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1e immune microenvironment is a culmination of the collaborative effort of immune cells and is important in cancer de-
velopment. 1e underlying mechanisms of the tumor immune microenvironment in regulating prostate cancer (PRAD) are
unclear. In the current study, 144 natural killer cell-related genes were identified using differential expression, single-sample gene
set enrichment analysis, and weighted gene coexpression network analysis. Furthermore, VCL, ACTA2, MYL9, MYLK, MYH11,
TPM1, ACTG2, TAGLN, and FLNC were selected as hub genes via the protein-protein interaction network. Based on the
expression patterns of the hub genes, endothelial, epithelial, and tissue stem cells were identified as key cell subpopulations, which
could regulate PRAD via immune response, extracellular signaling, and protein formation. Moreover, 27 genes were identified as
prognostic signatures and used to construct the risk score model. Receiver operating characteristic curves revealed the good
performance of the risk score model in both the training and testing datasets. Different chemotherapeutic responses were observed
between the low- and high-risk groups. Additionally, a nomogram based on the risk score and other clinical features was
established to predict the 1-, 3-, and 5-year progression-free interval of patients with PRAD. 1is study provides novel insights
into the molecular mechanisms of the immune microenvironment and its role in the pathogenesis of PARD.1e identification of
key cell subpopulations has a potential therapeutic and prognostic use in PRAD.

1. Introduction

PRAD is a common malignancy in males [1, 2], ranking first
in incidence and second in mortality [3]. However, the ae-
tiology of a disease as common as PRAD remains unclear [4].
Hormones regulate the growth and maintenance of the
prostate gland, with androgens playing a key role in PRAD
progression [1, 5]. Additionally, several dietary factors, such as
soy protein, animal fat, and fibers, have been considered
etiologic factors that are vital for the progression of PRAD [6].

Current PRAD examinations, including digital rectal
diagnosis, serum prostate-specific antigen (PSA), ultrasound
detection, computed tomography (CT), and magnetic res-
onance imaging (MRI), present certain limitations, espe-
cially in patients suffering from biochemical recurrence and
re-evaluation after treatment [7]. However, the current
diagnoses cannot reveal PRAD’s heterogeneity [8], which is
vital in predicting drug treatment sensitivity or primary
resistance [9]. 1erefore, exploring the pathogenesis of
PRAD is highly significant as it can aid in identifying new
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targets for its diagnosis, thereby developing new drugs and
improving patient prognosis.

It has been widely reported that tumorigenesis, tumor
growth, and tumor metastasis are affected by the tumor
immune microenvironment (TME), which includes im-
mune cells, stromal cells, blood vessels, and the extracellular
matrix [10]. Genetic alterations have been reported to alter
the microenvironment in epithelial cells [11]. Furthermore,
numerous studies report the complexity of TME, with the
tumor-infiltrating immune cells (TIICs) playing a crucial
role in TME [12]. TIICs in the TME are correlated with the
prognosis and treatment response [10]. However, many
modulatory interactions between the immune cells remain
unknown because of TME complexity. Because of the
heterogeneous and dynamic nature of cancer’s microenvi-
ronment, the immune contexture of TME has been shown to
affect the disease’s outcome [13]. Hence, it is necessary to
conduct an in-depth analysis of the PRAD TME at the
single-cell level.

Single-cell sequencing is a technology that performs
sequencing and analysis at the level of the genome, tran-
scriptome, and epigenome in a single cell. Single-cell res-
olution is beneficial for analyzing intratumor heterogeneity
[14]. Unlike bulk RNA-Seq data analysis, single-cell RNA-
Seq (scRNA-seq) analysis allows for an in-depth profile of
cell populations at the cellular level and aids in the discovery
of rare subpopulation functions, thus eliminating the
problem of deconvolution caused by bulk measurements.
However, most of the present study uses bulk RNA-Seq data.
RNA-Seq data from bulk samples assembles the variant allele
frequency profiles of thousands to millions of cells, which
cannot be obtained from scRNA-Seq data. 1e mechanism
underlying the effects of immune cell infiltration on the
prostate at the single-cell level remains unclear. 1erefore,
considering the heterogeneity of PRAD cells, this study uses
bioinformatic analyzes, including extensive genomic and
transcriptomic characterization with both bulk RNA-Seq
and scRNA-Seq to elucidate the mechanisms. Firstly, bulk
RNA-Seq data are used to find key genes associated with
PRAD TME. Secondly, the single-cell sequencing data of
PRAD is used to analyze the expression patterns of key genes
in different cell subsets. 1us, the role and potential
mechanisms of TME in PRAD could be explained at the
single-cell level.

2. Materials and Methods

2.1. Data Source. For bulk RNA-seq analysis, the R package
“TCGAbiolinks” was used to obtain level 3 mRNA ex-
pression data of PRAD from the cancer genome atlas
(TCGA) database. 1en, the data was further filtered by the
TCGAanalyze_Preprocessing function using coefficient >0.6
among samples as the criterion, and the genes with an
average expression level ranking in the top 75% were
retained by the TCGAanalyze_Filtering function. After data
processing, 498 PRAD and 52 adjacent control samples
(normal tissue), namely the TCGA-PRAD cohort consisting
of 13,125 genes, were used for downstream analysis. 1e
normalized PRAD single-cell sequencing data, including

36,424 cells and 24,391 genes, which have been preprocessed
in a previous study [15], were downloaded from the gene
expression omnibus (GEO) GSE141445 dataset for down-
stream analysis. Additionally, the bulk RNA-seq data and
survival information of patients with PRAD in GSE54460
(N� 106), GSE46602 (N� 36), GSE70768 (N� 111), and
GSE70769 (N� 92) were used as testing sets. 1e pipeline of
the entire process is shown in Figure S1.

