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ABSTRACT
Background: This study attempts to establish a Bayesian networks (BNs) based model for infer-
ring the risk of AKI in gastrointestinal cancer (GI) patients, and to compare its predictive capacity
with other machine learning (ML) models.
Methods: From 1 October 2014 to 30 September 2015, we recruited 6495 inpatients with GI can-
cers in a tertiary hospital in eastern China. Data on demographics, clinical and laboratory indica-
tors were retrospectively extracted from the electronic medical record system. Predictors of AKI
were selected in gLASSO regression, and further incorporated into BNs analysis.
Results: The incidences of AKI in patients with esophagus, stomach, and intestine cancer were
20.5%, 13.9%, and 12.5%, respectively. Through gLASSO, 11 predictors were screened out, includ-
ing diabetes, cancer category, anti-tumor treatment, ALT, serum creatinine, estimated glomerular
filtration rate (eGFR), serum uric acid (SUA), hypoalbuminemia, anemia, abnormal sodium, and
potassium. BNs model revealed that cancer category, treatment, eGFR, and hypoalbuminemia
had direct connections with AKI. Diabetes and SUA were indirectly linked to AKI through eGFR,
and anemia created connections with AKI through affecting album level. Compared with other
ML models, BNs model maintained a higher AUC value in both the internal and external valid-
ation (AUC: 0.823/0.790).
Conclusion: BNs model not only delineates the qualitative and quantitative relationship between
AKI and its associated factors but shows the more robust generalizability in AKI prediction.
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Introduction

Gastrointestinal (GI) cancers, those of esophagus, stom-
ach, colon, and rectum, are among the most common
cancers worldwide. In China, 4.3 million new cancer
cases were reported in 2015, of which over one-third
belonged to GI cancers [1]. During anti-tumor therapy,
kidney is one of the most vulnerable organs in early-
stage, often leading to a poor prognosis and high in-
hospital mortality. A Danish study reported that 1-year
risk of acute kidney injury (AKI) among patients with
rectum cancer was 25.1%, followed by colon cancer
(22.5%), stomach cancer (19.9%), and esophagus cancer
(19.8%) [2]. AKI in cancer patients was associated not
only with advanced age and chronic comorbidities but
with the tumor-specific factors, such as malignant

infiltration, tumor lysis syndrome, nephrotoxic drugs,
and interventional agents [3,4].

It is worth noting that 20� 30% AKI cases could be
avoided if all risk factors were identified, quantified,
and utilized for risk evaluation [5]. Previous studies cre-
ated several logistic-score models to predict the AKI risk
[6–9], while the predictive accuracy was usually ques-
tioned [10]. Till now, machine learning (ML) technique
had been widely used to assist precision medicine
[11,12]. Bayesian networks (BNs) is a framework for
uncertainty reasoning, and it provides an intuitive
depiction of the probabilistic structure for multivariate
data. This character makes BNs suitable for large-scale
data mining under the clinical conditions [13,14]. To
this end, this study applied the Bayesian networks to
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establish a prediction model for inferring the risk of AKI
in gastrointestinal cancer patients, and then compared
its predictive capacity with other ML models.

Methods

Study design and patient recruitment

This study was designed as a real-world retrospective
cohort study in a tertiary hospital in eastern China.
Inpatients with GI cancers were recruited during 1
October 2014 and 30 September 2015. We excluded
those who stayed less than 24 h, endured chronic kid-
ney disease (CKD) stage 4–5, or underwent less than
one test for serum creatinine (SCr). If the patient was
hospitalized multiple times during the study period, we
regarded each hospitalization as an independent case.
Then the eligible participants were further randomized
into two datasets by a ratio of 9:1. Ninety percent of
them (n¼ 5845) was assigned as a derivation cohort for
training the model, and the other 10% (n¼ 650) was
assigned as a validation cohort for external validation
(Supplementary Figure 1).

Data collection

Data of this study were extracted from the electronic
medical record (EMR) system. Limited by the indicator
diversity and data missing, we only selected the most
common clinical variables for analysis. It included age,
gender, BMI, comorbidity, cancer category, and treat-
ment. The baseline levels of biochemical indicators
were set as the first test within 24 h after admission.
Liver function was measured by alanine aminotransfer-
ase (ALT), aspartate aminotransferase (AST), and total
bilirubin (TBiL). Renal function was measured by SCr,
estimated glomerular filtration rate (eGFR), and serum
uric acid (SUA). Other biochemical indicators were albu-
min, hemoglobin, serum sodium, and potassium. This
study was approved by the ethics committee of
Zhongshan Hospital, Fudan University (B2018-175).
Each participant was assigned a unique code to replace
their identity information.

