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Renal epithelial Na+ transport plays an important role in homeostasis of our body fluid content and blood pressure. Further, the
Na+ transport in alveolar epithelial cells essentially controls the amount of alveolar fluid that should be kept at an appropriate
level for normal gas exchange. The epithelial Na+ transport is generally mediated through two steps: (1) the entry step of Na+ via
epithelial Na+ channel (ENaC) at the apical membrane and (2) the extrusion step of Na+ via the Na+, K+-ATPase at the basolateral
membrane. In general, the Na+ entry via ENaC is the rate-limiting step. Therefore, the regulation of ENaC plays an essential role
in control of blood pressure and normal gas exchange. In this paper, we discuss two major factors in ENaC regulation: (1) activity
of individual ENaC and (2) number of ENaC located at the apical membrane.

1. Introduction

Total amount of our body fluid is kept constant by various
regulatory systems. For example, the cortical collecting duct
of the kidney plays an import role in maintenance of our
body fluid amount by regulating Na+ transport. This Na+

transport in the cortical collecting duct is characterized to be
blocked by amiloride and a more specific blocker, benzam-
il, an analog of amiloride, and is carried out in the follow-
ing two-step process: (1) the first step is Na+ entry into the
cytosolic space across the apical membrane via the amilor-
ide-sensitive epithelial Na+ channel (ENaC) [1–3], and (2)
the second step is Na+ extrusion from the cytosolic space
across the basolateral membrane via the Na+, K+-pump

(ATPase) [4, 5]. It is, in general, recognized that the Na+

entry step is the rate-limiting step for the transepithelial
Na+ transport [5]. Therefore, ENaC is the target of many
factors regulating Na+ transport. Vasopressin (antidiuretic
hormone), aldosterone, insulin, growth factors, and osmotic
stress are known to regulate activity and localization of
ENaC [4, 6–17]. For example, vasopressin binds to V2 recep-
tor connecting with adenylate cyclase, producing cyclic
AMP. Increased cAMP stimulates translocation of ENaC to
the apical membrane from the intracellular store site by
activating protein kinase A (PKA) [7]. Intracellular traf-
ficking (translocation) of ENaC is also stimulated by osmotic
stress [10, 11, 13, 14]. Further, in the lung epithelial Na+

transport plays a crucial role in water clearance for normal
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gas exchange [18–21]. This epithelial Na+ transport is also
regulated via some kinases activated by catecholamine and
a cell volume change of alveolar epithelium [22, 23]. This
review discusses how hormones, osmotic stress, and a cell
volume change activate the epithelial Na+ transport.

2. Characterization of Na+ Transport in
Epithelial Cells

As described above, the rate-limiting step of Na+ transport
in epithelial cells is the entry step of Na+ into the cytosolic
space from the apical side via ENaC, which consists of
three subunits and is located in the apical membrane [1–
3, 9]. ENaC is generally considered to play as a channel
pore with 4 subunits; that is, 2α, 1β, and 1γ subunits [24].
Total amount of Na+ transport via ENaC is determined
by three components: (1) the activity of individual ENaC
(open probability of ENaC as ion channel), (2) the total
amount (number or density) of ENaC located at the apical
membrane, and (3) the driving force for Na+ entry via ENaC
depending on the apical membrane potential and the equi-
librium potential for Na+ determined by the cytosolic and
extracellular Na+ concentrations. We discuss regulation of
the activity and amount (number or density) of ENaC at the
apical membrane by various stimulants such as vasopress-
in and osmotic stress, although the driving force for Na+ is
also regulated by changes in the membrane potential (poten-
tials of both apical and basolateral membranes; see the detail
[9]) and the equilibrium potential for Na+ by modifying the
cytosolic Na+ concentration via changes in activities of Na+,
K+-ATPase, Na+/K+/2Cl− cotransporter, Na+/Cl− cotrans-
porter, Na+/H+ exchanger, Na+/HCO3

− cotransporter, and
so forth.

