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Coronavirus disease 2019 (COVID-19) remains prevalent worldwide since its onset was confirmed in
Wuhan, China in 2019. Vaccines against the causative virus, severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), have shown a preventive effect against the onset and severity of COVID-19, and
social and economic activities are gradually recovering. However, the presence of vaccine-resistant
variants has been reported, and the development of therapeutic agents for patients with severe
COVID-19 and related sequelae remains urgent. Drug repurposing, also called drug repositioning or eco-
pharma, is the strategy of using previously approved and safe drugs for a therapeutic indication that is
different from their original indication. The risk of severe COVID-19 and mortality increases with
advancing age, cardiovascular disease, hypertension, diabetes, and cancer. We have reported three
proteineprotein interactions that are related to heart failure, and recently identified that one mechanism
increases the risk of SARS-CoV-2 infection in mammalian cells. This review outlines the global efforts and
outcomes of drug repurposing research for the treatment of severe COVID-19. It also discusses our recent
finding of a new proteineprotein interaction that is common to COVID-19 aggravation and heart failure.

© 2022 The Authors. Production and hosting by Elsevier B.V. on behalf of Japanese Pharmacological
Society. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/

4.0/).
1. Introduction

In late 2019, COVID-19 rapidly became prevalent throughout the
world.1,2 Since then, many related studies have been carried out,
such as decoding the genome of SARS-CoV-23 and elucidating its
infection patterns and disease aggravation mechanisms.4e8 Various
COVID-19 sequelae such as vasculitis, pulmonary fibrosis, heart
failure, and loss of smell and taste have been reported.9 Although
SARS-CoV-2 vaccination campaigns are underway,10 several SARS-
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CoV-2 variants have emerged, and each has caused a wave of
infections.11e15 Worryingly, increasing frequencies of cryptic SARS-
CoV-2 lineages not found in GISAID's EpiCoV database have been
detected in New York City wastewater. These variants might enable
the transfer of SARS-CoV-2 from humans to other animals.16

Therefore, there is an urgent need to find targets and therapeutic
candidates that differ from existing therapeutic drugs.

SARS-CoV-2 invasion of human cells occurs through the
following pathway. First, the SARS-CoV-2 spike protein binds to the
host receptor, angiotensin-converting enzyme (ACE)2.4,5 The spike
protein is then cleaved by the proteolytic enzyme TMPRSS2 and
becomes activated to promote fusion between the outer viral
membrane and the host cell membrane, resulting in virus inter-
nalization through endocytosis.5 Severe COVID-19 was initially re-
ported to manifest as acute respiratory distress syndrome (ARDS),
nese Pharmacological Society. This is an open access article under the CC BY license
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which is a severe disorder of lung function.17,18 Several factors have
been identified to increase the risk for COVID-19 aggravation; these
include advanced age, smoking, and pre-existing diseases such as
cancer, diabetes, heart failure, and hypertension.8,19e22 Because
ACE2 is ubiquitously expressed,23,24 COVID-19 symptoms can occur
in organs other than the lungs. As many as 25% of SARS-CoV-2-
infected patients have cardiac dysfunction,25 which is a primary
symptom of COVID-19 aggravation. Because ACE2 is expressed in
heart tissue, it has been suggested that SARS-CoV-2 can directly
infect cardiomyocytes to impair cardiac function.26e28 In addition,
the ACE2 expression level was found to be increased in the lungs of
infected patients, and genome-wide analyses have shown that
ACE2 expression is low in non-infected people.29,30 These findings
suggest that the ACE2 expression level reflects one's susceptibility
to SARS-CoV-2 infection. Viral RNA has been detected in car-
diomyocytes taken from heart specimens of COVID-19 patients,
revealing that SARS-CoV-2 can infect heart tissue.31

Drug repurposing, also known as drug repositioning or eco-
pharma,32 is an effective and rapid way to identify new uses of
existing drugs that have a well-established safety profile. Drug
repurposing can also be cost-effective for treating disease out-
breaks and disease progression. At present, there are 7605 clinical
trials (including 2030 drug trials and 685 vaccine trials) registered
in ClinicalTrials.gov related to COVID-19.33 Indeed, several existing
drugs have been approved or are in clinical trials for the treatment
of COVID-19 (Table 1). However, many patients still suffer from
COVID-19 aggravation and sequelae; thus, there is a need for the
rapid repurposing of drugs with mechanisms of action other than
those currently approved for treating COVID-19. In this review, we
discuss our efforts related to drug repurposing, focusing on the
treatment of heart failure and their relation to finding new treat-
ments for severe COVID-19.

