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Validation of systems biology 
derived molecular markers of renal 
donor organ status associated with 
long term allograft function
Paul Perco  1,2, Andreas Heinzel2,3, Johannes Leierer1, Stefan Schneeberger4, Claudia 
Bösmüller4, Rupert Oberhuber4, Silvia Wagner5, Franziska Engler1 & Gert Mayer1

Donor organ quality affects long term outcome after renal transplantation. A variety of prognostic 
molecular markers is available, yet their validity often remains undetermined. A network-based 
molecular model reflecting donor kidney status based on transcriptomics data and molecular features 
reported in scientific literature to be associated with chronic allograft nephropathy was created. 
Significantly enriched biological processes were identified and representative markers were selected. 
An independent kidney pre-implantation transcriptomics dataset of 76 organs was used to predict 
estimated glomerular filtration rate (eGFR) values twelve months after transplantation using available 
clinical data and marker expression values. The best-performing regression model solely based on 
the clinical parameters donor age, donor gender, and recipient gender explained 17% of variance 
in post-transplant eGFR values. The five molecular markers EGF, CD2BP2, RALBP1, SF3B1, and 
DDX19B representing key molecular processes of the constructed renal donor organ status molecular 
model in addition to the clinical parameters significantly improved model performance (p-value = 
0.0007) explaining around 33% of the variability of eGFR values twelve months after transplantation. 
Collectively, molecular markers reflecting donor organ status significantly add to prediction of post-
transplant renal function when added to the clinical parameters donor age and gender.

Short-term renal allograft survival increased continuously during the last decades but the rate, at which trans-
plants are lost long term remained disappointingly stable at a high level1. As the pathophysiology of this process 
is probably complex and hitherto only incompletely understood, prognostic markers available lack sensitivity 
and/or specificity, and treatments applied are often not successful2. Next to postoperative and procedure related 
complications like cold ischemia time, infections, rejection episodes, or the toxicity of immunosuppressive ther-
apy, the “quality” of the donor organ has often also been associated with mid- to long term transplant survival. A 
proof of concept being the fact that living donation provides superior results when compared to deceased donor 
transplantation1. Unfortunately especially for deceased donors the exact procedure how to optimally describe 
“organ quality” is still under discussion and this uncertainty has important clinical consequences. Rejection of 
allocated organs by transplant centres based on opinion, rather than evidence leads to an unjustified discard of a 
scarce resource3. Kidney transplant recipients, who suffer from allograft failure after transplantation, on the other 
hand show even greater morbidity and mortality than patients on dialysis4. These caveats have fostered efforts for 
matching donor organ quality to recipient characteristics, but this approach needs high quality data for model-
ling. Donor organ quality description currently follows two concepts, one using clinical information available at 
the time of the offer. As an example the kidney donor profile index (KDPI)5, which is used for organ allocation 
in the US, includes among other variables donor age and the last serum creatinine. Recently van Balkom et al. 
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studied the proteomic signature of the preservation fluid to derive biomarkers to predict immediate postopera-
tive transplant function6. Another intuitively superior way is to use information obtained from pre-implantation 
biopsies. Next to unresolved technical issues (wedge vs. needle biopsy, frozen section vs. paraffin embedded tis-
sue) it has recently been shown that conventional histological workup does provide reliable information in some7 
but not all situations8. Researchers have started to look into molecular signatures in the biopsy tissue that predict 
immediate, but also mid- to long term post-transplant renal function9–16. Some of these studies are hypothesis 
driven. Donor age for example is an often used (albeit less than perfect) surrogate for organ quality. Koppelstätter 
and colleagues extended this concept by showing that markers of biological age in the biopsy (telomere length and 
expression of cell cycle inhibitors) better than chronological donor age predict post-transplant renal function as 
assessed by serum creatinine one year after transplantation17. Günther and colleagues very recently could show 
that the activating cytotoxicity receptor NKG2D was associated with chronological age and was indicative for 
post-transplant outcome18. However age is only one factor in a likely complex molecular interaction phenotype 
that determines organ quality in a way that it affects transplant outcome. Hypothesis driven approaches looking 
into single markers or pathways therefore are most likely inappropriate, a problem that could be solved by stud-
ying marker combinations or panels. However, as long as the molecular pathophysiology of chronic allograft 
failure is not completely understood unbiased approaches like whole-genome expression data sets obtained from 
pre-implantation biopsies are an important data source. Strategies on the identification of biomarkers making use 
of computational modelling and data integration approaches seem reasonable in this context and were elegantly 
summarized by Wang and Sarwal19. Recently O’Connel and colleagues published a study on the use of transcrip-
tomic profiling using tissue obtained from protocol biopsies taken three months after transplantation to predict 
long term outcome20.