3. Regulation of ENaC at the Apical Membrane

It is well known that vasopressin (antidiuretic hormone)
is released from pituitary posterior lobe responding to ele-
vation of interstitial fluid osmolarity and plays an essential
role in controlling serum and interstitial fluid osmolarity
[25]. Targets of vasopressin in the kidney are principal cells
of the distal renal nephron expressing ENaC like aquaporin,
which responses to vasopressin increasing water permeability
of the apical membrane of the cells for facilitation of
water reabsorption from tubular fluid [25]. In addition
to an increase in water permeability (water reabsorption)
via the principal cells of the distal renal nephron, it has
been reported that vasopressin regulates activity of ENaC
expressed in the principal cells. Activity (open probability)
of ENaC is reported to be increased by vasopressin in a
manner dependent on PKA [26]. Bugaj et al. [26] have
indicated that in isolated, split-open murine collecting ducts
NPo (= N (number of ENaC) × Po (open probability); see
the detail [7, 27]) is increased from 0.30±0.04 to 0.57±0.04
(n = 16) within 2–3 min after application of vasopressin, and
that the vasopressin-induced increase in NPo is abolished
by pretreatment with a PKA inhibitor, Rp-cAMPS or H89.
Based on this result, they [26] indicate that a PKA-dependent
phosphorylation is required for an increase in Po. However,

it is still unclear which parts of ENaC are phosphorylated
for activation, although some reports indicate the site of
phosphorylation of ENaC [28–30]. On the other hand,
vasopressin is reported to have no effects on Po of ENaC
expressed in an amphibian renal epithelial A6 cells using a
single channel recording technique [7], which is also applied
for the work by Bugaj et al. [26]. Bugaj et al. have studied
the relatively early (2∼20 min) effect of vasopressin on Po of
ENaC while Marunaka and Eaton have studied the relatively
late (40∼50 min) effect of vasopressin on Po of ENaC. The
effect of vasopressin might be variable in a time-dependent
manner; that is, vasopressin would acutely increases Po of
ENaC, the stimulatory action of vasopressin on Po of ENaC
would maintain for 2∼20 min after application of vaso-
pressin [26], and the stimulatory action might disappear
around 40∼50 min after application of vasopressin [7].
Another possibility for apparently different effects of vaso-
pressin on Po of ENaC might be due to the different systems;
that is, murine collecting ducts and an amphibian kidney
A6 cell line. Further investigation should be required for
clarification of vasopressin action on Po of ENaC. It has been
reported that in Xenopus renal epithelial A6 cells vasopressin
increases the density (number) of ENaC localized in the
apical membrane by stimulating translocation of ENaC
to the apical membrane in kinase-dependent manners [7]
(Figure 1). Bugaj et al. [26] have also reported a similar
observation in the principal cells of murine collecting ducts
(Figure 1). In a case of vasopressin, PKA stimulates translo-
cation of ENaC to the apical membrane from the intracellu-
lar store site via a mechanism similar to the process of AQP
translocation to the apical membrane from the intracellular
store site [7, 14, 30] via a PKA-dependent phosphorylation
of AQP itself [31, 32], although the part of phosphorylated
site of ENaC regarding translation of ENaC is not yet clear.

In addition to the vasopressin-cAMP-PKA-mediated
pathway, translocation of ENaC is stimulated by osmotic
stress such as hypotonic shock [6, 10, 11, 13–15, 17, 33].
Via a ligand-free pathway, hypotonic shock stimulates Na+