2.2. Identification and Functional Analysis of Differentially
Expressed Genes (DEGs) in TCGA-PRAD. DEGs in PRAD
and adjacent control samples were identified using the
“DESeq2” R package, with a threshold of |log2FC|> 1 and
adjusted p-value < 0.05. R package “ClusterProfiler” was
employed to perform the Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO) enrichment
analyzes of DEGs. A q-value <0.05 indicated significant
enrichment.

2.3. Landscape of Immune Infiltration in TCGA-PRAD.
Single-sample gene set enrichment analysis (ssGSEA) al-
gorithm in the R package “GSVA” was utilized to calculate
the infiltration levels of 27 immune cell types in PRAD and
adjacent control samples [16]. 1e difference in immune cell
infiltration between PRAD and adjacent control samples was
determined using the Wilcoxon test [17]. Immune cells with
a p-value < 0.05 were considered differentially infiltrated
immune cells (DIICs).

2.4. Identification of DIIC-Related DEGs in TCGA-PRAD.
Weighted correlation network analysis (WGCNA) was
performed based on the gene expression profiles and DIICs.
A sample clustering treemap was constructed to detect and
eliminate outliers. Subsequently, WGCNA was performed
based on the gene expression profiles and sample traits
(differentially enriched immune cell types). 1e “pick Soft
1reshold” function of WGCNA was used to calculate β and
select the best soft threshold. Based on the selected soft
threshold, the adjacency matrix was converted to a topo-
logical overlap matrix for constructing the network.
Moreover, the gene dendrogram and module color were
established using a dissimilarity degree. 1e initial module
was further divided using dynamic tree cutting, and similar
modules were merged. Pearson’s correlation coefficient
between the module eigengenes and DIICs was calculated to
identify the most relevant module associated with DIICs.
Using module membership (MM)> 0.8 and gene signifi-
cance (GS)> 0.5 as criteria [18], DEGs in the most relevant
module associated with DIICs were screened for further
analysis.

2.5. Identification of Hub Differentially Infiltrated Immune
Cell-Related Genes (DIICs-DEGs) in PRAD. DIICs-DEGs
were input into the STRING database (https://www.string-
db.org/) to construct the protein-protein interaction net-
work (PPI). 1e top 10 genes with the highest interaction
degrees were extracted and defined as candidate hub DIICs-
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DEGs. Pearson’s correlations among the candidate hub
DIICs-DEGs were calculated and visualized using the R
package “ggcorrplot.” 1e function of candidate hub DIICs-
DEGs was analyzed using the Metascape online tool (https://
metascape.org/). 1e expression patterns of the candidate
hub DIICs-DEGs in PRAD and adjacent control samples in
TCGA-PRAD were tested in an external dataset, GSE54450.
1e candidate hub DIICs-DEGs with consistent expression
patterns in the TCGA-PRAD and GSE54460 datasets were
identified as differentially infiltrated immune cell-related
genes (DIICRGs).

2.6. Single-Cell Analysis. 1e Seurat pipeline was used to
analyze single-cell sequencing data and classify the cell
groups.1e cell types were identified using SingleR [19], and
the cell differentiation trajectory was analyzed using Mon-
ocle [20].

2.7. Construction and Validation of the Risk Score Model.
After converting the gene symbol of the selected DEGs in
TCGA to ENTREZ ID, the intersection of DEGs and marker
genes of cell clusters was analyzed using univariate Cox
regression to screen genes related to the progression-free
interval (PFI) (HR ≠ 1, p-value < 0.0001 for stricter
screening) [21]. 1e LASSO algorithm was employed to
further screen for prognostic signatures under the optimal
lambda with the smallest classification error using the R
package “glmnet.” After the proportional hazards (PH)
assumption, prognostic signatures with a p-value >0.05 were
used to construct the risk score (multivariate Cox regres-
sion) model in the training set. 1en, the risk score was
determined using the following formula:
􏽐

n
1 ExpGenei

∗Coefi (ExpGenei, expression of the gene;
Coefi, coefficient of the gene). To evaluate the performance
of the risk score model, the receiver operating characteristics
(ROC) curve was plotted using the R package “survi-
valROC.” Moreover, the risk score model was tested in
external datasets, including GSE54460, GSE46602,
GSE70768, and GSE70769. According to the expressions and
coefficients of model genes, the risk score of each patient was
calculated, and the patients with PRAD were divided into
low- and high-risk score groups based on the median value
of the risk score. 1e PFIs in the low- and high-risk groups
were analyzed and compared using the Kaplan–Meier curves
and the log-rank test. 1e “pRRophetic” R package and
Wilcoxon test were used to analyze and compare the che-
motherapeutic response of patients in the low- and high-risk
groups to 138 drugs [22].

2.8. Establishment of the Predictive Nomogram for PFI.
1e risk score and clinical features of patients with PRAD
(age and TNM stage) were analyzed using univariate Cox
regression to detect independent prognostic factors (p-value
<0.05). 1e screened independent prognostic factors were
then analyzed using multivariate Cox regression to construct
the nomogram for predicting the 1-, 3-, and 5-year PFI of

patients with PRAD. 1e nomogram’s efficiency was eval-
uated using ROC curves.

3. Results

3.1. DEGs Identified in TCGA-PRAD Have Multiple
Functions. A total of 1,750 DEGs, including 714 upregulated
(PRAD versus control) and 1,036 downregulated genes
(PRAD versus control), were identified in the TCGA-PRAD
cohort (Figure 1(a) and Table S1). 1e DEGs were signifi-
cantly enriched in 473 biological processes, 65 cellular
components, and 55 molecular functions (Table S2). More-
over, the top biological processes were mainly associated with
the muscle system, urogenital system, circulatory system, and
cell adhesion, such as muscle contraction, blood circulation
regulation, and cell-cell adhesion via plasma-membrane ad-
hesion molecules (Figure 1(b)). Additionally, 29 significantly
enriched KEGG pathways were identified (Table S3). 1ese
pathways were further found to be relevant to cell prolifer-
ation, cell adhesion, cardiomyopathy, and immunity, such as
focal adhesion, extracellular matrix (ECM)-receptor inter-
action, cell cycle, complement and coagulation cascades,
hypertrophic cardiomyopathy, pI3K-Akt signaling pathway,
and calcium signaling pathway (Figure 1(c)). 1erefore, the
complexity of PRAD aetiology could be attributed to multiple
biological processes and signaling pathways that contribute to
the development of PRAD.

