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Abstract 

Background: The mechanical properties of single living cells have proven to be a powerful marker of the cell physi-
ological state. The use of nanoindentation-based single cell force spectroscopy provided a wealth of information on 
the elasticity of cells, which is still largely to be exploited. The simplest model to describe cell mechanics is to treat 
them as a homogeneous elastic material and describe it in terms of the Young’s modulus. Beside its simplicity, this 
approach proved to be extremely informative, allowing to assess the potential of this physical indicator towards high 
throughput phenotyping in diagnostic and prognostic applications.

Results: Here we propose an extension of this analysis to explicitly account for the properties of the actin cortex. We 
present a method, the Elasticity Spectra, to calculate the apparent stiffness of the cell as a function of the indenta-
tion depth and we suggest a simple phenomenological approach to measure the thickness and stiffness of the actin 
cortex, in addition to the standard Young’s modulus.

Conclusions: The Elasticity Spectra approach is tested and validated on a set of cells treated with cytoskeleton-
affecting drugs, showing the potential to extend the current representation of cell mechanics, without introducing a 
detailed and complex description of the intracellular structure.
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Background
Every living organism is made of cells that constantly 
adapt their phenotype to the environment, tuning their 
biochemical and physical properties to respond to exter-
nal cues. A central role in this mechanism has been 
clearly recognized for the mechanical properties, either 
of the cell or the extracellular environment. The elastic-
ity of the substrate can drive the differentiation of stem 
cells towards a specific lineage [1], through the engage-
ment of a “molecular clutch” mechanism [2] which is 
also thought to transduce local viscosity information [3]. 

On a different perspective, the mechanical properties of 
cells reflect their physiological state, and measuring the 
deformability of single cells with high throughput holds 
a great promise for future diagnostic and therapeutic 
applications [4, 5]. Altogether, the mechanical interplay 
between living cells and their environment is a key pro-
cess, potently involved in the development of organ and 
organism, and the dysregulation of its homeostasis con-
tributes to the onset of pathological states [6]. As a mat-
ter of fact, the number of genetic mutations recorded in 
cancers has been found to be proportional to the elastic-
ity of the tissue of origin [7], and the invasive potential of 
single cancer cells is associated to their ability to adapt to 
the mechanical properties of the surrounding matrix [8].

To better understand and characterize the process of 
cellular mechanotransduction, it is mandatory to focus 
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the investigation on the cortical region of cells [9], the 
actin cortex (AC) forming the boundary between the cell 
body and the extracellular matrix (ECM). The AC con-
sists of the plasma membrane and the underlying actin 
cytoskeleton, linked together by a rich pool of trans-
membrane and adaptor proteins [10]. The structure and 
biomechanics of the AC are tightly intertwined [11, 12] 
and they in turn influence the functionality of molecu-
lar mechanosensors, such as Piezo mechanosensitive ion 
channels [13, 14] or G-protein coupled receptors [15, 16]. 
These are incorporated into the plasma membrane and 
directly convert mechanical stimuli into downstream 
biochemical signals. There is a growing interest for the 
identification of assays and methods able to assess the 
mechanotransduction state of single cells, and exploit 
it with higher throughput, towards the identification 
and screening of new drugs [17]. In this view, a simple 
and reliable method to characterize the physical state of 
the AC would be a valuable tool to identify innovative 
label-free biophysical markers of the cellular phenotype 
[18–20].

