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Abstract

Purpose

We evaluated whether orally administered astaxanthin (AST) protects against oxidative

damage in the ocular tissues of streptozotocin (STZ)-induced diabetic rats.

Methods and Results

Fifty 6-week-old female Wistar rats were randomly assigned to receive an injection of STZ

to induce diabetes (n = 40) or to remain uninduced (n = 10). The diabetic rats were randomly

selected into four groups and they were separately administered normal saline, 0.6 mg/kg

AST, 3 mg/kg AST, or 0.5 mg/kg lutein daily for eight weeks. Retinal functions of each group

were evaluated by electroretinography. The expression of oxidative stress and inflamma-

tory mediators in the ocular tissues was then assessed by immunohistochemistry, western

blot analysis, ELISA, RT-PCR, and electrophoretic mobility shift assay (EMSA). Retinal

functions were preserved by AST and lutein in different levels. Ocular tissues from AST-

and lutein-treated rats had significantly reduced levels of oxidative stress mediators (8-

hydroxy-2'-deoxyguanosine, nitrotyrosine, and acrolein) and inflammatory mediators (inter-

cellular adhesion molecule-1, monocyte chemoattractant protein-1, and fractalkine),

increased levels of antioxidant enzymes (heme oxygenase-1 and peroxiredoxin), and

reduced activity of the transcription factor nuclear factor-kappaB (NF-κB).

Conclusion

The xanthophyll carotenoids AST and lutein have neuroprotective effects and reduce ocular

oxidative stress, and inflammation in the STZ diabetic rat model, which may be mediated by

downregulation of NF-κB activity.
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Introduction
Diabetes are metabolic disorders characterized by dysregulation of blood glucose levels. Dia-
betic retinopathy is the most serious sight-threatening complication of diabetes [1, 2].
Although our understanding of the pathogenesis of diabetic retinopathy has improved, and
medical and surgical treatments have advanced, the long-term outcome of diabetic retinopathy
remains poor. Therefore, there is a continuing need to search for a new modality for preventing
and treating this debilitating complication.

The hyperglycemia that occurs in diabetes increases the production of reactive oxygen spe-
cies (ROS) and depletes cellular antioxidant defense capacities, resulting in enhanced oxidative
stress. Chronic oxidative stress is considered one of the primary causes of diabetic retinopathy
[3–7]. The retina has a high content of unsaturated fatty acids and high oxygen uptake, which
increases lipid oxidation and ROS production. This is commonly thought to make the retina
more vulnerable than any other tissue to oxidative stress damage [8, 9].

Inflammation may also play a key role in the development and progression of diabetic reti-
nopathy [10, 11]. ROS are strong stimulators of the transcription factor nuclear factor kappa B
(NF-κB), which increases the transcription of inflammatory cytokines and chemokines as well
as enzymes responsible for nitric oxide and prostaglandin E2 synthesis. All of these factors are
involved in the pathogenesis of diabetic retinopathy [12–15]. Antioxidants have long been
known to inhibit inflammatory responses. In animal models of diabetic retinopathy, antioxi-
dants inhibit NF-κB activity, and reduce leukostasis and leukocyte expression of inducible
nitric oxide synthase [16]. Moreover, antioxidants can inhibit the formation of cell-free
capillaries and generation of pericyte ghosts in diabetic rats [17, 18]. In addition, antioxidants
inhibit the formation of ROS and increase the capabilities of the antioxidant defense enzyme
system [19, 20]. Therefore, antioxidants might diminish the biologic damage of oxidative stress
in the retina, abate the level of inflammation, and arrest the progression of diabetic
retinopathy.