2. Drug repurposing research for the treatment of COVID-19

Several drugs that have been previously approved to treat other
diseases are being repurposed for treating COVID-19 patients; these
include hydroxychloroquine, lopinavir/ritonavir, favipiravir, remdesi-
vir, ivermectin, dexamethasone, camostat, andmesylate (Table 1).34e38

Thesedrugs canbebroadlyclassified into fourgroupsaccording totheir
mechanism of action: inhibitors of RNA-dependent RNA polymerase;
inhibitorsof serineprotease (TMPRSS2); inhibitorsof themaincysteine
Table 1
Candidate approved drug for the treatment of COVID-19.

Name Mechanism of action

Hydroxychloroquine Increasing lysosomal pH
Lopinavir/Ritonavir Inhibition of the HIV protease
Favipiravir Inhibition of viral RNA-dependent RNA polymera
Remdesivir Inhibition of viral RNA-dependent RNA polymera
Ivermectin Activating glutamate-gated chloride channels
Dexamethasone Corticosteroid
Camostat mesylate Serine protease inhibition
Baricitinib JAK inhibition
Tocilizumab IL-6 inhibition
Mavrilimumab Human monoclonal antibody against GM-CSF
Azithromycin Inhibition of bacterial protein synthesis
Thalidomide IL-6 inhibition
Methylprednisolone Corticosteroid
Pirfenidone Suppression of fibroblast proliferation and collage
Bromhexine hydrochloride Increasing of serous production in the respiratory
Bevacizumab Human monoclonal antibody against VEGF
Fluvoxamine Inhibition of selective serotonin reuptake
Ibudilast PDE3A, PDE4, PDE10 and PDE11 inhibition

HIV: human immunodeficiency virus, AIDS: acquired immunedeficiency syndrome.
JAK: Janus kinase, IL: interleukin, GM-CSF: granulocyte macrophage colony-stimulating
VEGF: vascular endothelial growth factor, PDE: phosphodiesterase.

109
protease 3CLpro; and inhibitors of inflammation and cytokine storm
(Fig. 1). Chloroquine and hydroxychloroquine have anti-parasitic ac-
tivity by increasing the lysosomal pH; these drugs have been used for
over 70 years worldwide39 and also have immunosuppressive effects.
Remdesivir was originally developed as a therapeutic agent for Ebola
virus infection and exerts an antiviral effect by inhibiting viral RNA-
dependent RNA polymerase.40 To date, four randomized controlled
trials that have included a placebo have been conducted to test
remdesivir. In Japan, remdesivir was approved as an anti-COVID-19
drug on May 7, 2020. Favipiravir has been approved for treating new
or re-emerging influenza virus infection.41 This drug is converted to its
triphosphorylated form invivo,which selectively inhibits virus-derived
RNA-dependent RNA polymerase. Camostat and nafamostat inhibit
proteolytic enzymes, including TMPRSS2, and can ameliorate the acute
symptoms of pancreatitis. They can also prevent coagulation of
perfused blood during extracorporeal circulation in patients with
hemorrhagic lesions.42,43 Lopinavir and ritonavir are protease in-
hibitors and are used as an antiretroviral medication for the treatment
and prevention of HIV/AIDS.44 A fixed-dose combination of lopinavir/
ritonavir is thought to block themain cysteine protease of SARS-CoV2.
Ritonavir is thought to boost the lopinavir concentration by inhibiting
CYP3A4.45Theanthelminticdrug ivermectin,which is approved for the
treatment of intestinal sickness and scabies, is thought to inhibit SARS-
CoV-2 proliferation.46 Dexamethasone is a steroid originally approved
for the treatment of severe infections and interstitial pneumonia. Pa-
tients with severe COVID-19 develop a systemic inflammatory
response that can lead to lung injury and multiple organ failure, sug-
gesting that the anti-inflammatory effects of steroids prevent or sup-
press the inflammatory response.47 Other anti-inflammatory drugs
target cytokine storm after SARS-CoV-2 infection.