transport mainly by increasing the number of ENaC at the
apical membrane through stimulation of ENaC translocation
from the intracellular store site via a protein tyrosine kinase-
(PTK)-dependent manner [14]. Hypotonic shock mimics
the stimulatory action of vasopressin on translocation of
ENaC to the apical membrane without any ligand binding to
receptors. The action of vasopressin is mediated via a PKA-
dependent pathway [26] while hypotonic shock mimick-
ing the action of vasopressin shows its action via a PTK-
dependent pathway [14]. However, at the time when Niisato
et al. [14] reported the point, it was not yet known what type
of PTK is involved in the hypotonic action on translocation
of ENaC. Growth factors such as IGF [34, 35] and EGF
[36] have been reported to stimulate Na+ transport. Further,
growth factor receptors themselves act as PTKs [36–40].
Moreover, osmotic stress can activate receptor tyrosine kin-
ases (RTKs) and/or other types of kinases without any ligand
binding to the receptors [13, 41, 42]. Kajimoto et al. [42]
have indicated that cell swelling induced by hypoxic shock
activates protein kinase N1 (PKN1), a serine/threonine pro-
tein kinase and a homolog of Pkc1. A Rho family small



Journal of Biomedicine and Biotechnology 3

ENaC
Apical membrane

ENaC NSC

Ub

Ub

Nedd4-2Nedd4-2

P

P

MR

ENaC
mRNA

SGK1
mRNAK-Ras

mRNA

PIP2 PIP3

SGK1 SGK1

PDK

PI3K

JNK/SAPK RTK

Aldosterone
Basolateral membrane Growth

factor
Hypotonicity

H2O Beta agonist

Vasopressin

Cell swelling
(membrane tension)

[Cl−]c

[Cl−]c

AC

ATP cAMP

PKA

K+ Cl− H2O

Cell shrinkage
(membrane tension)

PTK

(+)

(+)

(+)

(+)

(+)
(+)

(+)

(+)

(+)

(+)

(+)
(+)

(+)

(+) (+)

(+)

(+)

(+)

K-Ras

Figure 1: Regulatory pathways of ENaC and nonselective (NSC) channel in renal and fetal alveolar type II epithelial cells. Arrow lines
without (+) mean the conversion to a form at the end point of arrow form a form at the starting point of arrow. Arrow lines with (+) mean
that the compound at the starting point of arrow; (1) stimulates the conversion indicated by an arrow without (+), (2) activates an enzyme,
or (3) induces the indicated condition. Arrowheads with dashed lines mean that the compound at the start point of the arrowhead with
dashed line moves to the end point of the arrowhead with dashed line (translocation). [Cl−] is the concentration of cytosolic Cl−. Circled P
means a phosphorylated form.

GTP-binding protein, RhoA, binds to the NH2-terminal reg-
ulatory region of PKN1, activating PKN1 when it is bound
by GTP [43]. Increased wall stress including hypotonic
stress-induced cell swelling activates Rho1 (yeast Rho1 is
homologous to human RhoA) controlling signal transmis-
sion through Pkc1 (PKN1) [44, 45], and activating a MAPK
family, ERK1/2. Hypotonic shock also activates some other
members of MAPK family. Niisato et al. [46] have indicated
that hypotonicity-induced cell swelling activates p38 MAPK
and JNK. In particular, it is clearly indicated that the activa-
tion of p38 MAPK and JNK is prolonged when cell swelling is
maintained by Cl− channel blocker, NPPB [46]. As described
in these reports [42–46], hypotonic shock activates some
kinases without any ligand binding to receptors via a change
of membrane tension caused by hypotonicity-induced cell
swelling [46, 47].

As described above, hypotonic shock activates translo-
cation of ENaC via a PTK-dependent pathway. However, it
is not yet clear what type of PTK or RTK is involved in
hypotonicity-induced stimulation of ENaC translocation. It
is indicated that hypotonic shock elevates cell membrane