3.2. TME Is Altered in PRAD. A growing body of evidence
reveals the important role of the TME in cancer [10, 11, 23].
1erefore, the infiltration levels in PRAD and control
samples were analyzed using ssGSEA. A total of 21 DIICs
(immature B cells, memory B cells, activated B cells, central
memory CD8+ T cells, central memory CD4+ T cells, acti-
vated CD8+ T cells, NK cells, effector memory CD8+ T cells,
type 2T helper cells, effector memory CD4+ T cells,
CD56dim, NK cells, type 17T helper cells, monocytes, NK
T cells, immature dendritic cells, plasmacytoid dendritic
cells, mast cells, T follicular helper cells, eosinophils, neu-
trophils, and type 1T helper cells), most of which showed
higher infiltration levels in control samples than PRAD
samples, were identified (Tables S4-S5 and Figure 2(a)).
Further analysis showed that these DIICs had moderate to
strong correlations with each other (Figure 2(b)).

3.3.NineHubDIICRGs Identified inPRAD. To explore genes
associated with DIICs, WGCNA analysis was performed.
After sample clustering, outlier samples were excluded (data
not shown). Using the “pick Soft 1reshold” function of
WGCNA, the optimal soft threshold power was found to be
3, wherein R2 was approximately 0.9 (Figure 3(a)). 1ree
modules were identified from the coexpression network.
According to the module-trait relationships shown in
Figure 3(b), the turquoise module was selected as the most
relevant module with NK cells (cor� 0.78, p-value <0.05).
Moreover, using GS> 0.5 and MM> 0.8, 144 genes were
obtained from the turquoise module for further analysis
(Figure 3(c)). 1e PPI network of the genes was constructed
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and visualized using Cytoscape (Figure 3(d)). Furthermore,
the top ten genes with the highest interaction degrees, in-
cluding, FLNA, VCL, ACTA2, MYL9, MYLK, MYH11,
TPM1, ACTG2, TAGLN, and FLNC, were selected using the
“cytohubba” plug-in (Figure 3(d)) and identified as candi-
date hub genes in PRAD.

Correlation analysis revealed that candidate hub genes
had a moderate to a strong relationship with each other
(Figure 4(a)). Metascape revealed that they were associated
with the contraction of the smooth muscle, RHO GTpase
activation of PAKs, regulation of the actin cytoskeleton,
focal adhesion, tissue morphogenesis, striated muscle
contraction pathway, and development of muscle structure
and muscle cell (Figure 4(b)). 1ereafter, the expression
patterns of the genes in the TCGA-PRAD and GSE54460
datasets were examined, revealing that the expressions of
VCL, ACTA2, MYL9, MYLK, MYH11, TPM1, ACTG2,
TAGLN, and FLNC were significantly different between
PRAD and control samples in both cohorts (Figures 4(c)–
4(d)). 1us, these nine genes were identified as hub
DIICRGs in PRAD.

3.4. Hub DIICRGs Are Mainly Expressed in *ree Cell
Subpopulations. 1e top 4000 highly variable genes
(Figure 5(a)) were selected for downstream analysis. After
performing the principal component analysis (PCA) on
highly variable genes, 70 significant principal components
(PCs) were identified (Figure 5(b)). Using the tSNE method,
PRAD cells were clustered into nine distinct cell subpop-
ulations, including B cells, chondrocytes, common myeloid
progenitor, endothelial and epithelial cells, induced plu-
ripotent stem cells, monocytes, T cells, and tissue stem cells
(Figure 5(c)). 1e examination of the expression patterns of
hub genes in those cell subpopulations revealed that they
were highly expressed in endothelial, epithelial, and tissue
stem cells (Figures 5(d)–5(e)), suggesting that these cell
subpopulations could be crucial to PRAD aetiology.

3.5. *e Pseudotime Trajectory Reveals the Important Role of
Epithelial Cells in PRAD. To further explore the heteroge-
neity of endothelial, epithelial, and tissue stem cells, the cells
were subclustered into eight clusters, with cluster 5, cluster 7,
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Figure 1: Multiple functions of DEGs have been identified in the cancer genome atlas prostate cancer (TCGA-PRAD) cohort. (a) DEGs
between PRAD and control samples were identified using fold-change values and adjusted p-values. DEGs, differentially expressed genes;
PRAD, prostate cancer; Control, normal tissue. Red and blue dots indicate upregulated and down-regulated mRNAs, respectively. Statistical
significance was set at p-value <0.05. (b). DEGs enriched in the gene ontology (GO) pathways. BP, biological process; CC, cellular
component; MF, molecular function. Adjusted p value <0.05 was considered statistically significant. (c) DEGs enriched in the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways. Adjusted p value <0.05 was considered statistically significant.
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Figure 2: 1e altered immune microenvironment in prostate cancer (PRAD). (a) A total of 21 types of tumour-infiltrating immune cells
were observed in PRAD compared to normal tissues in1e cancer genome atlas cohort. Blue and yellow indicate normal and tumour tissues,
respectively. (b) Matrix demonstrating the correlation between 28 immune cells ns, p> 0.05; ∗p< 0.05; ∗∗p≤ 0.01; ∗∗∗p≤ 0.001;
∗∗∗∗p≤ 0.0001.
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Figure 3:1e selection of hub genes. (a)1e nature of the network topology is constructed using the unique soft threshold (Power). (b)1e
relationship between Soft1reshold (Power) values andmean connectivity. (c)1e correlation between the different modules of ME brown,
ME turquoise, ME blue, and tumour-infiltrating immune cells. (d) Scatter plot showing the correlation between genes (MM) and natural
killer cells (GS) in the turquoise module. 1e genes meeting the criteria of GS> 0.5 and MM> 0.8 were selected for further analysis. (e)
Protein-protein interaction (PPI) networks in 144 genes and the selection of 10 hub genes.1e circle indicates genes in the turquoise module
while the edges indicate the interactions between genes.1e PPI network was constructed using STRING and visualised using the R package
“ggcorrplot.”
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and partial cluster 1 belonging to endothelial cells. Cluster 6
belongs to the tissue stem cells, and clusters 0, 2, 3, 4, and
partial cluster 1 belong to the epithelial cells (Figures 6(a)
and 6(b)). Moreover, VCL and TPM1 were abundant in all
clusters, while the other hub genes were mainly expressed in
clusters 6 and 7 (Figures 6(c)–6(d)).