In this study we used a data integration approach to build a molecular model reflecting pre-implantation 
donor organ status. This model was based on features associated with mid- to long term allograft function from 

Figure 1. Data analysis workflow and results. Schematic representation of the data analysis workflow with used 
datasets, methods, and results indicated by grey, white, and red boxes respectively. Assignment of molecular 
markers to molecular model process units as well as enriched GO biological processes based on molecular 
model input features is indicated by colored squares.
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published hypothesis driven research articles and from transcriptomics data sets. Bioinformatics network anal-
ysis reduced the number of genes by focusing on those, which are more likely important features in interaction 
networks. A major limitation of published data on biomarkers in this context is that they are usually not validated 
in external cohorts. We therefore finally tested our in-silico derived markers in an independent group of renal 
allograft recipients, in whom gene profiling data were available from pre-implantation biopsies.

Results
Figure 1 outlines the data analysis workflow along with key results on identified molecular markers and biological 
processes.

The donor organ molecular model. A set of 548 molecular features associated with renal function 12 
months after transplantation could be derived based on molecular feature sets from LIT-CAN, TX-PERCO, 
TX-KAINZ, and TX-SCIAN. A brief description of datasets used in the analysis is listed in Table 1.

LIT-CAN consisted of eight genes, the transcriptomics datasets TX-PERCO, TX-KAINZ, and TX-SCIAN 
held 260, 46, and 259 molecular features respectively. 391 of the molecular features shared at least one protein 
interaction to another member of the combined set thus forming the induced subgraph with omicsNET as the 
underlying biological network. Eleven clusters of highly interconnected proteins were identified by the MCODE 
algorithm with 89 proteins assigned to these eleven clusters. A set of 34 GO biological processes could be identi-
fied as being enriched based on the set of 89 proteins being part of the donor organ status molecular model. The 
top-ranked GO biological processes were the neurotrophin TRK receptor signaling pathway (FDR < 0.001), the 
Fc-epsilon receptor signaling pathway (FDR < 0.001), the epidermal growth factor receptor signaling pathway 
(FDR < 0.001), as well as the fibroblast growth factor receptor signaling pathway (FDR = 0.0027).

Predicting post-transplant renal function. Average donor age in our cohort was 54 years ranging from 
18 to 86. Donor age was significantly correlated to recipient age (R = 0.47, p-value < 0.0001) (see Fig. 2). The 
ratio of women to men in our dataset was around 1:1.5 for donors and around 1:1.7 for recipients. Average eGFR 
value 12 months after transplantation was 47.23 ml/min/1.73 m2 ranging from 6.38 ml/min/1.73 m2 to 100.74 ml/
min/1.73 m2.

The best performing linear model solely holding clinical parameters consisted of donor age, donor gender, and 
recipient gender and explained about 17% of variance of recipient eGFR values twelve months after transplanta-
tion (p-value = 0.0010).