tension due to cell swelling via water influx driven by an
osmotic pressure change [46, 48]. Based on this information,
Taruno et al. [10] have recently reported activation of epi-
dermal growth factor receptor (EGFR) by hypotonic stress
via a ligand-independent manner (Figure 1). Taruno et al.
[10] have further reported that hypotonicity-induced activa-
tion of JNK/p38 is mediated through activation of RTK in-
volved in EGFR, and that the activation of JNK/p38 fol-
lowing activation of the RTK of EGFR is involved in the
hypotonicity-induced translocation of ENaC (Figure 1). This
report [10] also indicates that hypotonic shock activates a
PI3-kinase pathway based on the observation that protein
kinase B (PKB), the phosphorylation (activation) of which
is mediated by PI3-kinase, is phosphorylated at both Ser
473 and Thr 308 by hypotonic shock through the RTK-
JNK/SPAK cascade (Figure 1). These observations [10] indi-
cate that activation of JNK/SPAK caused by hypotonic stress-
induced RTK involved in EGFR without any ligand binding
to EGFR stimulates translocation of ENaC (Figure 1). PI3-
kinase has been reported to stimulate translocation of ENaC
to the apical membrane [49]. Hypotonic stimulation on
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ENaC translocation is dependent on PI3-kinase activated by
the RTK-JNK/SPAK cascade, leading to production of PIP3
that activates PDK [10]. PIP3 would directly act on ENaC
[50] in addition to its indirect action on ENaC via a PDK-
dependent SGK1-mediated Nedd4-2 pathway stimulating
endocytosis of ENaC [51] (Figure 1). Further, osmotic stress
including hypotonic stress has been reported to directly
stimulate ENaC. Benos and his colleagues [52] have reported
that in Xenopus oocytes expressing αβγ-rENaC, cell swelling
caused by hypotonic stress decreases ENaC currents while
cell shrinkage caused by hypertonic stress increases ENaC
currents. On the other hand, an apparently opposite effect
of cell shrinkage caused by hypertonic stress on Po of
ENaC is reported in Xenopus oocytes expressing αβγ-rENaC.
Namely, Awayda and Subramanyan [53] have reported that
cell shrinkage caused by hypertonic stress decreases ENaC
currents, and that this inhibitory effect of cell shrinkage is
completely blocked by cytochalasin B, indicating that the
cell shrinkage-induced inhibitory effect on ENaC currents
is mediated via actin filament depolymerization. Awayda
and Subramanyam [53] have treated Xenopus oocytes with
a hypertonic solution containing 50 mM sucrose (about 25%
increase in osmolarity) for 45 min while Benos and his col-
leagues [52] have measured ENaC currents about 5 min after
application of a hypertonic solution with about 1.8∼2.5-
fold increase in osmolarity. These apparently opposite effects
of cell shrinkage on ENaC currents would be due to time
durations with hypertonic solutions and/or magnitudes of
osmolarity of hypertonic solutions. Further, Kleyman and his
colleagues have reported that laminar shear stress [54] and
flow [55] affect ENaC activity. An increase of intraluminar
flow in the lumen of cortical collecting ducts of rabbits
increases the amiloride-sensitive Na+ absorption across the
cortical collecting ducts, suggesting the intraluminar flow
activates ENaC [55]. Laminar shear stress provided across
Xenopus oocytes expressing αβγ-mENaC [54] activates ENaC
with a very short half time of ∼5 s for activation. Further,
a pore region mutant of ENaC with a high open proba-
bility (αβS518Kγ-mENaC) is insensitive to laminar shear
stress while a mutated ENaC with a low open probability
(αS580Cβγ-mENaC) is activated by laminar shear stress
similar to wild-type mENaC [54]. This report [54] indicates
that laminar shear stress directly acts on the pore region of
ENaC activating ENaC. Taken together, changes in tension of
plasma membrane affect Po and number of ENaCs localized
at the apical membrane directly and indirectly.