Trajectory analysis showed that endothelial cells (cluster
5, cluster 7, partial cells in cluster 1) and tissue stem cells
(cluster 6) mainly originated from the epithelial cells (cluster
0 and cluster 2) (Figures 7(a)–7(c)), indicating the critical
role of epithelial cells in PRAD progression. 1e dynamic
changes of hub gene expression were further analyzed along
the trajectory, which revealed that the expressions of
ACTA2, MYH11, MYL9, MYLK, TAGLN, and VCL sig-
nificantly increased in the late stage of cell differentiation

(Figure 7(d)). 1is increased expression could be closely
associated with the occurrence of PRAD.

To illustrate each cluster’s role, marker genes in each
cluster were identified (Figure 8(a)), and the functional
analysis of the markers in each cluster was performed (all
enrichment results can be found in Tables S6-S13 for cluster
0–7).1e common and distinct functions among the clusters
could contribute to the complexity of PRAD.1emarkers of
clusters 0 and 4 were mainly enriched in immune-related
biological processes, such as neutrophil activation
(Figures 8(b) and 8(f)). Markers in clusters 6 and 7 were
mainly associated with ECM processes, such as ECM or-
ganization and cell-substrate adhesion (Figures 8(h)-8(i).
Furthermore, the functions of the markers in cluster 5 were
similar to those in clusters 6 and 7, which were also relevant
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Figure 5: Expression profiles of hub differentially infiltrated immune cell-related genes (DIICRGs) in cell subpopulations. (a) 1e
characteristic variance diagram displays the genes with significant differences across cells. (b) Line chart displaying the significantly available
dimensions of data sets with p value <0.05, which were identified using principal component analysis. PC, principal component. (c) 1e
annotated cell subpopulations using SingleR. (d) Mapping of hub gene expressions in the epithelial, tissue stem and endothelial cells via the
tSNE method. (e) Hub gene expressions in the epithelial, tissue stem and endothelial cells.
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to endothelial cell differentiation (Figure 8(g)). Notably,
markers in clusters 1, 2, and 3 had important roles in the
formation of proteins, such as PERK-mediated unfolded
protein response, translation initiation, and plasma-mem-
brane protein development (Figures 8(c)–8(e)).

3.6. Construction of a Risk Score Model Based on 25 Gene
Signatures in PRAD. To explore the role of marker genes in
the prognosis of PRAD, the gene symbols of DEGs were
converted into ENTREZ ID, with 1,723 DEGs (Table S14)
overlapping with 3,220 marker genes and revealing 453
differentially expressed marker genes in PRAD (Figure 9(a)
and Table S15). 1e univariate Cox regression analysis
revealed 53 differentially expressed marker genes that were
linked with the PFI in patients with PRAD significantly
(Figure 9(b)). To obtain a more robust prognostic signature,
the LASSO regression analysis was performed, and 27 genes,
including ABCA2, ABCB6, ABCB9, ABCC5, ACAP3,
ACIN1, ACOX2, ACRBP, ACYP1, ADAM11, ADAMTS2,
ADAMTS7, ADAP1, ADAP2, ADCK2, ADH5, ADRA1D,
AGAP2, AGAP3, AGRN, AHRR, AIFM1, AK5, AKAP7,
AKR1C3, ALB, and ALDH1A2, were identified at a
lambda min of 0.02042135 at 10-fold cross-validation
(Figures 9(c) and 9(d)). After PH assumption, 25 prognostic
signatures (ABCA2, ABCB6, ABCB9, ABCC5, ACAP3,
ACIN1, ACOX2, ACRBP, ACYP1, ADAM11, ADAMTS2,
ADAP1, ADAP2, ADCK2, ADH5, ADRA1D, AGAP2,
AGAP3, AGRN, AHRR, AIFM1, AK5, AKAP7, AKR1C3,
and ALDH1A2) were selected for the construction of the risk
score mode.1e areas under the ROC curves of 1-, 3-, and 5-
year PFI were 0.79, 0.81, and 0.78, respectively, indicating the
good performance of the risk score model (Figure 9(e)).
Patients with PRAD in the TCGA training set were divided
into low- and high-risk groups by the median risk score
(Figure 9(f)). PFI was observed to reduce along with an
increasing risk score (Figure 9(g)). Moreover, patients in the
low-risk group had significantly longer PFI than those in the
high-risk group (Figure 9(h)).

Moreover, similar results were observed in four external
datasets (Figures S1–S4), demonstrating the reliability of the
risk score model. Additionally, the chemotherapeutic re-
sponses of patients to 85 drugs were significantly different
between the low- and high-risk groups (Figures S5 and S6),
indicating that the prognostic biomarkers may affect the
chemotherapy response of patients with PRAD. Among
them, the half-maximal inhibitory concentration (IC50) of
Bicalutamide, which is used in the treatment of advanced
PRAD, in the high-risk group was significantly lower than
that in the low-risk group. Cisplatin, another chemotherapy
drug, presented significantly lower IC50 values in the low-
risk group, suggesting its efficacy in treating localized PRAD
or early-stage PRAD.