Astaxanthin (AST) and lutein both are xanthophyll family of hydroxycarotenoids which
contain several double bonds. They could scavenge ROS to be powerful biological antioxidants
and anti-inflammatory agents [21–24]. AST is present in many organisms and is especially rich
in seafood such as salmon, trout, sea bream, shrimp, lobster, fish eggs, and algae. Lutein is a yel-
low crystal that is found in some vegetables, such as kale, spinach, and broccoli. AST removes
single oxygen atoms, eliminates free radicals, and prevents and terminates peroxidation chain
reactions by transferring the chemical energy into heat removal [25, 26]. AST is a more potent
antioxidant than other carotenoids, including lutein, β-carotene, canthaxanthin, and zeaxan-
thin. Also several reports demonstrated AST could be safely taken by human and rats [27, 28].
Although AST is not naturally present in the human retina, it easily crosses the blood-brain
barrier and subsequently protects retinal ganglion cells from oxidative damage [29]. Lutein has
been proven to reduce oxidative stress in the retina and inhibit the downstream pathological
signals in the diabetic retinopathy animal model [24]. In addition, the antioxidant activities of
AST is more potent than lutein [30], however, AST has never been reported that it is benefit
for reducing oxidative stress in eyes of diabetes. For these reasons, we hypothesized that AST is
a powerful antioxidant that is superior to lutein in diabetes. AST may protect the retina from
the various oxidative stresses and inflammatory insults that accompany diabetes.

In this study, we evaluated the potential protective effects of AST against diabetes-induced
retinal damage in streptozotocin (STZ)-induced diabetic rats. We examined the effects of AST
on the production of oxidative stress mediators, the activation of NF-κB, and the expression of
downstream inflammatory mediators in the ocular tissues of diabetic rats.
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Materials and Methods

Ethics statement
This study was carried out in strict accordance with the recommendations in the Guide of the
Association for Research in Vision and Ophthalmology Statement for the Use of Animals in
Ophthalmic and Vision Research. The protocol was approved by the Institutional Animal Care
and Use Committee of National Taiwan University College of Medicine and College of Public
Health (Permit Number: 20110211). All surgery was performed under sodium pentobarbital
anesthesia, and all efforts were made to minimize suffering.

Animals groups and induction of diabetes
Fifty female Wistar rats, aged 6 to 8 weeks and weighing 200 to 250 g, were obtained from the
Animal Resource Center, College of Medicine, National Taiwan University. The rats were ran-
domly assigned to five groups (n = 10 per group): (1) nondiabetic controls (referred to as Con-
trol group in the results section), and four groups of STZ-induced diabetic rats that received
(2) no supplementation (Diabetes group), (3) a high dose of AST (3 mg/kg/day; AST High
group), (4) a low dose of AST (0.6 mg/kg/day; AST Low group), or (5) lutein (0.5 mg/kg/day;
Lutein group).

Diabetes was induced by intraperitoneal injection of 55 mg/kg STZ (Sigma, St. Louis, MO)
dissolved in citrate buffer, pH 4.5. The Control group was injected with the same volume of cit-
rate buffer. Seventy-two hours after STZ injection, blood glucose levels were measured and
found to be>250 mg/dL, indicating the successful induction of diabetes.

The rats were administered the appropriate doses of AST and lutein (AST High, AST Low,
and Lutein groups) or an equivalent volume of normal saline (Diabetic group), every day for
the next 8 weeks via an intragastric feeding tube. The Control group received no intervention.
Body weights and blood glucose levels were recorded 72 h after injection of STZ or vehicle and
again at the end of 8 weeks.

Electroretinogram (ERG)
The ERG was performed on all rats at day 0 and day 56. The procedures of ERG had been
described previously [31, 32]. In brief, rats were kept in the dark room for 12 h before perform-
ing the ERG. All manipulations were done with dim red light illumination. After being anes-
thetized, the rats were placed on a heating pad and a recording electrode was placed on the
cornea after application of 0.5% methyl cellulose. A reference electrode was attached to the
shaven skin of the head and a ground electrode clipped the rat’s tail. A single flash light (dura-
tion, 100 ms) 30 cm from the eye was used as the light stimulus. Responses were amplified with
a gain setting ±500 μV and filtered with low 0.3 Hz and high 500 Hz from an amplifier. The
pattern of the a- and b-wave was recorded. The fold of b-wave ratio was defined as b-wave
amplitude of right eye at day 56/b-wave amplitude of right eye at day 0.