The study of AC structure and mechanics is particu-
larly challenging from the technical point of view. The 
actomyosin network belonging to the AC spans a thick-
ness of few 100nm, outside of the resolution achievable 
with standard fluorescence microscopy. Few methods 
have been proposed to quantify it, either using super-
resolution microscopy [21, 22] or a smart localization-
based technique [23]. On a different note, the mechanics 
of the AC has been more largely addressed [24], trying to 
elucidate its peculiar rheological properties [25], and to 
decouple the contribution of the network elasticity from 
the cortical tension [26] or active myosin-driven stresses 
[11, 27]. The richness and complexity of this thin and 
heterogeneous layer have been largely challenged using 
micropipette aspiration, a method that provides very 
controlled measurements, but requires a custom setup 
and specialized technical skills [28]. A more suitable and 
scalable approach is based on nanoindentation experi-
ments, exploiting atomic force microscopy (AFM) [29] 
or recently introduced cantilever-based devices, such 
as ferrule-top [30], that offer improved usability [31]. 
The potential of nanoindentation to measure the overall 
mechanical properties of single cells is nowadays estab-
lished [32], and the technology is rapidly growing to pro-
vide higher experimental throughput [33]. Nevertheless, 
only few extensions of the analysis have been proposed 
to explicitly account for the contribution of the AC to cell 
mechanics [24, 34] and none of them emerged as a con-
solidated and broadly adopted approach.

Here we present a method to characterize the AC of 
living cells based on nanoindentation measurements. The 
proposed analysis is intended to assess the mechanical 

properties of the cortex to its simplest approximation, 
describing the cell as an elastic bilayer and using an 
extension of the Hertzian contact mechanics to obtain 
the thickness and stiffness of the AC. The proposed 
methodology is tuned against numerical data and tested 
on a soft hydrogel. The effectiveness of the overall proce-
dure is validated on single cells treated with drugs affect-
ing the cytoskeleton organization.

Results and discussion
Single cells are complex composite materials [35], inte-
grating static (solid-like) and time-dependent (fluid-like) 
mechanical components that contribute to the short-term 
response and long-term adaptability of cells, respectively. 
Here we concentrate the analysis on the measurement of 
the elastic component, associated to the tensional state 
of the cortex that directly influences the functionality of 
mechanosensitive ion channels [14] and the rapid trans-
port of mechanical forces across the cell [36, 37]. Cell 
mechanics has been largely studied with cantilever-based 
nanoindentation, and the limits of validity of the approach 
have been broadly discussed [38]. The viscous component 
is expected to impact on the measurements but it has 
been demonstrated that, if the experimental parameters 
are carefully controlled, cell mechanics can be robustly 
described in terms of a single stiffness parameter [29, 31, 
39]. The simplest and most adopted approach consists of 
treating the cell as a homogeneous and isotropic material 
described by the Young’s modulus E which is calculated 
from single cell indentation curves. With reference to 
Fig.  1, the experimental force-distance curve F(z) is con-
verted in a force-indentation curve F(δ) after the identi-
fication of the contact point z = z0 . Given that the curve 
F(z) is flat and smooth across this point, the identification 
of z0 is particularly challenging [40]. Many approaches 
have been proposed to face this issue and broadly bench-
marked in the literature [41, 42]. Here we selected a 
method based on the ratio of variances, that accounts for 
the change in noise content of the signal before and after 
contact, without any specific assumption on the expected 
polynomial trend of the F(δ) curve [43] (see “Methods” 
section). A typical experimental result is depicted in Fig.1c 
where a set of 127 single cell F(δ) curves is represented, 
including the average curve (blue) and the standard devia-
tion (shaded region).

Calculating elasticity spectra from nanoindentation 
experiments
The current–simplified but effective–approach for 
obtaining the Young’s modulus from single nanoindenta-
tion curves is based on linear contact mechanics [44]. For 
a spherical indenter, this theory is reduced to the well-
known Hertz equation [45]:
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where F is the force, δ the indentation, R the radius of the 
sphere, E the Young’s modulus and ν the Poisson’s ratio of 
the indented material. Using this equation, it is possible 
to fit the F(δ) curves and obtain E as a fitting parameter. 
Figure 2 shows the results of this approach for ferrule-top 
nanoindentation [30] on a simple homogeneous gel (see 
“Methods” section); the average of experimental curves 
is presented in panel (c) while the corresponding elastic-
ity values of single curves is depicted in the blue histo-
gram in panel (b), showing a Gaussian shape centered at 
E = 5.2± 0.2 kPa. A similar analysis can be performed 
following the generalization of the contact mechanics 
theory proposed by Oliver and Pharr to account for any 
indentation between a rigid, axisymmetric punch and an 
elastic half space [46]. For a spherical indenter, the Oli-
ver-Pharr equation has the form:

where A is the contact area, approximated as a circle of 
radius a (see Fig.  1a). The Poisson’s ratio ν of a cell is a 
complex frequency-dependent quantity [25]. Neverthe-
less, if the experimental protocol is not changed between 
measurements, ν remains constant and impacts only as a 
coefficient. For the sake of simplicity, we can adopt the 
common hypothesis that cells behave as incompressible 
elastic solids, for which ν = 0.5 . Under this assumption, 
Eq. (2) can be further simplified, and the Young’s modu-
lus can be expressed as:

The original solution of Sneddon suggests that for a 
spherical indenter of radius R the contact radius a is sim-
ply calculated as [44]:

The validity of Eq. (4) has recently been validated for liv-
ing cells, in a typical range of experimental parameters 
[29]. By substituting this expression in Eq. (3) we obtain 
the final expression:

This equation is expected to provide the same results 
as Eq. (1), even though experimental noise and numeri-
cal aspects can lead to non-negligible discrepancies [47]. 
The set of force-indentation curves acquired on a homo-
geneous gel in Fig. 2c was analyzed with this alternative 
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approach. Using Eq. (5) on each individual curve, a set of 
curves for E as a function of the indentation δ is obtained, 
namely the elasticity spectra (ES). The average ES, 〈E(δ)〉 , 
is depicted in blue in Fig. 2d. To compare this alternative 
approach to the standard Hertzian one, based on Eq. (1), 
the values of 〈E(δ)〉 are plotted as a histogram in red in 
Fig. 2b, showing that the two approaches provide highly 
comparable results.

Bilayer model
The simplest model, by which a cell is described as a 
homogeneous material of Young’s modulus E, has been 
effectively exploited in applications, even though it 
neglects many aspects of the inner structure of the cell. 
Several models have been suggested to account for the 
heterogeneity of the system, often resulting in a detailed 
but complex description of the cell mechanics that did 
not translate to any broader use. Here we want to extend 
the successful Hertzian approach in order to account for 

Fig. 1 Overview of a nanoindentation experiment. a Schematics of 
a nanoindentation experiment performed with a spherical probe of 
radius R indenting over a compliant material with Young’s modulus 
E. The main geometrical relationships between the displacement 
z, indentation δ and deflection x are indicated. b FluidFM cantilever 
with attached microbead over a confluent monolayer of HEK-293T 
cells. c Typical experimental dataset of 127 force-indentation curves 
obtained on cells. The blue line is the average curve 〈F(δ)〉 , and the 
cyan band is extended over one standard deviation
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the AC in the simplest geometry. To this purpose, we 
describe the cell as a bilayer (see Fig. 3a) with an exter-
nal layer of thickness d0 and elasticity E0 (representing 
the AC) sitting on top of an indefinitely thick softer sub-
strate of elasticity Eb < E0 . When the force-indentation 
curve of such a system is described by standard contact 
mechanics, it is expected to exhibit a depth-dependence 
of the Young’s modulus. This effect is experimentally 
well known [48, 49], and Finite Element Analysis (FEA) 
approaches suggest that this behavior is potently affected 
by the presence of a stiffer cortex, more than by experi-
mental artefacts or other components, which is high-
lighted when using sharp indentors [50]. To isolate the 
contribution of the AC to the experimental force spec-
troscopy curves, it is crucial to characterize this depth-
dependent phenomenon. The standard approach to 
analyze nanoindentation measurements is based on a fit 
of the experimental data to Eq. (1). This method exploits 
the robustness of the fit against noise to provide a solid 
reference value for the Young’s modulus over the fitting 
range, but at the same point any dependence of E from 
the indentation δ is averaged out. Changing the maxi-
mum indentation δmax used for the fitting range, a curve 
E(δmax) is obtained that can be interpreted as an appar-
ent modulus [51]. Nevertheless, fitting over a range pro-
vides a sort of convolution between different layers, and 
the sensitivity of the method to local variations is low by 
design. Instead, we propose to use the approach based on 
Eq. (5), to obtain elasticity spectra from the local slope of 
the force-indentation curve (see “Methods” section for 
details). This method is intrinsically more sensitive to the 
noise, being differential instead of integral, but in turn it 
provides a greater sensitivity to depth variations.