The best performing linear model holding both clinical parameters and molecular markers consisted of donor 
age and gender along with the expression levels of the markers EGF (epidermal growth factor), CD2BP2 (CD2 
cytoplasmic tail binding protein 2), RALBP1 (ralA binding protein 1), SF3B1 (splicing factor 3b subunit 1), and 
DDX19B (DEAD-box helicase 19B). This set of parameters explained around 33% of post-transplant eGFR val-
ues (p-value < 0.0001) thus significantly outperforming the statistical model only holding clinical parameters 

Dataset acronym Dataset description Dataset use Ref

LIT-CAN
Set of molecular features linked to chronic allograft 
nephropathy obtained via literature mining. Eight molecules 
were in the end derived from six distinct publications.

Molecular features were used as input 
for generating the donor organ status 
molecular model.

45–50

TX-PERCO
Transcriptomics study on renal zero-hour biopsies 
reporting differentially regulated genes associated with 
histopathological characteristics of the donor organ.

Molecular features linked to medium-
term post-transplant outcome after re-
analysis were used as input for generating 
the donor organ status molecular model.

9

TX-KAINZ
Transcriptomics dataset reporting on differentially expressed 
genes between a group with high (>=45 ml/min/1.73 m2) 
and low (<45 ml/min/1.73 m2) eGFR group 12 months after 
renal transplantation.

Molecular features were used as input 
for generating the donor organ status 
molecular model.

15

TX-SCIAN
Transcriptomics dataset reporting on differentially expressed 
genes between a group with high (>=45 ml/min/1.73 m2) 
and low (<45 ml/min/1.73 m2) eGFR group 12 months after 
renal transplantation.

Molecular features were used as input 
for generating the donor organ status 
molecular model.

16

omicsNET Hybrid protein interaction network holding protein-protein 
interactions together with computationally inferred relations.

This biological network was used in 
order to generate the donor organ status 
molecular model.

37

DAVID v6.8 GO 
biological process set

Set of gene to GO biological process relations as stored in 
DAVID v6.8.

GO biological process set was used for 
enrichment analysis in order to identify 
affected biological processes based on 
the set of molecular features in the donor 
organ status molecular model.

40

TX-IBK
Set of 76 gene expression profiles of renal pre-implantation 
biopsies with clinical data of donor as well as transplant 
recipient at baseline and during follow up.

Expression data and clinical data 
were used for building multiple linear 
regression models in order to predict 
post-transplant kidney function.

GSE95026

Table 1. Listing of datasets used. Overview and brief description of used datasets within the present study. The 
specific use of the dataset is given along with the links to original publications.
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following analysis of variance (ANOVA) (p-value = 0.0007). Detailed model characteristics of the statistical mod-
els are given in Table 3.

Significant correlations between predictor variables were identified for the molecular markers CD2BP2 and 
DDX19B (R = 0.48, p-value < 0.0001), SF3B1 and RALBP1 (R = 0.37, p-value = 0.0011), as well as RALBP1 and 
DDX19B (R = −0.5, p-value < 0.0001). As the maximum absolute Pearson correlation was not above 0.5, inclu-
sion of selected molecular markers into one regression model was justifiable. The full correlation matrix of con-
tinuous variables is given in Fig. 2.

Whereas the add-on information on rejection episodes did not improve model performance, knowledge on 
the occurrence of delayed graft function significantly improved both models. The adjusted R2 value of the model 
only holding clinical parameters increased from 0.17 to 0.28 (ANOVA p-value < 0.0001) and the adjusted R2 
value of the best performing model based on molecular markers further increased from 0.33 to 0.42 (ANOVA 
p-value < 0.0001). No significant association of the five markers with either delayed graft function nor rejection 
episodes could be found in our dataset.

