
ior by AKT to mTOR signaling, whereas category 4 repre-
sents more aggressive clinical behavior, especially smoking 
status, and is associated with EGFR pathway signaling. 
Categories 2 and 3 showed intermediate clinical behavior, 
but the former demonstrated more signal overall than the 
latter. Previous studies have implicated the AKT/mTOR 

Table 2.  Multivariate Analysis with Cox Proportional Hazards.

Hazard ratio (95% CI) p Value

Double Ratio Value 0.026
  Low 1  
  High 0.73 (0.55-0.97)  
Age 0.448
  <60 years 1  
  ≥ 60 years 0.89 (0.66-1.21)  
Gender 0.214
  Male 1  
  Female 0.79(0.54-1.14)  
Stage  
  I 1  
  II 2.24 (1.06-4.59) 0.028
  III – IV 4.24 (2.30-7.88) <0.001
Cancer Type 0.967
  Adenocarcinoma 1  
  Non-adenocarcinoma 1.01 (0.72-1.41)  
Differentiation  
  Well 1  
  Moderate 1.32 (0.91-1.95) 0.138
  Low 1.22 (0.81-1.83) 0.352

†CI: confidence interval.
*Significant at the level of p < 0.05.
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pathway in a diverse range of lung cancers, and AKT regu-
lates many cellular processes, including proliferation, 
mobility, neo-vascularization and survival (Samuels and 
Ericson 2006; Tang et al. 2006; Lim et al. 2007). MAPK 
can be phosphorylated by EGFR. There is no doubt that 
MAPK and AKT pathways are associated with smoking; 
however, as we did not have a smoking history for the 
majority of the patients, we had to exclude this variable 
from the Cox proportional hazard model.

In developing this approach, we noted that, for pathways 
of activation, the downstream proteins are numerators, and 
the upstream proteins are denominators. Conversely, in 
pathways of repression, the upstream (repressing) proteins 
are the numerators, and the repressed targets (or other 
downstream proteins) are the dominators. The cut-off val-
ues for dichotomization were based on inspection of the 
distribution of the calculated ratio, and not subject to itera-
tive testing.

Immunohistochemical studies with manual scoring are 
qualitative, rather than quantitative, but remain popular 
for evaluating protein expression (Taylor 2000). Previous 
studies reported that p-AKT was observed in 20–89% of 
NSCLC and p-MAPK was in 22–77% (Cappuzzo et al. 
2004; Massion et al. 2004; Mukohara et al. 2004; Sonobe 
et al. 2007). One of the reasons for the wide-range of posi-
tive rates for these expressions may be manual scoring. 
The application of image analysis revealed quantitative 
information and enabled the comparison of multiple pro-
tein expressions. In this study, we applied quantitative 
analyses, which are usually determined using a scale for 
the assessment of distribution and/or a scale for the assess-
ment of intensity (Howard et al. 2004; Vergis et al. 2008; 
Yano et al. 2008). This approach of using the algebraic 
biomarker leverages quantitative measurements of indi-
vidual biomarkers to generate ratios that reflect pathway 
activation.

Figure 3.  Hierarchical clustering of correlation coefficients for immunohistochemical expression of p-AKT, p-MAPK, p-mTOR and 
EGFR was performed with Weight Score. Four groups (Category 1 to 4) are defined.
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The application of combining biomarkers is complex. 
The development of these tests requires a highly defined 
assay applied to well-characterized and high-quality sam-
ples with detailed clinical and outcome information. Once a 
presumptive biomarker has been defined, it requires addi-
tional validation, including replication of results and defin-
ing the assay (Hewitt et al. 2012). Ultimately, if a potential 
predictive biomarker is envisioned, it will require evalua-
tion in a prospective trial (Poste et al. 2012). The process 
from a research finding to a clinical tool is lengthy and com-
plex. It relies on careful the definition of the assays and rep-
lication of the data before it is suitable for clinical decision 

making (Poste et al. 2012). Ultimately the approach of pro-
filing multiple biomarkers within the context of pathways 
has the potential to define more robust clinical biomarkers 
than does the current efforts of single biomarker analyses.