3.7. A Predictive Nomogram Is Established in PRAD.
Finally, the risk score as an independent prognostic factor in
PRAD was investigated. Using the univariate Cox regression
analysis, the risk score, Tstage, and N stage were found to be
significantly related to the survival of patients with PRAD

(Figure 10(a)). After the multivariate Cox regression anal-
ysis, the risk score remained significantly associated with the
survival of patients with PRAD (Figure 10(b)), indicating
that the risk score was an independent prognostic factor in
PRAD. 1us, a nomogram based on the risk score and other
clinical features was established to predict the 1-, 3-, and 5-
year PFI of patients with PRAD (Figure 10(c)). 1e cali-
bration curves showed that the predicted PFI was very close
to the actual PFI (Figure 10(d)), suggesting the clinical
application of the nomogram. Furthermore, the areas under
the ROC curves were 0.79, 0.83, and 0.81 for the 1-, 3-, and 5-
year PFI, respectively (Figure 10(e)), further indicating the
good performance of the nomogram.

4. Discussion

A total of 1,750 DEGs were identified in the TCGA-PRAD
cohort. ssGSEA showed that the proportions of 21 immune
cells were significantly different between PRAD and control
samples. WGCNA identified 144NK cell-related genes and
nine hub genes, including VCL, ACTA2, MYL9, MYLK,
MYH11, TPM1, ACTG2, TAGLN, and FLNC, which were
selected by the PPI network. Using Single R, nine cell
subpopulations were detected in PRAD. Based on the ex-
pression patterns of hub genes, endothelial, epithelial, and
tissue stem cells were identified as key cell subpopulations,
which regulate PRAD via immune response, extracellular
signaling, and protein formation.

1e functional analysis of DEGs in cancer and peritu-
moral samples was performed, revealing that the muscle
tissue development and the blood circulatory system were
mainly related to the DEGs. It has been reported that an-
giogenesis is closely related to the progression of cancer cells
[24–26]. 1e increased local angiogenesis could be a marker
for detecting PRAD [27]. Some drugs include Zoledronic
acid [28], curcumin [29], and the EZH2 inhibitor GSK126 or
EPZ6438 [26], which inhibit neoangiogenesis in patients
with PRAD. To date, to the best of our knowledge, there is no
direct evidence that muscle tissue development is associated
with cancer progression. Hypoxia occurring within the
muscle during exercise could stimulate angiogenesis
[30–32]. Moreover, hypoxia is common in many cancers
[33]. 1erefore, it is inferred that a high oxygen demand
during cancer cell growth could lead to hypoxia, wherein
hypoxia simulates the muscle near the prostate to generate a
stimulus for angiogenesis, thereby leading to cancer
progression.

Subsequently, the immune microenvironment between the
tumor and peritumoral samples was compared, revealing that
the TME of PRAD was significantly altered, which was re-
flected by the significant change in infiltration levels in all 21
types of immune cells. Similarly, consistent with the results of
Gao et al. [34], the current study showed a similar trend in
terms of the infiltration level of T follicular helper cells. An
increase in neutrophils was also reported [10, 35]. 1ese in-
creased immune cells are speculated to be involved in the
progression of PRAD [35, 36]. Among these immune cells, NK
cells, whichwere reduced in the tumor tissues, were found to be
heavily involved in the anticancer activity as a type
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of lymphocyte population [37, 38]. Several studies indicate that
a lower degree of NK cells is associated with an increased risk of
PRAD [38–40].1e reduction of NK cell levels (Figure 2(a)) in
PRAD, as reported by Li et al. [41], could be a favorable en-
vironment for neutrophils to promotemetastasis. Conversely, a
high level ofNK cells indicates a good prognosis or lower risk of
PRAD [42, 43]. 1us, NK cells could be used as a potential
therapeutic target. Although immunotherapy has been used to
treat various solid tumors, Sipuleucel-T is the only approved
PRAD immunotherapy for castration-resistant PRAD, which is
the advanced stage of PRAD [44, 45]. It is suggested that ef-
fective NK activation and tumor targeting/binding are essential
mechanisms in NK cell-mediated cancer treatment. Highly
effective NK cells are critical limiting factors in cancer im-
munotherapy efficacy [46, 47]. Hence, based on the current
study, the increasing activity of the NK cells via checkpoint
inhibitors, NK cell engagers, and cytokines could improve
PRAD immunotherapy efficacy at different stages.

Next, nine hub genes, namely VCL, ACTA2, MYL9,
MYLK, MYH11, TPM1, ACTG2, TAGLN, and FLNC, were
obtained using WGCNA, PPI, and external gene set vali-
dation. VCL is a focal adhesion-related cytoskeletal protein
that plays an essential role in cell adhesion and signal
transduction. 1ese nine hub genes mainly are involved in
the processes, including metastasis, progression, and sur-
vival. MYL9 encodes an actin-binding protein involved in
cell motility, division, and adhesion. Previous studies have