Aldosterone acts on mineralocorticoid receptor, then
produces two major proteins related to the subject of this
review article, ENaC and SGK1 [56] (Figure 1). SGK1 phos-
phorylates Nedd4-2 [57–60] (Figure 1). Dephosphorylated
Nedd4-2, an active form ubiquitinating ENaC, stimulates
endocytosis of ENaC while phosphorylated Nedd4-2, an
inactive form for ENaC ubiquitination, has no ability stim-
ulating ENaC endocytosis. SGK1 phosphorylates Nedd4-2
diminishing endocytosis of ENaC [57–60] (Figure 1). Thus,
aldosterone increases the number of ENaCs localized in the
apical membrane via two pathways: (1) direct stimulation of
ENaC synthesis and (2) inhibition of ENaC endocytosis via
inactivation of Nedd4-2-mediated ubiquitination of ENaC

[57–60] (Figure 1). Further, aldosterone has stimulatory ac-
tion on ENaC via a K-Ras-dependent PI3K pathway [61, 62]
(Figure 1).

We next discuss regulation of Na+ transport in distal
(alveolar) lung epithelial cells. Throughout gestation the fetal
lung epithelium produces Cl− secretion via a transcellular
pathway into the lung’s lumen [22, 63, 64] followed by
paracellular Na+ secretion, generating an osmotic driving
force for fluid (water) secretion into the lung’s lumen. This
fluid produces a positive pressure to the lung epithelial
cells from the lung’s lumen, activating PTK [65–67]. This
fluid plays an important role in the lung development by
activating PTK [68]; however, it must be cleared from alve-
olar spaces immediately after birth to allow normal gas ex-
change [22, 69, 70]. Beta-adrenergic stimulation in the
alveolar epithelium induces clearance of the alveolar fluid at
birth [22, 69] by activating amiloride-sensitive Na+ absorp-
tion [19, 22, 23, 71–75]. In the alveolar space of the lung
(lung distal area), Na+ transport plays a crucial role in gas
exchange, since the amiloride-sensitive Na+ transport (ab-
sorption) provides a driving force for water absorption
from the alveolar space to the interstitial space by decreas-
ing osmotic pressure of the fluid in the alveolar space,
reducing the alveolar fluid amount [22, 63, 76]. Two types
of amiloride-sensitive Na+-permeable channels have been
reported in rat fetal alveolar type II epithelial cells [19, 22,
73, 74]. Both types of amiloride-sensitive channels are ac-
tivated by cytosolic Ca2+ [19, 22, 73, 74] unlike other
types of amiloride-sensitive channels (ENaCs), which are
inhibited by cytosolic Ca2+ via a PKC-dependent pathway
[77–79]. It has been reported that beta-agonist stimu-
lates the fluid clearance from alveolar space [69]. One of
the amiloride-sensitive channels has about 28 pS of single
channel conductance and Na+ permeability identical to K+

permeability (K+ permeability/Na+ permeability = 0.9: non-
selective cation (NSC) channel) but not Cl− permeability
(Cl− permeability/Na+ permeability < 0.02) [22, 73, 74].
The other type of amiloride-sensitive channel has 12 pS of
single channel conductance and is highly selective for Na+

over K+ or Cl− (K+ permeability/Na+ permeability < 0.1; Cl−

permeability/Na+ permeability< 0.02; Na+ channel) [22, 74].
However, beta-agonist activates 28 pS NSC channel but not
12 pS Na+ channel [22, 73]; namely, the open probability of
the 28 pS NSC but not 12 pS Na+ channel is elevated by beta-
agonist. Further, beta-agonist increases the number of func-
tional 28 pS NSC channels (Figure 1) but not 12 pS Na+

channel at the apical membrane [22]. The stimulatory action
of beta-agonist is mediated via beta-adrenergic receptor,
and the activation of the receptor increases cytosolic cAMP
concentration by activating adenylate cyclase [22] (Figure 1).
This increase in cytosolic cAMP concentration induces
activation of PKA, which activates K+ and Cl− channels [22]
(Figure 1). This activation of K+ and Cl− channels induces
water efflux by reducing intracellular osmolarity via KCl
efflux through the activated K+ and Cl− channels (Figure 1),
resulting in reduction of cell volume (cell shrinkage) [18]
associated with reduction of intracellular Cl− concentration
[19]. Cell shrinkage [18] associated with reduction of intra-
cellular Cl− concentration [19] activates PTK [23] (Figure 1).
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This activation of protein tyrosine kinase would be a receptor
type of PTK (Figure 1), and might stimulate translocation
of the 28 pS NSC channel to the apical membrane via
a JNK/SPAK-PI3K-mediated pathway (Figure 1) in a way
similar to that is activated by hypotonic stress observed in
Xenopus renal A6 cell lines as described above. Furthermore,
it has been reported that beta-agonist increases the cytosolic
Ca2+ concentration in cAMP-dependent and -independent
manners [80]. The cAMP-dependent pathway for elevation
in cytosolic Ca2+ concentration is due to an increase in Ca2+