The bilayer problem has been studied in the literature, 
and a general analytic expression for E(δ) is not available. 
Nevertheless, a nanoindentation experiment on a bilayer 
has been simulated using FEA, obtaining a numerical 
expression for F(δ) that matches the experimental results 
and can be well approximated with a polynomial equa-
tion where the coefficients are calculated for a specific 
range of the physical parameters [52]. Doss et  al. tested 
this solution on a set of layered gels with controlled 
elasticity, in a region of the parameters that cannot be 
directly translated to the case of the AC, but it demon-
strates the validity of the numerical approach. Here we 
extended the same simulation approach to obtain a set 
of numerical F(δ) curves and exploited Eq. (5) to calcu-
late the corresponding ES. The blue dots of Fig. 3b show 
the results obtained for an arbitrary set of the parameters 
E0 , Eb and d0 compatible with cellular values ( Eb < E0 ; 
d0 << R ). Figure 3b highlights the expected decay of the 
elasticity from the cortex to the bulk, over an indentation 
depth comparable with d0.

While no analytical solution exists for the bilayer prob-
lem, some empirical expressions have been identified in 
the literature, where the decay has been described by a 
generalized form [53]:

where the function φ(δ) decays from 1 to 0 over a range 
related to d0 . In particular, it has been shown that either 
a trigonometric [54] or exponential [55, 56] decay well 
approximates the experimental behavior. These two 

(6)E(δ) = Eb + (E0 − Eb)φ(δ)

Fig. 2 Results of ferrule-top nanoindentation experiments on a 
homogeneous gel. a Picture of the experimental setup, showing 
the Chiaro nanoindenter with the cantilever holder and optical fiber 
(white) attached to the z-Piezo (black). The probe with a microbead 
(transparent) is positioned above the gel and immersed in buffer 
solution (pink). b Histograms of the Young’s modulus as calculated 
either with the standard Hertzian fit approach (blue) or based on 
the average elasticity spectrum (red). Gaussian fit of the histogram 
values provides (peak position ± SEM) E = 5.2± 0.2 kPa for the 
Hertz approach and E = 5.6± 0.1 kPa for ES. c Force-indentation 
results, showing the average force-indentation curve 〈F(δ)〉 (blue) 
and Hertzian fit (red dashed) from a set of 97 nanoindentation 
experiments. (d) Elasticity spectra analysis corresponding to the 
curves in c, showing the average elasticity spectrum 〈E(δ)〉 (blue) and 
its mean value (red dashed)
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phenomenological descriptions are very similar, and the 
exponential one provides a cleaner and simpler analytical 
equation:

where R is the radius of the spherical indenter and � is 
a phenomenological parameter. Eq. (6) with the weight 
introduced in Eq. (7) was used to fit the numerical data of 
Fig. 3 (solid red curve).

This approach to describe the indentation of an elastic 
bilayer can be adopted to offer an effective and simple 
representation of cell mechanics including the role of the 
AC. A reference set of single cell nanoindentation experi-
ments obtained by fluidic force microscopy (FluidFM) is 
presented in Fig. 4 [57]. The inadequacy of the standard 
Hertz model to describe the average force-indentation 
curve is apparent in panel (b), where the red dashed line 
represents the fit based on Eq. (1). Instead, we propose to 
calculate the elasticity spectra for each curve (cyan band 
in Fig. 4c) and fit the average spectrum with the exponen-
tial bilayer model:

This equation can be fitted to the data to obtain an esti-
mate of the elasticity of the cortex and the bulk. The red 
dashed line in Fig. 4c represents the fit obtained with this 
procedure. While the parameters E0 and Eb are directly 
obtained from Eq. (8), to retrieve an estimate of d0 , the 
a priori knowledge of � is required. In order to deter-
mine this phenomenological parameter, we used the 
FEA approach implemented in [52], obtaining a calibra-
tion value for this parameter �̄ = 1.74 (see “Methods” 
section). While a further experimental evaluation of 
this parameter is envisaged to obtain a nanometer-relia-
ble value of the thickness, it is important to notice that 
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it impacts the results in terms of a scale factor. In other 
words, while the absolute value of d0 is affected by �̄ , any 
relative change is not. Moreover, a numerical investiga-
tion of the dependency of �̄ from the model parameters 
suggests that in a physiologically relevant range it is not 
expected to change by more than about 10% (see Addi-
tional file 1: Fig. S2).