Definition and classification

AKI was diagnosed as a maximal increase in SCr by
�0.3mg/dL (26.5 lmol/L) within 48 h, or by �1.5 times
baseline within the previous seven days [15]. Due to
the inaccessibility of urine volume data, we dropped
the urine volume changes to diagnose AKI. SCr meas-
ured on admission was considered as the baseline level.
For patients who received multiple SCr tests during

hospitalization, we used the highest value within seven
days as the peak for AKI diagnosis. For patients who
lacked baseline SCr but had regular follow-up visits in
the past three months, we retrieved the mean value of
outpatient SCr records as the baseline. The presence of
hypertension and diabetes was determined by the diag-
nosis on admission and discharge records.
Gastrointestinal cancer was categorized according to
the international classification of diseases (ICD-10),
which included esophagus cancer (C15), stomach can-
cer (C16), and intestine cancer (C17–21) [16]. Anti-tumor
treatment in this study was grouped into surgery,
chemotherapy, interventional therapy, and untreated/
palliative care. The normal ranges of eGFR and SUA
refer to �90mL/min/1.73m2 and �359 lmol/L, respect-
ively. Anemia is defined as a hemoglobin level <130 g/
L in males and <120 g/L in females. Hypoalbuminemia
refers to albumin <35 g/L. Hypo/hypernatremia was
diagnosed if patients’ serum sodium level <137mmol/L
or >147mmol/L. Similarly, hypo/hyperkalemia was
defined when the potassium level was outside the nor-
mal ranges (3.5� 5.3mmol/L).

gLASSO regression

The least absolute shrinkage and selection operator
(LASSO) regression can automatically select variables
based on the tuning parameter value, and then shrink
the estimates of irrelevant variables to zero [17]. In
2006, Yuan et al. [18] further proposed the gLASSO
(group LASSO) regression as an extension. It overcomes
the limitation of choosing the single dummy
variable and can select the grouping variables as
predefined. The gLASSO estimator is shown as b̂k ¼
argbminðj Y � Xbj jj22 þ k

PG
g¼1 jjblg jj2Þ: b is the regres-

sion coefficient. The tuning parameter of k controls the
shrinkage degree. Tenfold cross-validation is used to
choose the minimal k value. The penalty of lg is the
index set of gth grouping variables. It makes variable
select at group levels and keep invariant under orthog-
onal transformations.

Bayesian networks

BNs are composed of a set of random variables Xi and a
directed acyclic graph G ¼ (V, A). Each node v 2 V is
associated with a variable Xi: Directed arc a 2 A repre-
sents the direct probabilistic dependencies. Others that
are not linked by arcs are assumed as conditionally
independent. The global distribution of X with parame-
ters H can be factorized into: P Xð Þ ¼Qn

i¼1 P Xip Xið Þ; hXi
� �

, where p Xið Þ is the set of the
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parents of Xi: Given its parents, each node Xi is condi-
tionally independent of its non-descendants. BNs estab-
lishment is performed as two steps: learning the
structure and learning the local distribution. Structure
learning includes constraint-based, score-based, and
hybrid algorithms. Parameter learning is traced to max-
imum likelihood estimation and Bayesian estimation.
Given the learned BNs model with structure G and
parameters H, BNs reasoning can be converted into
computing the posterior probabilities under a new
piece of evidence E: P XE, Bð Þ ¼ P XE,G,Hð Þ:

Statistical analysis

The homogeneity between derivation and validation
cohorts were compared by using the Pearson test and
Cochran–Mantel–Haenszel test. We applied the odds ratio
(OR) and its 95% confidence interval (CI) to quantify the
associations of possible risk factors with AKI. The gLASSO
regression was used to select predictors of AKI among
candidate variables, which were further presented to BNs
analysis. Tabu-search algorithm was chosen to establish
the BNs structure, and the maximum likelihood method
was used to estimate the probability of each node accord-
ing to the proposed BNs structure. We performed both
internal and external validation to reduce model overfit-
ting. Model evaluation indexes contained accuracy rate,
recall rate, positive predictive value (PPV), negative pre-
dictive value (NPV), and the area under the receiver oper-
ating characteristic curve (AUC). Meanwhile, the BNs
model was also compared horizontally with the models
based on the decision tree, random forest (RF), support
vector machine (SVM), naive Bayes, and logistic-
score regression.