3. Cardiac dysfunction as a major symptom of COVID-19
severity and sequelae

Coronaviruses are known for their impact on the respiratory
tract, but SARS-CoV-2 can also infect heart tissue,25e28 which leads
to a spectrum of cardiac manifestations, including inflammation
(myocarditis), arrhythmias, heart attack-like symptoms, and heart
failure.48 The tropism of organs has been studied from autopsy
specimens. Sequencing data revealed that SARS-CoV-2 genomic
RNA was highest in the lungs, but the heart, kidney, and liver also
showed substantial amounts.49 Greater than 1000 copies of SARS-
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Fig. 1. Possible drug discovery targets for developing COVID-19 treatments. PLpro: papain-like protease, CLPro: 3-chymotrypsin-like protease (main protease), ACE2: angiotensin-
converting enzyme 2, TMPRSS2: transmembrane protease, serine 2.
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CoV-2 virus were detected in the heart of 31% of patients who died
from COVID-19.31 In addition, a cohort study of 153,760 individuals
with COVID-19 included in a national health care databases from
the US Department of Veterans Affairs found that beyond the first
30 days after SARS-CoV-2 infection, individuals who has symp-
tomatic COVID-19 were at increased risk of many types of incident
cardiovascular disease, including arrhythmias, ischemic heart dis-
ease, myocarditis, and heart failure, indicating the long-term car-
diovascular outcomes of COVID-19.48

SARS-CoV-2 gains entry into human cells by binding to ACE2,
the metallocarboxyl peptidase angiotensin receptor.50 ACE2 is a key
enzyme that converts angiotensin (Ang) II to Ang 1e7, which in turn
binds to the Mas receptor to negatively regulate Ang II-dependent
signaling in the cardiovascular system.50 There are two isoforms of
ACE2.51 The full-length ACE2 is located on the plasma membrane
and contains the receptor binding site for the SARS-CoV-2 spike
protein. The internalization of membrane ACE2 as a result of SARS-
CoV-2 binding is thought to enhance Ang II-dependent signaling
and to reduce Ang 1e7/Mas-mediated signaling, resulting in the
increased risk of cardiovascular events. ACE2 can also occur as a
soluble form that is shed into the circulation. Soluble ACE circulates
at low concentrations but also contains the receptor site for the
spike protein.51 Therefore, it is expected that an increase in soluble
ACE2 relative to membrane-bound ACE2 may reduce the risk of
developing cardiovascular events.

4. Drug repurposing research targeting proteineprotein
interactions in heart failure

We have reported three pathology-dependent proteineprotein
interactions (PPIs) that participate in the progression of cardiovas-
cular remodeling in mice (Fig. 2). The first is related to the canonical
transient receptor potential (TRPC) proteins, which are thought to
be molecular entities of receptor-activated cation channels. We re-
ported that one of the diacylglycerol-activated TRPC isoforms,
TRPC3, participates in oxidative stress-dependent cardiac fibrosis
110
and left ventricular dysfunction in pressure-overloaded mouse
hearts by forming a protein complex with NADPH oxidase (Nox)
2.52e55 The basal expression level of Nox2 protein is negatively
regulated by the endoplasmic reticulum-associated degradation
(ERAD) system. However, the interaction between TRPC3 and Nox2
prevents ERAD-dependent Nox2 degradation, leading to amplifica-
tion of the Nox2-dependent production of reactive oxygen species
(ROS) and ROS-mediated fibrotic signaling in cardiac cells.53 By
screening nearly 1200 approved drugs for their ability to inhibit
TRPC3eNox2 PPI, we found that ibudilast (an anti-asthma drug)
potently inhibits the formation of the TRPC3eNox2 protein com-
plex.56 Ibudilast is now in a clinical trial for the treatment of ARDS in
patients hospitalized with severe COVID-19. Second, we found that
G protein-coupled purinergic P2Y6 receptor (P2Y6R) mRNA expres-
sion increases with age and can interact with Ang II type 1 receptor
(AT1R), which leads to the progression of Ang II-stimulated hyper-
tension.57 The heterodimerization of AT1Rwith P2Y6R preferentially
activated Ang II-stimulated Gq protein-dependent signaling, which
is required for vascular smooth muscle hypertrophy.57 We also
found that AT1ReP2Y6R heterodimerization was suppressed by
treatment with the P2Y6R antagonist MRS2578, which has two
isothiocyanate (ITC) residues.57 ITC is electrophilic, allowing it to
react with the thiol residue of Cys220 located in the 3rd intracellular
loop, leading to internalization and ubiquitylation-dependent pro-
teasomal degradation of P2Y6R.58 This redox-dependent alternative
internalization (REDAI) of P2Y6R is suggested to contribute to the
anti-inflammatory effects of ITC-containing compounds in brightly
colored vegetables, such as sulforaphane and iberin. As several
GPCRs contain the redox-sensitive Cys in the 3rd intracellular loop,
the REDAI system of GPCRs is a promising new target for covalent
drug development. Third, we revealed that mitochondrial hyper-
fission occurs in mouse chronic heart failure after myocardial
infarction through interaction between dynamin-related protein
(Drp) 1 and filamin, an actin-binding protein.59,60 We also found
that cilnidipine, a dihydropyridine-derivative voltage-dependent L/
N-type Ca2þ channel blocker used as an anti-hypertensive drug,