Characterizing the actin cortex with the bilayer decay 
model
To validate the proposed approach, we applied the analy-
sis to a set of nanoindentation experiments performed 
on single cells in control conditions and treated with 
drugs differentially acting on the cytoskeleton. Control 
HEK-293T cells were characterized through the elasticity 
spectra approach; Fig.  4 presents a typical experimental 
output (Fig.  4b), the corresponding ES (Fig. 4c) and the 
schematics of the experimental procedure (Fig. 4a). From 
each experimental session, a set of fitting parameters E0 , 
Eb , d0 can be obtained through Eq. (5).

The bulk modulus Eb corresponds to the asymptotic 
value of the elasticity for indentations larger than the 
thickness. Using a maximum depth of around 800nm 
(see Additional file  1: section Addtional file.1 for fur-
ther discussion), this value can be evaluated with a very 
high numerical accuracy. This quantity can be com-
pared with the standard Young’s modulus, obtained 
using Eq. (1). HEK-293T cells have been widely char-
acterized in literature, and a broad range of values 
has been declared, from 300 to 400 Pa [58, 59] up to 
few kPa [60, 61]. This issue in comparing experiments 
obtained in different conditions has been recently 
challenged [62], and it is suggested that changes in 
the mechanical properties—as measured in the exact 
same conditions—are more relevant than absolute val-
ues [31]. Nevertheless, the values obtained using the 
ES approach (350–550 Pa, see Fig.  5b) lie within the 
range of published values. In addition to the bulk elas-
ticity, the ES bilayer decay method allows to calculate 
the parameters of the AC. Some measurements of the 
thickness of the AC are reported, indicating a value 
of about 100–200 nm for mitotic cells [10, 23] that 
increases to 300–400 nm in the adherent phase [63]. 
The measured values of d0 where in the range 290–470 
nm (see Fig.5c), in line with previous results (even 
though obtained on different cells, and so not directly 
comparable). The parameter E0 represents the AC stiff-
ness, a parameter that provides information on the 
elastic properties and is related to the cortical tension 
[24]. Only few authors provided an estimate of the AC 
stiffness, which is expected to be up to 10 times harder 

Fig. 3 Bilayer model. a Schematics of the geometry of the bilayer 
model, with an external layer with elasticity E0 and thickness d0 and 
a bulk substrate with elasticity Eb , indented with a sphere of radius R. 
b Elasticity spectrum (blue dots) calculated from numerical data for 
a bilayer with E0 = 9.8kPa, d0 = 300nm and Eb = 8.4kPa indicated by 
the black dotted lines. The solid red line represents the exponential fit 
that returns the values E0 = 9.77kPa, d0 = 302nm and Eb = 8.39kPa
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than the bulk [64], as observed in our experiments on 
control HEK-293T cells (Fig.5a).