Statistical description and univariate analysis were
performed in IBM SPSS (Version 22.0, IBM Corp.,
Armonk, NY, USA). The gLASSO and BNs analyses were
run by using ‘grpreg’ and ‘bnlearn’ packages in R pro-
gram (Version 3.6.0, R core team). The network structure
was visualized in Netica (Version 5.18, Norsys Software
Corp., Vancouver, BC, Canada). Other machine learning
models were also created in R program with the pack-
ages of ‘tree’ (decision tree), ‘randomForest’ (RF),
‘e1071’ (SVM), ‘bnlearn’ (naive Bayes) and ‘glm’ (logistic-
score model). The process of data cleaning and analysis
was performed by the biostatistician (YL), and the full
codes were attached in Supplement Text 1.

Results

A total of 6495 participants were recruited in this study.
The average age was 61.3 ± 11.8 years, and males

accounted for 67.9%. Then we randomly divided them
into the derivation cohort (n¼ 5845) and validation
cohort (n¼ 650). Supplementary Table 1 suggested that
the statistical distributions of most variables between
the two cohorts were comparable (p> 0.05).

AKI incidence and associated risk factors

There were 837 AKI cases in the derivation cohort, with
a pooled incidence of 14.3%. Of them, 783 patients
located in AKI stage 1 (93.5%), and 54 patients devel-
oped to stage 2–3. The proportion of renal replacement
therapy was 2.7% (n¼ 23). The AKI incidence increased
along with advancing age, from 9.9% in the youngest
to 22.3% in patients over 80 years old (Figure 1).
Patients with esophagus cancer shared the highest AKI
incidence (20.5%), followed by stomach cancer (13.9%)
and intestine cancer (12.5%). After adjusting for the
demographic factors, we found that patients admitted
with hypertension and diabetes (aOR: 1.15/1.66) or in
an emergency (aOR: 1.38) were at increased risk of AKI
(Table 1). Compared with untreated/palliative care,
patients who underwent surgery were more vulnerable
to AKI (aOR: 8.87). Other factors associated with AKI
contained liver dysfunction (aOR: 1.34� 2.07), poor
eGFR (aOR: 1.98� 8.82), high SUA level (aOR:
1.35� 3.29), hypoalbuminemia (aOR: 2.08), anemia
(aOR: 2.75) and electrolyte abnormities
(aOR: 2.23� 8.99).

Variable selection in gLASSO regression

When the tuning parameter log(k) was set at �4.837,
11 predictors with non-zero coefficients were selected
through gLASSO regression (Supplementary Figure 2). It
included diabetes, cancer category, treatment, ALT, SCr,
eGFR, SUA, hypoalbuminemia, anemia, abnormal
sodium, and potassium levels. Then we incorporated
these variables into logistic analysis to quantify their
associations with AKI (Table 2). In the multivariate
model, the major contributors of AKI were esophagus
cancer, surgery, poor eGFR and electrolyte disorders,
with an OR ranged from 1.78 to 8.52.

BNs establishment and probabilistic reasoning

Figure 2 was the AKI probabilistic model established by
Bayesian networks. It consisted of 12 nodes and 17 arcs.
Each node represented one variable, and the arc
between connected nodes indicated the probabilistic
dependencies. The marginal probability of AKI was
estimated at 15.6%. Cancer category, treatment,
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hypoalbuminemia, and eGFR had direct connections
with AKI, while serum potassium and sodium acted as
the child nodes of AKI. Diabetes and SUA were indir-
ectly linked to AKI through eGFR, and anemia created
connections with AKI through affecting the album level.
Correlations between predictors were also exhibited in
the network: treatment was associated with hypoalbu-
minemia, anemia, and eGFR; hypoalbuminemia directly
linked with serum potassium and sodium. Given the
limited evidence variables, BNs model can compute the
maximum a posteriori of AKI through probabilistic rea-
soning. For instance, when one patient was detected
with esophagus cancer, hyperuricemia, anemia, and
hyponatremia at admission, the AKI risk was estimated
at 51.9%. In contrast, for patients with similar diagnosis
but without biochemical abnormities, the incidence of
AKI was only 13.9% (Supplementary Figure 3).