Fig. 2. Proteineprotein interactions in pathological cardiovascular tissue that could be targets of drug repurposing efforts. TRPC3: transient receptor potential canonical subfamily
member 3, Nox2: NADPH oxidase, P2Y6R: purinergic P2Y6 receptor, AT1R: angiotensin II type 1 receptor, Drp1: dynamin-related protein 1.
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potently inhibits hypoxia-induced Drp1efilamin interaction, fol-
lowed by the induction of myocardial senescence after myocardial
infarction.59 Because mitochondrial fission is also observed in other
pathological organs and tissues, cilnidipine might be repurposed for
the treatment of mitochondrial fission-associated intractable dis-
eases, such as amyotrophic lateral sclerosis andmuscular dystrophy.
Although cilnidipine is a quite safe drug and has few side effects, its
major Ca2þ channel blocking action will be the limitation to the
repurposing of this drug for the treatment of mitochondrial fission-
associated diseases. Therefore, we now synthesize cilnidipine-based
derivatives to create a new compound with the same (or higher)
efficacy but with lower Ca2þ channel blocking action.
5. ACE2 expression regulation in cardiomyocytes

Studies have verified that SARS-CoV-2 infection affects cardiac
function.25e28 When human iPS cell-derived cardiomyocytes (hiPS-
CMs) were infected with SARS-CoV-2, the spontaneous beating of
hiPS-CMswas temporarily increased but was subsequently arrested
after a few days.28 The initial spike protein-mediated viral entry
process might be the cause of the observed cardiac dysfunction.
Therefore, in this review, we focus on how the ACE2 expression
level is regulated in cardiomyocytes. Several diseases and lifestyle
factors are reportedly risk factors for severe COVID-19; these
include hypertension, diabetes, obesity, cardiac disease, older age,
smoking, and anti-cancer drug treatment.8,19e22 We found that the
myocardial ACE2 mRNA expression level increased when neonatal
111
rat cardiac myocytes (NRCMs) were exposed to high glucose,
doxorubicin (an anthracycline anticancer drug), cigarette side-
stream smoke (CSS), and methylmercury. The treatment of NRCMs
with ibudilast, but not cilnidipine or ITC-containing compounds,
significantly suppressed the CSS-induced increase of ACE2 mRNA,
suggesting the involvement of PPIs between TRPC3 and Nox2.
Indeed, the increase of ACE2 protein expression in doxorubicin-
treated mouse hearts was canceled by trpc3 gene deletion, and
the CSS-induced increase in ACE2 mRNA expression was abolished
by silencing trpc3 and nox2 genes in NRCMs. These results strongly
suggest that the formation of a TRPC3eNox2 protein complex
induced by anticancer drug treatment or CSS exposure would
mediate COVID-19 aggravation through ACE2 upregulation. The
formation of the TRPC3eNox2 protein complex amplifies Nox2-
dependent ROS production by stabilizing the Nox2 protein. We
previously reported that Nox2-dependent ROS production medi-
ates cardiomyocyte atrophy accompanied by E3 ubiquitin ligase,
atrogin-1, and muscle RING finger 1 upregulation.53,55,56 Thus,
Nox2-dependent ROS protein may be involved in ACE2 upregula-
tion in rodent cardiomyocytes induced by risk factors for severe
COVID-19 (Fig. 3).
6. Antidepressants inhibit spike protein-induced ACE2
internalization

ACE2 receptor-dependent endocytosis is thought to be the main
SARS-CoV-2 entry pathway.4,5 Several antidepressant drugs have