Tissue preparation
After 8 weeks, the rats were euthanized by intraperitoneal injection of a lethal dose of pentobar-
bital. The abdominal cavity was opened and blood was collected by direct puncture of the
descending aorta. Sera were prepared and frozen until use. The eyes were harvested and the ret-
ina was isolated under a microscope and immediately frozen in liquid nitrogen. The aqueous
and vitreous humors were also collected for further analysis.
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Histopathologic examination
The procedures had been described in previous study [33]. In brief, histopathological speci-
mens were obtained at 0.5 mm dorsal and ventral from the optic disc and evaluated by a light
microscope (Olympus BX 52, Tokyo, Japan). Color micrographs were captured at ×400 magni-
fication with a digital color camera for microscope (Olympus DP 72, Tokyo, Japan). The num-
ber of cells in the ganglion cell layer (GCL) was calculated using the linear cell density (cells per
100 μm). The thicknesses of total retina (between the inner limiting membrane and pigment
epithelium), inner plexiform layer (IPL), inner nuclear layer (INL), and the combined thickness
of outer plexiform and outer nuclear layers (pooled as the outer retinal layers, ORL) were mea-
sured. Each specimen was measured at three random sites and three specimens were done. The
results of the five groups were statistically analyzed.

Immunofluorescence (IF) detection of oxidative stress and inflammatory
mediators
IF was carried out by simultaneously blocking and permeabilizing sections with 0.2% Triton in
PBS containing 5% goat serum for 1 hour at room temperature, incubating with primary anti-
bodies diluted in blocking solution overnight at 4°C, and incubating with the appropriate fluo-
rescent secondary antibodies (all diluted 1:1000) in blocking solution for 3 hours at room
temperature. Nuclei were counterstained with DAPI. Primary antibodies included mouse anti-
rat 8-hydroxy-2'-deoxyguanosine (8-OHdG) (JaICA Inc., catalog no. MOG-020P), mouse anti-
rat nitrotyrosine (Abcam Inc., catalog no. Ab-7048), and mouse anti-rat acrolein (Abcam Inc.,
catalog no. Ab-48501).

The following formula was used for the densitometric quantitation of acrolein, nitrotyro-
sine, and 8-OHdG immunofluorescence, as previously described [34].

Immunostaining index ¼ S ½ðX� thresholdÞ � area ðpixelsÞ�= total cell number

Where X is the staining density indicated by a number between 0 and 256 in grayscale, and
X is more than the threshold. Briefly, digitized color images were obtained as PICT files. PICT
files were opened in grayscale mode using NIH image, ver. 1.61. Cell numbers were determined
using the Analyze Particle command after setting a proper threshold.

Immunohistochemical (IHC) detection inflammatory mediators
Sections (6 μm) of 10% formalin-fixed, paraffin-embedded eye tissues were placed on slides,
deparaffinized in xylene, rehydrated in a graded series of ethanol, and finally washed in PBS.
Endogenous peroxidase activity was blocked by incubation of slides with 0.3% hydrogen perox-
ide in methanol. Sections were stained with hematoxylin & eosin (H&E) for examination of
pathological changes in morphology. For analysis of inflammatory mediators, the sections
were incubated overnight at 4°C with the following primary antibodies: mouse anti-rat inter-
cellular adhesion molecule-1 (ICAM-1) (Lifespan Bioscience Inc., catalog no. LS-B1850), rabbit
anti-rat monocyte chemoattractant protein-1 (MCP-1) (Abcam Inc., catalog no. Ab-7202),
goat anti-rat fractalkine (FKN) (R&D Systems Inc., catalog no. AF537), and mouse anti-rat
NF-κB (Santa Cruz Biotechnology, Inc., catalog no. SC-8008).