Predictive ability comparison between BNs model
and other ML models

ROC curves of prediction models based on different ML
algorithms were drawn in Figure 3. In internal valid-
ation, the AUC values ranked from high to low were the
BNs (0.823), naive Bayes (0.802), decision tree (0.760),
logistic score (0.751), RF (0.594) and SVM (0.562).
DeLong’s test verified that AUC value of BNs model is
significantly higher than that of other ML models
(p< 0.05 in naive Bayes; p< 0.001 in other MLs).
Although the accuracy rates in ML models were over

85%, the models’ precision differed in a large margin
(Table 3). Of them, the BNs model could possess a com-
parably better agreement between the actual observa-
tions and the predictions. According to internal
validation, about 60.7% and 88.8% predicted cases
belonged to true positives/negatives in BNs model.

Discussion

Gastrointestinal cancer remains a global health problem
with an estimated 3.4 million new diagnosed cases in
2018 worldwide [19]. During the prolonged anti-tumor
treatment, patients were exposed to higher risks of
complications, including AKI. It was reported that about
50.0% of AKI cases and 18.8% of AKI deaths occurred in
patients with GI cancer [20]. Differed from previous
studies (2.4%�35.3%) [21–24], the AKI incidence of
esophagus, stomach, and intestine cancer in this study
was 20.5%, 13.9%, and 12.5%, respectively. It may be
partly explained by the heterogeneity of source popula-
tion, the different definitions for AKI as well as oncolo-
gists’ neglect of AKI diagnosis.

In the pathogenesis of AKI, factors do not exist sep-
arately, but are closely related. The association between
one factor and AKI may be affected by the presence of
other covariates. LASSO, based on the penalization and
regularization techniques, was adept in processing such
higher-dimensional data. In this study, we applied
gLASSO regression to select the 11 most significant pre-
dictors of AKI before modeling. It simplifies the

Figure 1. AKI incidence in varied demographics among patients with gastrointestinal cancers.
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complexity of network and avoids overfitting and mis-
classification. Other studies also proved LASSO/gLASSO
as an effective tool for variable selection in ML model-
ing [25–27].

It is the first time to apply BNs to graphically present
the probabilistic dependencies between AKI and its
associated factors in GI cancer patients. As shown in
Figure 2, direct linkages to AKI were observed in anti-
tumor treatment, cancer category, eGFR, and hypoalbu-
minemia. Either partial or total surgical excision of the
lesion triggers a series of ischemia-reperfusion injuries,
activation of inflammatory mediators and complement,
production of free radicals, etc. These changes can fur-
ther reduce renal perfusion and induce cell injury or
death. Moreover, many anti-tumor drugs had potential
nephrotoxicity [28]. It was reported that 80.1% of can-
cer patients had received such drugs [29].
Hypoalbuminemia is also commonly encountered in GI
cancer patients, which could be caused by nutritional

deficiencies (malnutrition, malabsorption) and volume
depletion (diarrhea, vomiting, and drainage of ascites)
[30]. Volume depletion disturbs the cellular environ-
mental homeostasis, leading to electrolyte disorders
[31]. Still, there was a small proportion of patients
admitted with hypernatremia and hyperkalemia. It may
be caused by the improper use of chemotherapy
agents. Findings from our study revealed that both low
and high electrolyte levels could increase the AKI risk.
Gao et al. [32] also found that, of AKI patients, 27.0%
and 5.7% were admitted with hypo-/hypernatremia;
16.6% and 24.4% were with hypo-/hyperkalemia.

Given the limited evidence variables, BNs model can
compute the risk of AKI based on uncertain inference.
While in the traditional logistic model, it can be done
only if we knew the state of all variables. From a health
economic point of view, BNs seems to provide a more
practicable strategy to identify high-risk patients.
Additionally, BNs model also maintained a greater AUC

Table 1. Risk factors of AKI in patients with gastrointestinal cancers in the derivation cohort.
Variable Total AKI (%) v2 p -value cOR (95%CI) aOR (95%CI)a

Comorbidities
Hypertension 683 118 (17.3) 5.511† 0.019 1.29 (1.04�1.60) 1.15 (0.92�1.44)
Diabetes 348 78 (22.4) 19.757† <0.001 1.80 (1.39�2.35) 1.66 (1.27�2.17)

Cancer category
Esophagus 908 186 (20.5) 35.104† <0.001 1.80 (1.47�2.20) 1.83 (1.49�2.25)
Stomach 2453 340 (13.9) 1.12 (0.95�1.33) 1.14 (0.97�1.35)
Intestine 2484 311 (12.5) 1.00 1.00