confirmed that the expression level of MYL9 is down-
regulated in the stroma of PRAD, indicating the poor
prognosis of patients with PRAD [48, 49]. MYL9 has the
potential to become a molecular marker for diagnosing
PRAD and predicting cancer progression and prognosis.
TPM1 belongs to the tropomyosin family and plays a vital
role in cytoskeletal functions, such as cell proliferation,
migration, and apoptosis, thereby playing a key role in
tumor growth and metastasis. MYH11 is a member of the
Myosin family, which regulates functions, such as signal
transduction, muscle contraction, and cell movement in the
body, and the mutation of MYH11 has also been observed in
prostate cancer, however, further exploration is needed
[50, 51]. Myosin light-chain kinase (MYLK) is a member of
the immunoglobulin superfamily, an enzyme independent
of calcium-/calmodulin that facilitates myosin interaction
with actin filaments and produces contractile activity.
ACTA2 are found in muscle tissues and are the significant
constituents of the contractile apparatus. ACTG2 gene
encodes actin, a gamma-enteric smooth muscle protein
found in human enteric tissues. 1e PPI network
(Figure 3(d)) indicates the interactions among the hub genes
(MYH11, MYLK, ACTA2, and ACTG2). 1erefore, PRAD
development was speculated to be correlated with muscle
development (Figure 1(b)). Moreover, TAGLN and FLNC
genes have functions in muscle tissues, indicating their
involvement in PRAD progression.
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Figure 6: Subclustering of the cell subpopulations for endothelial, epithelial and tissue stem cells. (a) Distribution of the cell subpopulations
of endothelial, epithelial and tissue stem cells. (b) Eight clusters in the cell subpopulations of endothelial, epithelial and tissue stem cells. (c)
Expression of hub genes in the subclusters (tSNE mapping). (d) Violin plots revealing the expression of hub genes in the eight subclusters.
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Subsequently, using PRAD single-cell sequencing data,
three cell subsets that could play an essential role in the
occurrence and development of PRAD were screened. 1e
tumorigenicity of epithelial cells was reported to be the

major reason for PRAD development [52]. Epithelial-
mesenchymal transition (EMT) is a normal cellular physi-
ological process that involves transforming epithelial cells
into cells with a mesenchymal phenotype. EMT is a
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necessary process that drives the metastasis of PRAD
[53, 54]. Various proteins regulate e-cadherin expression,
including snail [55], epidermal growth factor, epidermal
growth factor receptor [56], twist [57], andmiRNAs [58, 59].
1e decreased expression, including the silencing of
e-cadherin in the epithelial cells, leads to the sustained loss of
normal polarity and adhesion [60] and subsequently to
PRAD cell invasion and metastasis. In other words, the
abnormal expression of genes in epithelial cells could
promote PRAD development. However, further in-depth
research is required to clarify the mechanisms and provide
new targets and directions for the diagnosis, prognosis, and
treatment of PRAD. Endothelial cells are strongly linked to
metastasis. Endothelial cells surrounding tumors are the
basis of angiogenesis [61]. Additionally, they boost auto-
phagy and accelerate focal adhesion protein disassembly
[62]. 1is type of cell is also associated with drug resistance
in PRAD. Recent studies have shown that vascular endo-
thelial cells can modulate the response of tumor cells to
chemotherapy [63]. Akiyama et al. [64] found that endo-
thelial cells can acquire drug resistance from TME.

Tissue stem cells are the dominant cell types in PRAD,
suggesting that PRAD could be a stem cell disease. In ad-
dition to the stem cell characteristics of proliferation, self-
renewal, and differentiation potential [65], cancer stem cells
(CSCs) have the ability to generate the heterogeneous lin-
eages of cancer cells that develop into tumors [66, 67]. Only a
tiny portion of PRAD exhibit the phenotypical and func-
tional characteristics of normal prostate stem cells and
participate in tumorigenesis, metastasis, and drug resistance
[68–70]. However, PRAD CSCmarkers remain undefined in
clinical practice. 1ere is increasing evidence that
PRAD–CSC–specific markers (CD44, CD133, CD166,
FAM65B, MFI2, and LEF1) can predict the patients’ overall

survival, which suggests the clinical potential of PRAD CSC
as biomarkers and therapeutic targets [71, 72]. 1e com-
bined use of CSC vaccines with immunomodulators, such as
anti-PD-L1 antibodies, can significantly improve the anti-
tumor efficiency of CSC-based vaccines and block the im-
munosuppressive effect of the TME [73, 74]. 1us, immu-
notherapy targeting CSC could have clinical implications in
treating PRAD.

To further reveal the function of the three cell subsets in
PRAD, they were subdivided into eight cell clusters, for
which cell trajectory and functional analyses were per-
formed. 1e pseudotemporal cell trajectory analysis indi-
cated that the epithelial cells were at the beginning of the
entire cell tree. It has been suggested that endothelial cells are
a type of epithelial cells, indicating that epithelial cells could
transform into endothelial cells [75]. Chen et al. [15] claimed
that this differentiation occurs in carcinoma cells that have
undergone EMT, which contributes to tumor growth. Ad-
ditionally, following the treatment of proangiogenic signals,
which is a common phenomenon during tumors, epithelial
cells can transition to endothelial cells in vivo [76]. 1ere is
little robust evidence that epithelial cells could be differ-
entiated into stem cells in PRAD. However, it is assumed
that epithelial cells reacquiring self-renewal capabilities
could lead to carcinogenesis [77, 78]. Following EMT, tumor
cells could gain stem cell-associated properties [79–82].
1erefore, similar signals in vivo could be applied to epi-
thelial cells to validate the transition to stem cells through
EMT.

1ese enrichment results match the cell subpopulations’
functions (Figures 6(a) and 6(b)), indicating that cell clusters
from the same source have similar functions but cell clusters
from different sources have dissimilar functions. 1is ability
to differentiate into different types of cells contributes to the
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Figure 9: Construction of a prognosis signature of 25 genes in prostate cancer (PRAD). (a) A total of 453 genes overlapped the marker
genes, which were obtained from Figure 8(a), and the differentially expressed genes (DEGs) using the venn diagram. (b) Univariate Cox
regression analysis revealed 53 genes significantly linked to the progression-free interval (PFI) at a p -value <0.05. (c) 1e coefficients of the
53 genes are shown using the lambda parameter. (d)1e optimal genes are determined using LASSO regression analysis to construct the risk
model. (e) Receiver operating characteristic (ROC) curve analysis for 1-, 3- and 5-year PFI using the TCGA training set. (f ) Patients with
PRAD in the TCGA cohort are listed in ascending order of risk score. (g) PFI distribution versus the risk score of each patient in the TCGA-
PRAD cohort. (h) Kaplan–Meier curves of patients having different risk levels in the internal TCGA training set.