After incubation with primary antibodies, the sections were washed and incubated with the
appropriate biotinylated secondary antibody to goat, mouse, or rabbit IgG, followed by incuba-
tion with an avidin-biotinylated horseradish peroxidase complex (Santa Cruz Biotechnology)
and 3,3'-diaminobenzidine as the chromogenic peroxidase substrate. Immunostained sections
were counterstained with hematoxylin, dehydrated, and mounted. Negative control sections
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were incubated with rabbit IgG (BioVision) as the primary antibody and then processed as
described above. The relative staining intensities were quantified by analysis of sections with
the computer imaging software Image-Pro Plus 6.0 (Media Cybernetics, Inc., Bethesda, MD)

Protein extraction and western blot analysis
Proteins were extracted from isolated rat retinas by incubation in a lysis buffer consisting of
0.5 M Tris-HCl (pH 7.4), 1.5 M NaCl, 2.5% deoxycholic acid, 10% NP-40, 10 mM EDTA, and
protease inhibitors (Complete Mini; Roche Diagnostics Corp., Indianapolis, IN). For western
blot analysis, the protein samples were mixed 1:1 with Laemmli sample buffer and boiled for
5 min. Samples (equivalent to 100 μg total protein) were resolved by 10% SDS-PAGE. Sepa-
rated proteins were electrophoretically transferred to polyvinylidene fluoride (PVDF) mem-
branes (Immobilon-P; Millipore Corp., Billerica, MA) in a buffer containing 200 mMNaCl,
200 mM Tris-base, and 10 mMMgCl2 (pH 9.5). Nonspecific binding was blocked by incuba-
tion of membranes with 5% milk in PBS containing 0.1% Tween-20 (PBST) for 1 hour at room
temperature. The blots were then incubated with the following primary antibodies diluted in
5% milk in PBST overnight at 4°C: goat anti-rat ICAM-1(1:1000 dilution; R&D Systems Inc.,
catalog no. AF583), goat anti-rat MCP (1:1000; Santa Cruz Biotechnology Inc., catalog no. SC-
1785), goat anti-rat FKN (1:1000; R&D Systems Inc., catalog no. AF537), or mouse anti-rat β-
actin (1:5000; Abcam Inc., catalog no. ab8224). After washing with PBST, the membranes were
incubated with horseradish peroxidase-conjugated secondary antibody for one hour and visu-
alized by chemiluminescence. (Pierce Biotechnology, Rockford, IL). The relative expression of
proteins was quantified by densitometry scanning of blots with ImageJ 1.45e software
(National Institutes of Health, Bethesda, MD).

Quantification of ICAM-1, MCP-1, and FKN in the aqueous humors
The levels of ICAM-1, MCP-1, and FKN in the aqueous were quantified using sandwich ELISA
kits (R&D Systems., catalog no. RIC100; PeproTech, Inc., catalog no. 900-K59; R&D Systems.,
catalog no. DY537, for ICAM-1, MCP-1, and FKN, respectively). The aqueous humor were
pooled by each group. Total protein content in each sample was determined by the Bradford
assay (Bio-Rad). The pooled samples were measured by 3 repeat ELISA experiments.

Preparation of RNA and cDNA for PCR
Total RNA was extracted from the retinas with TRIzol reagent (Invitrogen-Life Technologies
Inc., Gaithersburg, MD) according to the manufacturer’s protocol. One microgram of total
RNA from each sample was reverse transcribed by annealing for 5 min at 65°C with 300 ng
oligo(dT) (Promega, Madison, WI) and incubation with 80 UMoloney murine leukemia virus
reverse transcriptase (MMLV-RT; Invitrogen-Gibco, Grand Island, NY) for 1 h at 37°C. The
reaction was stopped by heating for 5 min at 90°C.