The AKT/mTOR and MAPK pathways have been exten-
sively evaluated in NSCLC, both from the perspective of 
biomarkers of outcome and targets of therapy (Rini 2008; 
Jokinen et al. 2012; Akinleye et al. 2013; Dai et al. 2013; 
Ramalingam et al. 2013). There are many inhibitors in 
either pathway that have been evaluated in clinical trials; 
however, single-agent approaches to chemotherapy have 
proven to have limited efficacy. The dual activation of both 

Figure 4.  (A–D) Box plots of the scores of the individual biomarkers, p-AKT, p-MAPK, p-mTOR and EGFR, categorized by groups as 
defined by hierarchical clustering (Figure 3).
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AKT/mTOR and MAPK pathways is likely to result in 
resistance to the individual targeting of either pathway. 
Co-inhibition of both pathways has shown utility in reduc-
ing tumor growth in a variety of xenograft cancer models 
(Engelman et al. 2008; Hoeflich et al. 2009; Holt et al. 
2012; Renshaw et al. 2013). Several trials that target the 
AKT/mTOR and MAPK pathways simultaneously are 
ongoing, utilizing the combination of AKT inhibitor plus 
MEK inhibitor or the combination of mTOR inhibitor and 
MEK inhibitor. What role(s) this cross-talk plays in modu-
lating the transmitted signals is poorly understood (Samuels 
and Ericson 2006; Saini et al. 2013). Although pre-clinical 
studies suggest that combinations of signaling inhibitors 
might be highly effective, there always remains the risk of 
toxicity. The AKT/mTOR and MAPK signaling pathways 
regulate important physiological functions in non-trans-
formed cells; however, there is concern that an elongated 
blockade period might not be feasible (De Luca et al. 2012).

Gefitinib, a selective EGFR tyrosine kinase inhibitor, 
appears to be more efficacious in only specific populations, 
which suggests evaluation of additional downstream targets 
that offer additional therapeutic opportunities. Hosokawa et 
al. (2009) showed that p-MAPK expression was an inde-
pendent, negative prognostic factor for patients with gefi-
tinib treatment whereas p-AKT or EGFR expression were 
not, and that EGFR mutation was associated with p-AKT, 
not p-MAPK and EGFR expressions. Cappuzzo et al. 
(2007) showed that both EGFR and p-AKT positive expres-
sion had better responses with gefitinib and significantly 
longer survival periods, but did not evaluate p-MAPK and 
p-mTOR. Janmaat et al. (2003) showed that constitutively 
active MAPK and AKT could contribute to resistance to 
anti-EGFR treatment, which may have important clinical 
relevance. Han et al. (2005) described that p-AKT positive 
patients without EGFR mutations tended to show a shorter 
survival rate. There are many targeted agents inhibiting 
AKT/mTOR pathway or MAPK pathway (Sawyers 2003; 

Easton and Houghton 2004; Rinehart et al. 2004; Lorusso et 
al. 2005; Gharbi et al. 2007; Fasolo and Sessa 2008; Prevo 
et al. 2008 ). Recent studies described that the combination 
of PI3K and/or AKT and MEK inhibitors might be syner-
gistic (Smalley et al. 2006; Legrier et al. 2007; Yu et al. 
2008; Tamborini et al. 2010). Unfortunately, our study is 
limited to the evaluation of survival and we lack informa-
tion on treatment and response to treatment. Additionally, 
the mutational status of EGFR status (Cappuzzo et al. 2003; 
Suzuki et al. 2003) in this cohort is unavailable. However, 
in examining a small collection of patients in which EGFR 
mutational status is defined, there was no correlation 
between protein expression patterns and mutational status.

Overall, our data suggest that the use of a complex met-
rics of AKT and EGFR pathways elucidates prognostic 
information that is otherwise not obtainable from simpler 
measurements of pathway activity. The data reveal that the 
interactions between the AKT and EGFR pathways are 
important in tumor progression and patient survival. 
Harnessing a quantitative image analysis approach of 
immunohistochemistry with algebraic-like equations offers 
novel biomarkers of survival. The sum of p-mTOR/p-AKT 
and p-MAPK/EGFR is a superior predictor of outcome in 
this NSCLC cohort, albeit additional validation is required. 
The approach of combining the measurement of proteins 
based on pathway interactions may offer more robust bio-
markers than single-protein approaches.
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Table 3.  Association between Clinicopathological Characteristics and Four Groups Defined with Cluster Analysis.

Category  

  1 2 3 4 p value

Gender
  M/F

20/7 (74%) 41/30 (58%) 63/31 (67%) 25/3 (89%) 0.013

Stage
  I / II-IV

22/5 (81%) 42/29 (59%) 51/43 (54%) 11/17 (39%) 0.014

Lymph Node Metastasis
   +/-

5/22 (19%) 25/46 (35%) 38/56 (40%) 14/14 (50%) 0.073

Tissue type
  Ad/Non-ad

19/8 (70%) 51/20 (72%) 58/36 (62%) 10/18 (36%) 0.008

Smoking
  Ever/Never

1/11 (8%) 21/28 (43%) 24/33 (42%) 15/7 (68%) 0.005

5-year Survival Rate 88% 70% 64% 43% 0.130

*Significant at the level of p < 0.05; Ad: adenocarcinoma.
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of the NIH, National Cancer Institute, Center for Cancer 
Research.
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