Univariate

riskScore

Age

T2 (Reference)

T3

T4

N1 vs N0

M1 vs M0

P value 

< 0.0001

0.1787

< 0.0001

0.0424

0.0134

0.1996

Hazard Ratio (95% CI)

2.718 (2.21−3.344)

1.021 (0.99−1.053)

3.718 (2.098−6.59)

3.652 (1.046−12.755)

1.854 (1.137−3.026)

3.648 (0.505−26.354)

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27
Hazard Ratio

(a)

Figure 10: Continued.

20 Journal of Oncology



Multivariate

riskScore

T2 (Reference)

T3

T4

N1 vs N0

P value 

< 0.0001

0.0107

0.698

0.502

Hazard Ratio (95% CI)

2.696 (2.09−3.477)

2.374 (1.222−4.611)

1.315 (0.33−5.234)

0.839 (0.502−1.402)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Hazard Ratio

(b)

Points
0 1 2 3 4 5 6 7 8 9 10

riskScore
5 4 3 2 1 0 −1 −2 −3 −4

T_stage
T3 T4

T2

N_stage
N0
N1

Total Points
0 1 2 3 4 5 6 7 8 9 10 11

Linear Predictor
5 6 7 8 9 10 11 12

1−year PFI Probability
0.3 0.5 0.7 0.90.95 0.99

3−year PFI Probability
0.1 0.3 0.5 0.7 0.90.95 0.99

5−year PFI Probability
0.1 0.3 0.5 0.7 0.90.95 0.99

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Nomogram−Predicted Probability of 1−5 year
Progression−free Interval

A
ct

ua
l 1

−5
 y

ea
r P

ro
gr

es
sio

n−
fre

e
In

te
rv

al
(P

ro
po

rt
io

n)

1−year
3−year
5−year

(d)

Figure 10: Continued.

Journal of Oncology 21



heterogeneity of PRAD. 1e pseudotime trajectory and
pathway enrichment (functional analysis) analysis might
provide speculations regarding the occurrence of PRAD. In
the beginning, epithelial cells (clusters 0 and 4) were the
main subpopulations of the cells, and functional analysis
deciphers the activation of neutrophils as the primary

function. Following activation, neutrophils, inflammation,
and cancer can elevate DNA replication errors and release
reactive oxygen species in epithelial cells [23]. 1us, acti-
vated neutrophils trigger the oncogenic transformation, and
epithelial cells are subsequently driven to carcinogenesis and
the abnormal expression of specific genes. Following this,
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Figure 10: Establishment of the predictive nomogram. Independent prognostic factor analyzes using (a) univariate and (b) multivariate cox
regression. (c) Nomogram based on risk score and T&N stage for the prediction of the 1-, 3- and 5-year progression-free interval (PFI). (d)
1e calibration curves of the nomograms for the 1-, 3- and 5-year PFI. (e) Receiver operating characteristics curve analysis for the 1-, 3- and
5-year PFI.

Table 1: Roles of the 25 genes used in the prognosis signature.

Gene Role References
ABCA2 Drug resistance and malignant progression Zhu et al. [95]; pasello et al. [96]
ABCB6 Progression Karatas et al. [97]
ABCB9 Drug resistance Guazzelli et al. [98]
ACAP3 Prosurvival role Sullivan et al. [99]
ACIN1 Belongs to the canonical apoptosis signaling pathway Ali et al. [100]
ACOX2 Tumour progression Bjørklund et al. [101]
ACRBP Paclitaxel resistance Whitehurst et al. [102]
ACYP1 Tumorigenesis and progression; poor prognosis Zhou et al. [103]
ADAM11 Tumour suppressor Ribeiro et al. [104]
ADAMTS2 1e inhibition of proliferation and angiogenesis of endothelial cells Kirana et al. [105]
ADAP1 Metastasis and invasion Oga et al. [106]
ADAP2 a key accessory protein for relaying signals via natural killer cell receptors Campbell and colonna [107]
ABCC5 Accelerating tumour growth and migration Ji et al. [108]

ADCK2 1e proliferation and survival of cancer cells; regulation of superoxide activity Vierthaler et al. [109]; schoolmeesters et al.
[110]

ADH5 Associated with disease-free survival and metabolic functions
ADRA1D Related to benign prostatic hyperplasia Kim et al. [111]
AGAP2 Facilitating the growth of the prostate Zhao et al. [112]
AGAP3 Putative driver gene Shimizu et al. [113]
AGRN Critical to the tumour-promoting function of long noncoding RNA NEAT1 Li et al. [114]
AHRR Tumour suppressor Burris et al. [115]
AIFM1 1e induction of apoptosis in a caspase-independent manner Liu et al. [116]
AK5 Apoptosis inhibition and autophagy promotion Zhang et al. [117]
AKAP7 Progression by regulating miR-526b-5p and SERP1 Mekhail et al. [118]

AKR1C3 Promoting epithelial-mesenchymal transition and metastasis by activating
ERK signaling Wang et al. [119]

ALDH1A2 Reduction in ALDH1A2 protein is an early event in human prostate cancer Kim et al. [120]
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clusters 1, 2, and 3, which were considered the main types,
including epithelial and endothelial cells, were found to be
involved in the pathways of PERK-mediated unfolded
protein response (UPR) and translation initiation, which
correlates with previous studies. PERK-mediated pathways
introduce endoplasmic reticulum stress into cells and reduce
the expression of e-cadherin [83, 84]. 1us, epithelial cells
could be differentiated into endothelial cells. UPR, to some
extent, aids in the survival of tumor cells [83, 85]. Fur-
thermore, PERK-mediated processes assist the production of
proangiogenic factors and the growth of blood vessels, of-
fering tumor cells a route to metastasis [83, 86]. Proteins that
are relevant to angiogenesis are then produced by endo-
thelial cells [87, 88]. During angiogenesis, endothelial cells
grow and promote the formation of new blood vessels
through the vascular endothelial growth factor (VEGF).
UPR also reduces cell-cell junction markers, promoting
metastasis [89, 90]. However, epithelial cells could also
transition to CSCs or stem cells. Stem cells, including CSCs,
induce the expression of endothelial markers [91, 92], and
VEGF also promotes endothelial cell differentiation [93].
1roughout angiogenesis and EMT, ECM organization is
dysregulated and cell-substrate adhesion is reduced [94],
resulting in cancer cells acquiring an invasive and migratory
phenotype.