PCR was performed with gene-specific primers for heme oxygenase-1 (HO-1), peroxire-
doxin (PRDX), thioredoxin (Trx), ICAM-1, MCP-1, FKN, and β-actin (Table 1). All primers
were prepared by Mission Biotech (Taipei, Taiwan). The amplifications were performed with a
thermocycler (MJ Research, Waltham, MA). Reactions (50 μL final volume) contained 5 μL of
cDNA, 1 μL each of sense and antisense primers, 200 μM of each deoxynucleotide, 5 μL of 10×
Taq polymerase buffer, and 1.25 U Taq polymerase (Promega). The cycling conditions were
95°C for 5 min followed by 28–32 cycles (see Table 1) of 94°C for 1 min, 55°C for 2 min, and
72°C for 3 min, followed by an extension for 10 min at 72°C and final cooling to 4°C. PCR
products were separated by electrophoresis in 2% agarose gels containing ethidium bromide
(Sigma-Aldrich) and visualized under ultraviolet light/ The product intensities were quantified
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by computer image analysis (Digital 1D Science; Eastman Kodak, Rochester, NY). mRNA
expression levels were normalized to that of the housekeeping gene, β-actin. All experiments
were repeated three times.

Nuclear protein extraction and electrophoretic mobility shift assay (EMSA)
Retina nuclear proteins were extracted with NE-PER (Nuclear and Cytoplasmic Extraction
Reagent; Pierce, Rockford, IL, USA) according to the manufacturer’s instructions. Protein was
quantified by the BCA method (Bio-Rad). All extracts were stored at -80°C until use.

The methods of EMSA had been reported in previous studies [35, 36]. In brief, EMSAs were
performed using a Light Shift Chemiluminescent EMSA Kit (Pierce, Rockford, IL, USA). To mea-
sure the capacity of the nuclear extract proteins to interact with consensus NF-κB–binding
sequences, 10 μg of each nuclear extract was incubated with a biotinylated DNA duplex (50-AGTT
GAGGGGACTTTCCCAGGC-30 and 30-TCAACTCCCCTGAAAGGGTCCG-50) containing a
putative NF-κB consensus binding site [37]. The samples were incubated for 30 min in a total vol-
ume of 20 μL buffer consisting of 10 mMTris-Cl, pH 7.5, 1 mMMgCl2, 50 mMNaCl, 0.5 mM
DTT, 0.5 mM EDTA, 4% glycerol, and 2 μg of polydeoxyinosinic-deoxycytidylic acid. The specific-
ity of DNA–protein binding was confirmed by the addition of a 100-fold molar excess of unlabeled
oligonucleotide to the extract 10 min before the addition of the biotinylated probe. After the reac-
tion, the samples were subjected to 6% PAGE and transferred to a nylon membrane, which was
cross-linked for 15 min on a UV transilluminator at 312 nm. Biotin-labeled DNA–protein com-
plexes were detected by chemiluminescence, and the membranes were exposed to X-ray films.

Statistical analysis
Data are expressed as the mean ± SD. Differences between all groups were analyzed by one-
way analysis of variance followed by Bonferroni’s test for multiple comparisons, if appropriate.
All of the statistical analyses were performed using STATA 8.2 software (StataCorp LP, College
Station, TX). A P value of less than 0.05 was considered statistically significant. A value of
p< 0.05 was considered statistically significant.

Results

Body weights and blood sugar levels of experiment rats
The body weights and blood sugar levels of rats at the beginning and at the end of the experi-
ments are presented in Table 2. After diabetes induction and feeding for 8 weeks, animals in
the normal Control, AST High, and AST Low groups gained more weight than the Diabetes
and Lutein groups. However, the differences in body weights among the five groups did not
reach statistical significance (p = 0.88). Animals in the four STZ-injected groups had

Table 1. PCR primer sequences and amplified product sizes.