Discussion
In this study we used a systematic data integration approach to develop a molecular model of highly intercon-
nected proteins being associated with renal function as assessed by eGFR 12 months after transplantation. Our 
in-silico approach reduced the number of genes of interest and in addition allowed to focus on features with a 
high interaction potential thus more likely reflecting core pathophysiological processes. As the genes reported in 
the literature and used in our modelling approach had not been validated in independent datasets we performed 
an additional study with this focus. Our final prediction model, holding the five selected molecular markers EGF, 
CD2BP2, RALBP1, SF3B1, and DDX19B on top of two clinical parameters significantly outperformed a model 
only based on clinical parameters. No significant correlations between molecular markers and donor age could 
be detected indicating that molecular markers hold complementary information to donor age. Information on 
delayed graft function significantly added to predictive power whereas information on rejection episodes did not 
further add in explaining variability of eGFR values one year after transplantation. Rejection episodes have been 
reported to be associated with renal outcome in the past. This is however mostly confined to rejection episodes 
not responsive to steroid bolus therapy, which were not observed in our cohort. The fact that rejections were rare 
(n = 9) and usually mild may very well be due to the fact, that no highly immunized subjects were included and 
subjects suffering irreversible rejection leading to graft loss within the follow up period were excluded.

Higher EGF levels were associated with higher post-transplant eGFR levels and thus with better renal function 
in our dataset. This is in-line with recent findings that EGF was downregulated in progressive DN21. The authors 
could further demonstrate that intrarenal EGF values are highly correlated to urinary EGF concentrations. A 
positive regulatory effect of EGF in progressive kidney disease has also been previously discussed by Rudnicki 
and colleagues22. This finding could be confirmed by a study from Betz and colleagues investigating EGF levels 
in a diabetic nephropathy animal model as well as in a cohort of normoalbuminuric type 2 diabetes patients23. 
EGF values were also found to be downregulated in donor kidney biopsies showing reduced eGFR values after 
transplantation in the TX-SCIAN dataset that entered our molecular model generation workflow16. Dosanjh 
and colleagues showed that members of both the hepatocyte growth factor (HGF) as well as the EGF signaling 
pathway are differentially expressed in renal allografts with chronic allograft nephropathy and interstitial fibrosis 
as well as tubular atrophy24.

Parameter TX-IBK cohort [n=76]

parameters known at the time of transplantation

  donor age [years] 54.25 (17.35)

  donor gender [m/f] 46/30

  last donor creatinine [mg/dl] 1.12 (0.64)

  cold ischemia time [hours] 14.60 (4.88)

  recipient age [years] 54.99 (12.89)

  recipient gender [m/f] 48/28

  transplantation number [1st/2nd] 63/13

  panel reactive antibodies [0%/<20% />20%/NA] 47/8/6/15

  HLA mismatches [0/1/2/3/4/5/6] 16/8/15/17/9/7/4

post-transplant parameters

  biopsy-prove rejection (yes/no/NA) 9/64/3

  delayed graft function (2/1/0) 13/21/42

post-trasplant outcome parameter

  eGFR 12 months post TX [ml/min/1.73 m2] 47.23 (21.56)

Table 2. Clinical characteristics of the TX-IBK cohort. Average values with standard deviations in brackets are 
given for the continuous clinical parameters donor age, last donor creatinine, cold ischemic time, recipient age, 
and eGFR 12 months post TX. Counts are given for the categorical variables donor gender, recipient gender, 
transplantation number, panel reactive antibodies, and sum of HLA mismatches as well as for the post-trasnplant 
parameters biopsy-proven rejection and degree of delayed graft function (2 = severe, 1 = mild, 0 = none).
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O’Connel et al. collected biopsies from allograft recipients with stable renal function three months after trans-
plantation and identified a set of 13 genes that were predictive of the development of fibrosis at one year. Although 
this final set did not contain EGF the latter was found to be negatively associated with the chronic allograft dam-
age index three months after transplantation, which is in line with our findings20.

Surprisingly and contradictory to all other studies Rintala and colleagues demonstrated that inhibition of the 
EGF signalling cascade with the EGFR inhibitor erlotinib prevented chronic rejection and led to improved allo-
graft function as their reasoning had been that EGF in part mediated chronic allograft nephropathy25.