Cancer stage
Loco-regional 5338 777 (14.6) 2.796† 0.095 0.79 (0.60�1.04) 0.78 (0.59�1.03)
Metastases 507 60 (11.8) 1.00 1.00

In-hospital condition
Emergent 554 107 (19.3) 12.441† <0.001 1.50 (1.19�1.87) 1.38 (1.10�1.74)
Normal 5291 730 (13.8) 1.00 1.00

Treatment
Surgery 2859 640 (22.4) 301.444† <0.001 7.34 (3.99�13.50) 8.87 (4.79�16.44)
Chemotherapy 2179 162 (7.4) 2.04 (1.10�3.81) 2.40 (1.28�4.50)
Interventional 516 24 (4.7) 1.24 (0.60�2.57) 1.49 (0.72�3.11)
Untreated/palliative 291 11 (3.8) 1.00 1.00

Liver function
ALT (�80 U/L) 311 76 (24.4) 27.404† <0.001 2.03 (1.55�2.66) 2.07 (1.58�2.72)
AST (�70 U/L) 272 52 (19.1) 5.352† 0.021 1.44 (1.06�1.97) 1.42 (1.04�1.95)

TBiL (�20.4lmol/L) 508 93 (18.3) 7.209† 0.007 1.38 (1.09�1.76) 1.34 (1.05�1.70)
Renal function
SCr (�115lmol/L) 209 118 (56.5) 313.701† <0.001 8.87 (6.67�11.79) 7.93 (5.93�10.60)
eGFR (�90mL/min/1.73m2) 3263 302 (9.3) 282.507‡ <0.001 1.00 1.00
eGFR (60�89mL/min/1.73m2) 2282 390 (17.1) 2.02 (1.72�2.37) 1.98 (1.67�2.33)
eGFR (�59mL/min/1.73m2) 300 145 (48.3) 9.17 (7.10�11.84) 8.82 (6.73�11.56)
SUA (�359lmol/L) 4670 589 (12.6) 91.391‡ <0.001 1.00 1.00
SUA (360�420lmol/L) 709 117 (16.5) 1.37 (1.10�1.70) 1.35 (1.08�1.69)
SUA (421�480lmol/L) 300 76 (25.3) 2.35 (1.79�3.09) 2.25 (1.70�2.98)
SUA (�481lmol/L) 166 55 (33.1) 3.43 (2.46�4.80) 3.29 (2.34�4.62)

Biochemical test
Hypoalbuminemia 1960 416 (21.2) 114.578† <0.001 2.22 (1.91�2.57) 2.08 (1.79�2.42)
Anemia 4205 725 (17.2) 104.251† <0.001 2.84 (2.31�3.50) 2.75 (2.23�3.40)
Hyponatremia 1290 352 (27.3) 293.274† <0.001 3.39 (2.90�3.96) 3.28 (2.80�3.84)
Hypernatremia 113 42 (37.2) 5.34 (3.60�7.92) 5.08 (3.41�7.56)
Hypokalemia 796 187 (23.5) 206.422† <0.001 2.24 (1.86�2.69) 2.23 (1.85�2.69)
Hyperkalemia 90 51 (56.7) 9.52 (6.22�14.57) 8.99 (5.86�13.81)

aaOR was adjusted for age, gender, and body mass index.
†refers to Pearson test (for binary and unordered categorical variables).
‡refers to Cochran–Mantel–Haenszel test (for ordered categorical variables).
AKI: Acute kidney injury; cOR: crude Odds ratio; aOR: adjusted Odds ratio; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; TBiL: Total
Bilirubin; SCr: Serum creatinine; eGFR: estimated Glomerular filtration rate; SUA: Serum uric acid.
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value in both the internal and external validation (AUC:
0.823/0.790) than other ML models. Rohit et al. [33]
compared three ML models for AKI detection and found
that naive Bayes performed better (AUC: 0.699). Lee
et al. [34] created a gradient boosting model for pre-
dicting cardiac surgery-associated AKI, and the AUC
value reached 0.780. Briefly, decision tree is an
instance-based learning method, which can induce tree
model from training samples. RF is based on ensemble

leaning algorithm. It constructs many decision trees to
make a vote on classification results. SVM is based on
supervised learning algorithm. It can minimize the
empirical error and maximize the geometric margin at
the same time. However, if solely using clinical risk fac-
tors but without specific AKI markers, model’s predict-
ive precision will be challenged. For this reason, we
found that in BNs model, the recall rate and PPV were
limited to 26.5% and 60.7%. Yet even so, integrating
BNs model into the healthcare can still assist in identify-
ing the high-risk patients at an early stage (before SCr
rising), and increase their chances of AKI treatment [35].