To evaluate the effectiveness of the approach, the same 
HEK-293T cells were treated with either cytochalasin 
D or jasplakinolide (Fig.  5). Cytochalasin D is a fungal 
metabolite [65] known to soften cells in a dose-depend-
ent manner [66] by disrupting structured actin microfila-
ments and inducing a larger number of free ends [67], 
but the specific effect on the AC is not known. The over-
all softening is confirmed by the ES analysis (Fig.  5b), 
that provides additional insights on the cortex, showing 
that AC stiffness is even more pronouncedly reduced, 
by about 50%, and the thickness is slightly increased, by 
20% (Fig. 5a, c). Jasplakinolide, a cyclo-depsipeptide that 
polymerizes and stabilizes actin filaments [68], has been 
widely used to challenge the physical properties of the 
AC. Jasplakinolide treatment is known to induce a thick-
ening of the AC that can be as large as 50% [23] and this 
behavior was confirmed by the ES analysis of HEK-293T 
cells treated with jasplakinolide, where d0 grows by about 
43% (Fig. 5c). The effect of this drug on the cortical ten-
sion T of mitotic cells has been previously studied, show-
ing a marked reduction of T [11]. The approach offered 
by ES allows to characterize adherent cells, whose AC 
stiffness does not appear influenced by jasplakinolide (see 
Fig. 5a), and the integration of the method with micropi-
pette aspiration is expected to offer new insights into the 
link between cortical tension T and (apparent) stiffness 
E0 [69]. Moreover, cortex elasticity, thickness and bulk 
elasticity all together contribute to the value of Young’s 
modulus measured with standard bulk methods (based 
on Eq. 1). The effect of a drug on this overall parameter is 
expected to sensibly depend on the experimental condi-
tions (for example the maximum indentation), and this is 
especially true for jasplakinolide that influences all com-
ponents in a differential way. This crosstalk could be at 
the origin of some inconsistency in the existing literature. 
In fact, while an overall stiffening of the cell has been 
reported [70], consistent with the stabilization effect of 
the drug, other authors observed the opposite behavior 
in the past [71]. One of the main advantages of the pro-
posed ES approach is that these intertwined components 
of cell mechanics can be evaluated separately.

Conclusions
In this paper we presented a method for treating nanoin-
dentation curves that relies on the Oliver-Pharr con-
tact mechanics theory (Eq.  2). Instead of analyzing the 
force-indentation curve, we suggest concentrating on the 
apparent Young’s modulus as a function of the depth, the 
elasticity spectrum E(δ) . This view has several technical 
advantages. First, it provides a direct visualization of the 
depth dependency of the nanoindentation experiment 

and it allows for an accurate working range selection. As 
a matter of fact, the standard contact mechanics analy-
sis is based on the main assumptions that the indenta-
tion is small enough to avoid the effect of any underlying 
substrate and-at the same time-to remain in the range 
of validity of Eq. (4). This is normally translated to an 
empirical law that suggests to limit the indentation to 
about 10% of the smallest between the radius of the 
indenter and the thickness of the material [72, 73]. Using 
ES, this limit can be experimentally identified, looking at 
the behavior, and avoiding large indentations for which 
the curve starts rising (see Additional file 1: Fig. S1).

Furthermore, the ES can be interpreted based on a con-
stitutive model of the material that accounts for vertical 

Fig. 4 Elasticity spectra of single cells. a Schematic of the 
experimental protocol: a microbead is collected with the FluidFM 
cantilever and used to indent the cell, described as a double layer 
with the external AC of thickness d0 and elasticity E0 and the cytosol 
with bulk elasticity Eb . b Experimental set of force–indentation curves 
F(δ) obtained on 315 cells. The blue line indicates the average curve 
and the red dashed line is the best Hertz fit (Eq. 1). c Elasticity spectra 
obtained by the application of Eq. (5) to the single curves of b. The 
blue line indicates the average of tghe Elasticity Spectra and the red 
dashed line is the fit with the exponential bilayer model (Eq. 8)
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inhomogeneities. In this paper, we presented the treat-
ment for the case of an elastic bilayer, that can be phe-
nomenologically described by an exponential decay in 
the ES (Eq. 8). The robustness of the approach has been 
evaluated using two different nanoindentation devices, 
namely the ferrule-top Chiaro system and an AFM 
equipped with FluidFM add-on (see “Methods” section). 
These systems are suitable to optimize the throughput of 
the experiment, needed to get rid of the higher noise sen-
sitivity of Eq. (5). In particular, the microfluidics of Flu-
idFM can be exploited to pick-up the sphere, and release 
it after few indentations (in case of contamination), with-
out the need of gluing the sphere on the cantilever in 
advance, or changing the cantilever for every experiment 
[57, 74]. On a different note, the interferometric read-out 
of the Chiaro nanoindenter results in a very quick and 
practical calibration and set-up of the experiment, with-
out any special requirement for the sample holder (see 
for example the arrangement pictured in Fig. 2a).