As with EGF, also higher levels of CD2BP2 were associated with higher post-transplant eGFR levels indicating 
that reduced expression of CD2BP2 is detrimental to renal function. CD2BP2 was initially described as factor 
involved in T cell activation and enhancer of interleukin 2 expression26. CD2BP2 was however also very recently 
shown to be an important factor for podocyte function. Depletion of CD2BP2 in podocytes led to proteinuria and 
ultimately kidney function decline in a mouse model as reported by Albert and colleagues27.

Higher expression of RALBP1, also known as RIP1 or receptor-interacting protein 1, in our dataset as indicated by 
the negative parameter estimate in the statistical model were associated with lower eGFR values post-transplant and 
thus reduced kidney function. RALBP1 was reported as inducer of necroptosis, a novel form of cell death, which was 
also linked to myocardial, renal, and cerebral ischemia-reperfusion injury28. Enhanced expression of RALBP1 was also 
found to enhance cisplatin-induced nephrotoxic acute kidney injury in an in-vitro model by inducing necroptosis of 
cultured tubular cells29. Higher RALBP1 expression levels were also detected in an animal model of cisplatin-induced 
nephrotoxicity with inhibitors of necroptosis providing protection from kidney injury in this mouse model30.

SF3B1 encodes for a subunit of the splicing factor 3b,being involved in RNA splicing and gene expression, 
which was previously reported to be detectable in exosomes of transformed Madin-Darby canine kidney cells 
with the potential of inducing epithelial to mesenchymal transition31. SF3B1 was also reported as a direct target 
of the hypoxia inducible factor 1 alpha (HIF1A) containing a hypoxia response element in the promoter region 
when investigated in an animal model of cardiac hypertrophy32. No information on involvement in pathophysio-
logical renal processes could be identified in scientific literature for DDX19B being involved in mRNA transport 
from the nucleus. This molecule might serve as sensor of deregulated transcriptional activity in deceased donor 
organs after brain death. Of note that DDX19B was the least significant parameter in the constructed regression 
model with a p-value of 0.0449. Excluding DDX19B from the model led to a drop of the adjusted R2 from 0.33 to 

Clinical model

eGFR at 12 months post TX [n = 76]

Parameter estimate p-value Adjusted R2

Intercept 55.73 <0.0001

Donor age (per 10 years) −3.75 0.0062

Donor gender (m to f) 10.15 0.0352

Recipient gender (m to f) 9.08 0.0580

Total 0.0010 0.17

Combined model

Intercept −171.83 0.3734

Donor age (per 10 years) −2.69 0.0316

Donor gender (m to f) 13.95 0.0028

CD2BP2 35.41 0.0062

SF3B1 67.29 0.0040

EGF 16.66 0.0008

RALBP1 −39.27 0.0007

DDX19B −32.18 0.0449

Total <0.0001 0.33 **
Combined model plus post-transplant parameters

Intercept −247.34 0.1735

Donor age (per 10 years) −2.27 0.0518

Donor gender (m to f) 11.73 0.0072

CD2BP2 34.93 0.0038

SF3B1 65.29 0.0028

EGF 15.17 0.0011

RALBP1 −32.70 0.0025

DDX19B −23.92 0.1121

Delayed graft function −8.74 0.0011

Total <0.0001 0.42 ***

Table 3. Multiple linear regression analysis predicting 12 months post-TX eGFR values. Parameter estimates, 
p-values and adjusted R2 values for the three regression models are given. Log2 marker expression values were 
used in the modeling analysis. The combined model was significantly better (p-value = 0.0007) than the clinical 
model based on ANOVA, indicated by **. Delayed graft function information significantly improved model 
performance (p-value < 0.0001), indicated by ***.
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0.30 for overall model performance. Removal of either one of the other molecular markers on the contrary led to 
much steeper drops of adjusted R2 values to 0.26 down to 0.22 for overall model performance.