Fig. 3. Risk factor-induced TRPC3eNox2 complex formation mediates COVID-19 aggravation. ARDS: acute respiratory distress syndrome.
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been reported to inhibit SARS-CoV viral entry by inhibiting clathrin-
dependent endocytosis.61e63We found that clomipramine, a tricycle
anti-depressant drug, and trifluoperazine, a phenothiazine-derived
antipsychotic drug, can inhibit TRPC3eNox2 protein complex for-
mation.56 Among the 12 most commonly prescribed drugs that are
able to inhibit TRPC3eNox2 complex formation, clomipramine
showed the strongest inhibitory effect on ACE2 receptor internali-
zation in HEK293T cells exposed to artificial trimeric spike pro-
tein.64,65 Clomipramine was also found to suppress the increase in
SARS-CoV-2 RNA copy number in hiPS-CMs and TMPRSS2-
expressing VeroE6 cells after exposure to SARS-CoV-2.65 ACE2-
dependent SARS-CoV-2 viral entry is reportedly achieved through
endocytosis regulated by phosphatidylinositol 3-phosphate 5-
kinase66 (the main enzyme that synthesizes phosphatidylinositol-
3,5-bisphosphate (PI(3,5)P2) in the early endosome67), two-pore
channel subtype 266 (a major downstream effector of PI(3,5)P268),
and cathepsin L66,69 (a cysteine protease that cleaves S protein to
facilitate viral entry into the lysosome). Although the molecular
target of clomipramine has not yet been identified, determining the
pleiotropic effects of clomipramine will promote the repurposing of
this drug for the prevention and treatment of severe COVID-19.
Importantly, the mechanism of action by which clomipramine in-
hibits SARS-CoV-2 spike protein-induced ACE2 internalization is
completely different from that of remdesivir and dexamethasone,
suggesting the potential for the concomitant use of clomipramine
and these approved drugs for patients with severe COVID-19.
112
7. Future perspectives

Using knowledge of the chemicals and bioresources gained
through our previous drug repurposing research, we suggest that
pathology-specific PPIs (i.e., the TRPC3eNox2 interaction) contribute
to the risk of severe COVID-19 outcomes related to human heart
tissue. We also believe that a pleiotropic drug that can inhibit both
ACE2-dependent viral entry and ACE2 upregulation through
TRPC3eNox2 interaction would be a promising strategy for the
treatment of severe COVID-19 patients with cardiac sequelae.
However, there are several challenges to be overcome. Demon-
strating the in vivo efficacy of clomipraminewill be required before it
can be trialed in humans. Additionally, in vivo COVID-19 studies are
limited by the need for laboratories with a high biosafety level.
Another problem is that because the price of repurposed drugs is
low, expected profits will not be commensurate with the costs of
conducting clinical trials. Clomipramine reportedly causes several
adverse effects, such as cardiac arrhythimia (QT prolongation) and
anti-cholinergic actions, limiting the dosage for this repurposing.
However, derivatives could be synthesized based on the structure of
approved drugs to create new compounds with the same (or higher)
efficacy but with lower adverse effects.

More than two years have passed since the onset of the global
COVID-19 pandemic. In addition to therapeutic agents, vaccines and
neutralizing antibodies such as casirivimab/imdevimab, bamlanivi-
mab/etesevimab, and sotrovimab have been developed to prevent
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SARS-CoV-2 viral entry through ACE2-dependent endocytosis.70

These antivirals and neutralizing antibodies are administrated
intravenously, but there is a demand for oral drugs that are easier to
administer. The oral antivirals molnupiravir (an RNA-dependent
RNA polymerase inhibitor) and nirmatrelvir (a 3CLpro inhibitor);
ritonavir (a CYP3A inhibitor) combination have recently been
developed and are now used to treat COVID-19.71,72 Vaccination has
helped to decrease the number of COVID-19 patients,73,74 while new
SARS-CoV-2 variants (e.g., Delta and Omicron) have emerged
consecutively, with the number of COVID-19 patients rapidly
increasing with the rise of each new variant.75 The wild-type virus
and the known SARS-CoV-2 variants (including Omicron) require
ACE2-mediated cell entry.76 The pharmacological advantage of
clomipramine lies in its potential to inhibit ACE2-mediated viral
entry needed by the ancestral SARS-CoV-2 virus and its variants, as
well as SARS-CoV and MERS. This advantage will promote the
development of antivirals that can efficiently inhibit viral entry
while reducing adverse side effects.

It is hoped that researchers will quickly identify new drugs that
can be used to treat COVID-19 and deliver them to patients
suffering from severe COVID-19 as soon as possible. Moreover, the
number of patients suffering from COVID-19 sequelae is increasing.
Various symptoms of COVID-19 sequelae have been reported, such
as fatigue and depression, taste and smell disorders, and myocar-
ditis and arrhythmia.48,77 In the future, it will be necessary to
develop animal models that mimic COVID-19 sequelae to elucidate
the related underlying mechanisms and to identify new treatment
strategies.
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