The validated ES method was further applied to study 
the physical properties of the AC. This compartment has 
a crucial role in cellular sensing and force transduction, 
and the measurement of AC-related mechanical indica-
tors has clearly demonstrated a great phenotyping poten-
tial in a genome-scale study of single mitotic cells [75]. 
The ES, together with the exponential decay of Eq. (8), 
offer a simplified view of the AC, in terms of a bilayer 
geometry. This model does not consider the finer details 
of the AC structure and dynamics, nor does it take into 
account the inherent heterogeneity of the cytosol asso-
ciated to the presence of intracellular organelles, such 
as the nucleus, that are knoewn to impact the measured 
mechanical properties [76]. Nevertheless, it is able to 
capture the main behavior, offering a simple and effective 

method to extract mechanical parameters associated to 
AC and bulk cell mechanics.

The ES approach shares some technical limitations 
with the standard contact mechanics analysis of cell 
mechanics. In particular, measuring absolute values, to 
be compared between completely different experimental 
settings, is a challenging task [62]. Nevertheless, relative 
changes are expected to provide a robust and reliable 
indicator, and the ES-based bilayer model offers a valu-
able tool for the screening of drugs affecting AC mechan-
ics [11, 17], the evaluation of the effect of environmental 
or physio-pathological conditions on the dynamics of AC 
[77–79], and the investigation of the impact of intracel-
lular forces to cell mechanosensitivity [80].

Methods
PEG hydrogels using UV photo‑polymerization
PEG hydrogels were formed using free radical-based 
photo-polymerization, which is the most common 
method used to prepare biomimetic hydrogels [81]. To 
obtain 50 μl of 5wt%. PEG-Ac, 5 μl of 500mg/ml 4 arm-
Ac-PEG (Mw = 10kDa, Laysan Bio, Inc., USA) were 
mixed with 2.5 μl of 200 mg/ml protease degradable 
peptide cross-linker GCRDVPMSMRGGDRCG (Mw 
= 2kDa, Genscript, USA), 1 μl of 5mg/ml photoinitia-
tor (Irgacure 2959, Sigma Aldrich, USA) and 7.5 μl PBS. 
The thiolated crosslinker was added at a 2:1 molar ratio 
of acrylate:thiol. The PEG-Ac solution was cast into a 
PDMS mold of 50 μl hydrogel using UV irradiation at an 
intensity of 5 mW/cm2 (OmniCureR Series 1500, Exceli-
tas Technologies Ltd, USA) for 5 min.

Gel measurements with ferrule‑top Chiaro Nanoindenter
Gel mechanics was evaluated using a nanoindentation 
device (Chiaro, Optics11, Netherlands) mounted on top 
of an inverted phase contrast microscope (Evos XL Core, 
Thermofisher, UK). All measurements were performed 
with the same cantilever with a stiffness k of 0.049 N/m 
and a spherical tip of 8 μm radius. For each sample, a 
20 ×  20 map with 10 μm spacing was recorded. Single 
indentations were acquired at the speed of 2 μm/s over 
a displacement of 10 μm. After every experiment, the 
probe was washed in ethanol 70% for 10 min.

Cell culture
Human embryonic kidney (short: HEK-293T) cells 
were cultured at 37 ◦ C and 5% CO2 in DMEM/F-12 cul-
ture medium supplemented with glutamine, 10% FBS 
and 1% penicillin-streptomycin and split using 0.05% 
trypsin-EDTA in PBS. For measurements, 300,000 cells 
per cm2 were seeded in 2 cm2 polydimethylsiloxane 
(short: PDMS, Specialty Manufacturing Inc, USA) wells 
in poly-D-lysine-coated culture dishes 2 days before the 