This study has several limitations to declare. Firstly, our
study was conducted in a single center. The extrapolation
of results may be influenced by selection bias. Secondly,
we only selected the clinical variables with the least data
missing. Other factors, such as hemorrhage, infection or
nephrotoxic drugs, were not enrolled. It will blur the rela-
tionships with unknown variables and AKI to some extent.
Thirdly, data were collected retrospectively. Arcs in the
BNs model only represented the probabilistic dependency
relationships between variables, and their causal relation-
ships need to be further verified. In further studies, novel
AKI biomarkers, such as KIM-1, NGAL, and TIMP-2�IGFBP7,
were considered to retrofit into model and improve its
predictive precision.

In conclusion, AKI remains a higher incidence among
GI patients. BNs model not only delineates the

Table 2. Predictive variables of AKI selected by
gLASSO regression.
Variate OR (95% CI) p -value

Diabetes 1.64 (1.21�2.24) 0.002
Cancer Category (Esophagus) 2.83 (2.24�3.58) <0.001
Cancer Category (Stomach) 1.28 (1.07�1.54) 0.008
Treatment (Surgery) 8.52 (4.39�16.55) <0.001
Treatment (Chemotherapy) 2.23 (1.14�4.38) 0.019
Treatment (Interventional) 2.04 (0.93�4.47) 0.074
ALT (�80 U/L) 1.79 (1.32�2.44) <0.001
SCr (�115 umol/L) 3.57 (2.01�6.35) <0.001
eGFR (60�89mL/min/1.73m2) 1.81 (1.51�2.16) <0.001
eGFR (�59mL/min/1.73m2) 4.04 (2.42�6.76) <0.001
SUA (360�420lmol/L) 1.09 (0.85�1.40) 0.501
SUA (421�480lmol/L) 1.79 (1.28�2.51) 0.001
SUA (�481lmol/L) 1.79 (1.16�2.77) 0.008
Hypoalbuminemia 1.26 (1.06�1.50) 0.008
Anemia 1.61 (1.28�2.02) <0.001
Hyponatremia 2.17 (1.82�2.59) <0.001
Hypernatremia 3.34 (2.14�5.22) <0.001
Hypokalemia 1.78 (1.44�2.18) <0.001
Hyperkalemia 2.52 (1.53�4.14) <0.001

gLASSO: group LASSO; OR: Odds ratio; ALT: Alanine aminotransferase; SCr:
Serum creatinine; eGFR: estimated Glomerular filtration rate; SUA: Serum
uric acid.

Figure 2. Bayesian Network model of AKI risk factors in patients with gastrointestinal cancers. AKI: Acute kidney injury; ALT:
Alanine aminotransferase; SCr: Serum creatinine; eGFR: estimated Glomerular filtration rate; SUA: Serum uric acid.
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qualitative and quantitative relationship between AKI
and its associated factors, but shows the more robust
generalizability in AKI prediction. It can help physicians
to identify patients at high risks for AKI and take pre-
ventive strategies to improve prognosis.
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Bayesian Network 87.0% 26.5% 60.7% 88.8% 85.1% 24.8% 54.3% 87.4%
Decision tree 86.1% 13.5% 56.2% 87.2% 84.6% 10.9% 52.4% 85.7%
Random forest 87.3% 22.1% 67.3% 88.3% 85.5% 19.8% 60.6% 86.9%
Support vector machine 86.2% 14.1% 56.7% 87.2% 84.5% 10.9% 50.0% 85.7%
Logistic-score 85.7% 7.4% 65.3% 86.1% 85.4% 7.9% 80.0% 85.5%
Naive Bayes 86.2% 30.5% 53.3% 89.2% 84.9% 28.7% 52.7% 87.9%

Accuracy rate is the sum of correctly classified cases test divided by the data set size (TPþ TN)/(TPþ TNþ FPþ FN). Recall rate is the positively classified
cases divided by the positive cases TP/(TPþ FN). Positive predictive value (PPV) is the proportion of positive cases that are true positives TP/(TPþ FP).
Negative predictive value (NPV) is the proportion of negative cases that are true negatives TN/(TNþ FN).
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