Most transcriptomics studies dealing with expression profiles and outcome in the renal donor setting focused on 
short term outcome such as delayed graft function12–14, while others dealt with expression patterns in the recipient 
after transplantation20,33,34. We identified three studies reporting on transcriptional changes in the donor organ being 
associated with long term transplant outcome9,15,16. Based on these transcripts complemented by genes reported 
in scientific literature we constructed a network-based molecular model or organ damage and validated a set of 
five markers in an independent dataset in the present study. Especially the mechanistic roles of EGF, CD2BP2, and 
RALBP1 in kidney tissue might hold the potential to also serve as targets for therapeutic intervention.

As we were primarily interested in prediction models holding parameters known at the time of transplan-
tation, we deliberately did not include post-operative parameters in the first place. We however evaluated the 
impact of the two post-operative parameters rejection episodes as well as delayed graft function on performance 
of our generated prediction models. Delayed graft function is a known predictor of long term graft function 
which we also observed in our cohort35. Delayed graft function indeed improved model performance signifi-
cantly indicating that delayed graft function holds information being complementary to the information of our 
selected markers. Rejection episodes interestingly did not add to prediction in our dataset with nine patients 
having biopsy-proven rejections in our cohort.

A limitation of our study is that no functional experiments were conducted thus further exploring the mecha-
nistic role of the validated markers in renal tissue damage which however was not scope of this work.

In summary renal transplant donor organ expression of the five molecular markers EGF, CD2BP2, RALBP1, 
SF3B1, and DDX19B significantly adds in predicting post-transplant renal function when added to the clinical 
parameters donor age and gender.

Methods
Donor organ status molecular model construction. Transcriptomics studies were identified in 
Pubmed using the following query: kidney transplantation [mh] AND (microarray analysis [mh] OR gene expres-
sion profiling [mh] OR High-Throughput RNA Sequencing [mh]) NOT review [publication type]. Titles and abstracts 
of 242 publications were screened for gene expression studies reporting on human deceased donor kidney biopsy 
workup with a focus on investigating correlations of gene expression to renal function 12 months after trans-
plantation (either based on serum creatinine or eGFR). Three studies were identified as relevant and molecular 
features were extracted from these publications. These three studies were the only ones using an unbiased gene 
expression profiling approach in donor kidney biopsies and were thus considered for further analysis in the cur-
rent study. From the studies by Kainz et al.15 [TX-KAINZ] as well as Scian et al.16 [TX-SCIAN] the reported sets 
of transcripts were used as input for molecular model generation. The expression dataset published by Perco and 
colleagues [TX-PERCO] was re-analysed with respect to correlation of transcripts to twelve months post-trans-
plant eGFR values9. P-values of the correlation analysis were corrected with the R package fdrtool, setting the 
false discovery rate to <5%36. All transcripts were mapped to their respective genes using the Ensembl Gene ID as 
common denominator. All datasets used in the integrative analysis of this work are listed in Table 1.

Figure 2. Correlation plot of continuous predictor variables. Pairwise Pearson correlations are displayed with 
positive and negative correlations indicated by blue and red shaded areas respectively. Significant correlations 
after Bonferroni correction for multiple testing are indicated by asterisks. CIT = cold ischemia time.



www.nature.com/scientificreports/

7SCIeNTIfIC REPORts |  (2018) 8:6974  | DOI:10.1038/s41598-018-25163-8

The set of transcripts from the omics studies was complemented by a set of molecular features reported in 
scientific literature described in the donor organ and having impact on medium-term graft function [LIT-CAN]. 
The Pubmed query “chronic allograft nephropathy” OR “chronic allograft dysfunction” AND humans NOT review 
[publication type] resulted in 1075 publications. Publications mentioning at least one gene (based on gene2pu-
bmed, GeneRIFs, or official gene name) in title or abstract were manually reviewed in order to extract deregu-
lated genes in the donor organ having impact on post-transplant renal function. Next, all molecular features of 
donor organ status affecting outcome identified above were mapped on a hybrid interaction network including 
protein-protein interaction data from IntAct, BioGrid, and Reactome together with computationally inferred 
relations37. The organ status-transplant outcome specific molecular interaction subgraph was extracted from the 
network discarding molecular features not being connected to at least one other member from the signature. This 
subgraph was forwarded to the Molecular Complex Detection algorithm for identifying clusters of nodes, in the 
following denoted as molecular processes38,39. These processes are characterised by an accumulation of genes with 
a high level of interaction and the Database for Annotation, Visualization and Integrated Discovery (DAVID) 
v6.8 was used to identify significantly enriched Gene Ontology (GO) biological process terms in these processes 
reflecting donor organ status40. This in silico workflow, which was developed within the European Framework 7 
project SYSKID41–43, reduced the number of genes derived from the literature from 548 to 89. Additionally the 
genes remaining for validation are part of molecular processes characterized by a high level of interaction and 
thus most likely hold information on relevant pathophysiology.