Fig. 5 Results of the elasticity spectra analysis for control and drug 
treated HEK-293T cells. The elasticity of the cortex (a), of the cytosol 
(b), and the thickness of the cortex (c) were calculated for a set of 
control cells (N = 4 with 13–36 cells each) and after treatment with 
either 10 μM cytochalasin D (Cyto D, inhibiting actin polymerization, 
N = 5; 17–33 cells) or 1 μM jasplakinolide (Jaspla, inducing actin 
polymerization, N = 4; 20–36 cells). Error bars represent the variance 
of the repeats, calculated over the weighted average
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measurement to obtain a spatially confined fully conflu-
ent cell layer. The PDMS well was removed after one day, 
and prior to each measurement cells were incubated for 
30 min at 37  ◦ C with physiological solution (140 mM 
NaCl, 5.4 mM KCl, 10 mM HEPES, 10 mM Glucose, 
1 mM MgCl2 , 1.8mM CaCl2 , adjusted to pH 7.4 with 
NaOH) supplemented with 10 μM cytochalasin D, or 1 
μM jasplakinolide and subsequently used for measure-
ments at room temperature within 1 h without washing.

Cell culture reagents were obtained from Thermo 
Fisher Scientific, USA. Cytochalasin D and jasplakinolide 
were purchased from Abcam, UK. All other chemicals 
were purchased from Sigma-Aldrich, USA.

Cell indentation measurements with FluidFM
Cell indentation measurements were performed with 
a FluidFM system consisting of a Nanosurf FlexAFM 
(Nanosurf AG, Switzerland) and a Cytosurge pres-
sure controller (Cytosurge AG, Switzerland) on top of a 
Zeiss Observer inverted fluorescence microscope (Carl 
Zeiss AG, Germany). Cytosurge Micropipettes (Cyto-
surge AG, Switzerland) with 2 μm aperture and 0.3 N/m 
nominal spring constant were used as cantilevers with 
an integrated microfluidic channel. The spring constant 
was determined in air by thermal tuning and the Sader’s 
method [82] and the channel was filled with physiologi-
cal solution containing 0.1 mg/ml of the blue fluorescent 
dye AMCA (7-amino-4-methylcoumarin, Sigma-Aldrich, 
USA) for blockage detection. Green fluorescent beads 
(Phosphorex Inc, USA) with 3 μm to 4 μm diameter were 
placed next to the confluent cell layer and attached to 
the cantilever tip by applying 800mbar suction pressure 
through the microchannel [74, 83]. Indentations were 
performed at 1 μm/s approach speed and up to 100nN 
force setpoint in grids of 5 × 5 points with 25 μm pitch.

Data analysis
The obtained indentation data was analyzed with a cus-
tom python script based on the SciPy library [84] start-
ing from the forward force-distance curves F(z) that were 
smoothed with a Savitzky-Golay filter [85]. The con-
tact point was determined as the last peak of the ratio 
of variances as suggested in [43]. F(z) was transformed 
to a force-indentation curve F(δ) by subtraction of the 
contact point z0 and division by the cantilever’s spring 
constant k. F(z) curves without a flat region or with high 
random variations were excluded. To obtain the stand-
ard Young’s modulus E, the average of the Hertzian fit 
of Eq. (1) to each curve was calculated. The conversion 
to the elasticity spectrum E(δ) of each single curve was 
performed by applying Eq. (5) with derivation by the 
Savitzky-Golay filter with a step size of 25 nm. For each 

data set, the elasticity spectra of all curves were averaged 
to obtain a mean elasticity spectrum 〈E(δ)〉 . This curve 
was fit with the exponential decay in Eq. (8) to obtain 
values E0 , Eb and d0 for the cortex stiffness, bulk elastic-
ity, and cortex thickness, respectively. The phenomeno-
logical factor � of the exponential decay in Eq. (7) was 
determined to 1.74 by fitting the numerical F(δ) curve 
in Fig. 3b that was calculated by the FEA approach sug-
gested in [52] and selecting the value to accommodate a 
physiologically relevant range (see Additional file 1: Fig. 
S2).

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1295 1-020-00706 -2.

Additional file 1. Supplementary materials are provided including com-
ments on the the impact of the rigid substrate on the ES, andthe variation 
of �.
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