influx while the beta-agonist stimulates Ca2+ release from the
intracellular Ca2+ store site via a cAMP-independent pathway
in addition to elevation of Ca2+ influx via a cAMP-dependent
pathway [80]. The beta-agonist-induced increase in cytosolic
Ca2+ concentration reaches transiently over 1 μM, declining
to the baseline [75, 80]. The role of this transient increase
in cytosolic Ca2+ concentration is to decrease the cytosolic
concentration of Cl− [75], which plays various essential roles
in cell function including regulation of various types of key
enzymes controlling cell growth and GTPase and so forth
[81–100]. This Ca2+-mediated decrease in the cytosolic con-
centration of Cl− [75] is mediated through activation of
K+ and Cl− channels (Figure 1). Further, the cytosolic Cl−

has an inhibitory action on the 28 pS channel [73], and
the level of cytosolic Ca2+ concentration after beta-agonist-
induced transient increase is a little bit larger than that un-
der the basal condition [75, 101, 102]. The cytosolic Ca2+

at the concentration after beta-agonist-induced transient in-
crease alone is not large enough to activate either the 28 pS
NSC or 12 pS channel [74]. However, beta-agonist has a
stimulatory action on the 28 pS NSC channel, but not
the 12 pS channel [73]. The beta-agonist-induced transient
increase in cytosolic Ca2+ concentration causes the cell
shrinkage, which decreases the cytosolic Cl− concentration
[22, 47] as shown in Figure 1. This decrease in cytosolic
Cl− concentration plays an essential role in the beta-agonist-
stimulation on the 28 pS NSC channel; that is, beta-agonist
diminishes the sensitivity of the 28 pS NSC channel to
cytosolic Cl−, and the beta-agonist-modified 28 pS NSC
channel is able to be activated at the decreased level of the
cytosolic Cl− concentration [75] via an unknown mecha-
nism, which might be mediated through a PKA-dependent
phosphorylation. The gating mechanism sensitive to Ca2+

and Cl− modified by beta-agonist is described in a report by
Marunaka and his colleagues [73]. Recently, alveolar type I
epithelial cells have been reported to participate in fluid ab-
sorption from the alveolar space to the interstitial space in
adult lungs [103]. Alveolar type I epithelial cells have also
two types of amiloride-sensitive Na+-permeable channels
[63], which would play a crucial role in keeping alveolar
water constant under a physiological and pathophysiological
conditions.

4. Conclusion

Epithelial Na+ transport is mediated via two steps: (1) the
entry step of Na+ via ENaC located at the apical membrane
and (2) the extrusion step of Na+ via the Na+, K+-ATPase
located at the basolateral membrane. The rate-limiting step

of epithelial Na+ transport is the entry step of Na+ via
ENaC. ENaC activity (open probability) is regulated by PKA,
PTK (RTK), and PKN. Further, hypotonic stress activates
the epithelial Na+ transport by stimulating translocation of
ENaC to the apical membrane from the intracellular store
site via activation of RTK mediated by a change in membrane
tension and/or a change in cytosolic Cl− concentration
without any ligand biding to RTK-involved receptors. The
changes in the activity and localization of ENaC control the
blood pressure and the alveolar fluid amount of our body and
keeping homeostasis of our body environments.
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