Independent gene expression dataset. Wedge biopsies from 78 deceased donor kidneys were obtained 
prior to reperfusion. Biopsy workup, RNA extraction and hybridization to Agilent Human Gene Expression 4x44 
oligonucleotide microarrays was performed as described in a previous publication44. The study was approved by 
the Ethics Board of the Medical University Innsbruck. Details on the population are provided in Table 2.

The Agi4x44PreProcess R module was used for gene expression analysis. For 27 of the 78 samples, the Agilent 
chip version 2 was used. Raw gene expression values obtained from the two chip versions were combined into a 
joined dataset using shared probe identifiers. Quantile-quantile normalization was used to normalize raw mean 
intensity values. Summarization of probes was successively performed on the level of the human Gene Symbol. 
Two samples had to be excluded from further analysis based on hierarchical cluster analysis resulting in an anal-
ysis dataset of 76 samples. Gene expression data were available for 74 of the 89 molecular features in the donor 
organ status molecular model described above thus qualifying for inclusion in successive multiple regression 
analysis.

Multiple linear regression analysis. Linear regression models were derived using all clinical parameters 
listed in Table 2 in order to predict post-transplant renal function given as eGFR values twelve months after 
transplantation. The MDRD (Modification of Diet in Renal Disease) equation was used in order to estimate GFR 
values. The best performing model was identified considering adjusted R2 values, leave-one-out cross validated 
(LOOCV) R2 values and LOOCV root-mean-square-error values.

The clinical parameters together with all molecular features of the donor organ status molecular model were 
used as input for delineating improved multiple regression models for predicting eGFR values twelve months 
after transplantation. Simulated annealing was used to identify models holding between six and eight param-
eters minimizing LOOCV root-mean-square error. Individual non-significant parameters were removed in a 
post-processing step in order to achieve statistical significance for all single parameters in the final model. The 
best performing regression model was compared against the regression model only holding clinical parameters 
using ANOVA.

Pairwise Pearson correlation coefficients were determined between molecular markers of the best performing 
regression model and all continuous clinical parameters listed in Table 2, namely donor and recipient age, last 
donor creatinine, and cold ischemia time. Bonferroni correction for multiple testing was used in order to identify 
significant correlations between parameters.

The primary aim of our study was to derive prediction models based solely on data available at the time 
of transplantation. In addition we were interested to decipher if postoperative complications like delayed graft 
function or acute rejection episodes have an impact on identified associations. We therefore analysed the clinical 
course of the study population with regard to the need for postoperative dialysis as an indication for delayed graft 
function (categorized as mild with 1–3 dialysis sessions or severe with >3 dialysis sessions performed) or the inci-
dence of biopsy-proven acute rejections (regardless of Banff categorization). We first tested whether the molecular 
marker panel was capable of predicting these postoperative events and successively also determined the add-on 
value of postoperative parameters on predicting eGFR values one year after transplantation.

Ethics. The study protocol and the use of surplus zero hour biopsy tissue after routine workup was approved by 
the local IRB. As no living donors were included no informed consent from the organ donors could be obtained.

Data availability. Raw gene expression data used in this study are available at NCBI Gene Expression 
Omnibus with the accession number GSE95026.
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