To further explore the prognostic value of cell subset
marker genes, 25 prognostic genes were identified through
univariate, LASSO, and multivariate analyses. 1eir roles in
PRAD are summarized in Table 1. Based on these 25 genes, a
risk model was constructed, which divided patients into
high- and low-risk groups. Interestingly, a significant dif-
ference was observed in chemosensitivity between the high-
and low-risk groups. Bicalutamide was found to be more
effective for patients with PRAD in the high-risk group than
in the low-risk group. Clinically, Bicalutamide is used to
treat advanced PRAD [121, 122], corroborating our results.
Cisplatin is used to treat early-stage PRAD [123], which
corroborates with the result that the patients in the low-risk
group are more sensitive to Cisplatin than the high-risk
group. Moreover, a significant difference was observed in the
chemotherapy response to the other 83 drugs, although they
are not yet approved for the treatment of PRAD. Despite the
advances in PRAD treatment, therapeutic options for PRAD
remain limited [124, 125]. 1ese 83 drugs can be considered
a pool when looking for novel therapies. For instance,
GDC.0449 is a drug targeting the Hedgehog pathway, whose
activation could indicate the potential effectiveness of
GDC.0449 in PRAD [8, 126]. Moreover, the SRC family
kinase activity is observed in hormone-refractory PRAD
[127], suggesting that medications targeting the SRC family,
such as A.770041, AZD.0530, and WH.4.023, could be ef-
fective in PRAD treatment.

1e small sample size (13 tumors) limits the applicability
of the study [15]. 1is study combined the analysis of high-
throughput gene chip data and single-cell sequencing data,
which avoided the insufficiency of a single research method
and improved the credibility of the results. 1e occurrence
and development of PRAD, a highly heterogeneous disease,
involves complex mechanisms, and the DEGs obtained form

only a small part of the mechanism. Furthermore, novel
insights into the molecular mechanisms of TME in the
pathogenesis of PARD are reported. Hence, precision
medicine is crucial in PRAD treatment because of the
disease’s heterogenicity. Further immunological functional
studies to clarify the biological functions of these genes and
cell subsets in PRAD are essential, which could provide a
solid foundation for improved clinical diagnosis and
treatment.
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listed in ascending order of risk score. B. Progression-free
interval (PFI) distribution versus the risk score of each
patient in the GSE54460 cohort. C. Kaplan–Meier (KM)
curves of patients with different risk levels in the GSE54460
validation set. D. Receiver Operating Characteristic (ROC)
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curve analysis for 1-, 3- and 5-year PFI using the clinical
information of patients of the GSE54460 validation dataset.
Figure S3. Validation of the risk score model using the
GSE46602 dataset. A. Patients with prostate cancer (PRAD)
in the GSE46602 cohort are listed in ascending order of risk
score. B. Progression-free interval (PFI) distribution versus
the risk score of each patient in the GSE46602 cohort.
C. Kaplan–Meier (KM) curves of patients with different risk
levels in the GSE46602 validation dataset. D. Receiver
Operating Characteristic (ROC) curve analysis for 1-, 3- and
5-year PFI using the clinical information of patients of the
GSE46602 validation dataset. Figure S4. Validation of the
risk score model using the GSE70768 dataset. A. Patients
with prostate cancer (PRAD) in the GSE70768 cohort are
listed in ascending order of risk score. B. Progression-free
interval (PFI) distribution versus the risk score of each
patient in the GSE70768 cohort. C. Kaplan–Meier (KM)
curves of patients with different risk levels in the GSE70768
validation dataset. D. Receiver Operating Characteristic
(ROC) curve analysis for 1-, 3- and 5-year PFI using the
clinical information of patients of the GSE70768 validation
dataset. Figure S5. Validation of the risk score model using
the GSE70769 dataset. A. Patients with prostate cancer
(PRAD) in the GSE70769 validation dataset are listed in
ascending order of risk score. B. Progression-free interval
(PFI) distribution versus the risk score of each patient in the
GSE70769 cohort. C. Kaplan–Meier (KM) curves of patients
with different risk levels in the GSE70769 validation set.
D. Receiver Operating Characteristic (ROC) curve analysis
for 1-, 3- and 5-year PFI using the clinical information of
patients of the GSE70768 validation dataset. Figure S6. Drug
response is estimated by the half-maximal inhibitory con-
centration (IC50) value wherein the sensitivity of the high-
risk patients is higher than that of the low-risk patients in the
TCGA training cohort. Figure S7. Drug response is esti-
mated by the half-maximal inhibitory concentration (IC50)
value wherein the sensitivity of the high-risk patients is
lower than that of the low-risk patients in the TCGA training
cohort. Table S1. DEGs identified in the TCGA-PRAD
cohort. Table S2. DEGs enrichment by GO. Table S3. DEGs
enriched in KEGG pathway. Table S4. Immune score in each
sample of TCGA-PRAD cohort. Table S5. 1e altered im-
mune microenvironment in prostate cancer (PRAD). Table
S6. GO enrichment for cluster 0. Table S7. GO enrichment
for cluster 1. Table S8. GO enrichment for cluster 2. Table S9.
GO enrichment for cluster 3. Table S10. GO enrichment for
cluster 4. Table S11. GO enrichment for cluster 5. Table S12.
GO enrichment for cluster 6. Table S13. GO enrichment for
cluster 7. Table S14. Conversion of the gene symbols of
DEGs into ENTREZ ID. Table S15. 453 differentially
expressed marker genes in PRAD. (Supplementary
Materials)
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