Gene Primer sequence Product Size (bp) Annealing Temp°C Cycles

HO-1 50-CACGCCTACACCCGCTACCT 50-TCTGTCACCCTGTGCTTGAC 52 32

PRDX 50-TGCCAGATGGTCAGTTTAAA 50-CAGCTGGGCACACTTCCCCA 53 32

Trx 50-CTGCTTTTCAGGAAGCCTTG 50-TGTTGGCATGCATTTGACTT 52 32

ICAM-1 50-CCTGTTTCCTGCCTCTGAAG 50-CCTGGGGGAAGTACTGTTCA 830 bp 52 30

MCP-1 50-CTACAGAAGTGCTTGAGGTGGTTG 50-CTGGGCCTGTTGTTCACAGTTGC 436 bp 52 30

FKN 50-CCTCGGCATGACGAAATGCA 50-AGGCCCTGGAGATTTCTCTG 703 bp 52 28

β-actin 50-CTGGAGAAGAGCTAGAGCTG 50-AATCTCCTTCTGCATCCTGTC 246 bp 52 22

doi:10.1371/journal.pone.0146438.t001
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significantly higher glucose levels than the Control group, both immediately after STZ injection
and at the end of 8 weeks (p< 0.05; Table 2). There were no significant differences in the blood
sugar levels among the four experimental groups.

The effects of AST and lutein on ERG
The relative b-wave ratio was approximately equal to 1 in the normal controls. For the diabetic
groups, the b-wave ratios were significantly higher in groups treated with supplements than
the group without supplements. In addition, only the high-dose AST group had no significant
difference between control group in b-wave ratio (p = 1.0). Otherwise, the diabetic rats without
supplements group, low-dose AST group or lutein group, the ratios were all significantly
decreased (p<0.05 in all paired comparisons with control rats). Notably, in rats treated with
high-dose AST, the relative b-wave ratio was higher than that in the lutein and the low-dose
lutein groups (p = 0.046 and p< 0.001) (Fig 1).

Histology examination, IF and IHC detection of oxidative stress
mediators in retinas
The total retinal thickness, number of ganglion cells, the thickness of IPL, INL and ORL were
significant decreased in diabetic group compared to control and the other study groups
(p<0.05) (Table 3). We examined the expressions of 8-OHdG, nitrotyrosine, and acrolein in
retina as indicators of oxidative stress induced by peroxidation of DNA, protein, and lipid,
respectively (Fig 2A, 2B and 2C). The most intense staining of 8-OHdG, nitrotyrosine, and
acrolein was observed in the diabetes group, and the intensities were all reduced significantly in
AST High, AST Low, and Lutein groups compared with diabetes group.

IF staining of each reporter molecule was quantified with Image-Pro plus software and the
results are presented graphically in Fig 2D. The expression of 8-OHdG, nitrotyrosine, and acro-
lein was highest in the Diabetes group and the expression of all three molecules was significantly
reduced in the AST High and AST low groups (p< 0.05). In contrast, staining of nitrotyrosine
and acrolein, but not nitrotyrosin, was significantly decreased in the Lutein group (p< 0.005).

Expression of inflammatory mediator mRNA levels in retinas
Wemeasured the levels of ICAM-1, MCP-1, and FKN mRNA expression in each group by
semi-quantitative RT-PCR (Fig 3A and 3B). In our results, ICAM-1, MCP-1, and FKN mRNA
levels were significantly elevated in the retinas of the Diabetes group compared with the healthy

Table 2. Body weights and blood sugar levels in the study groups.

Groups Control Diabetes Diabetes + High AST Diabetes + Low AST Diabetes + Lutein

(A)

Body Weight (g) 247.8 ± 18.9 229.4 ± 23.0 226.6 ± 10.5 229.7 ± 12.6 226.6 ± 21.2

Blood Sugar (mg/dL) 115.3 ± 27.1 486 ± 54.8* 479 ± 62.6* 482 ± 56.8* 491 ± 33.9*

(B)

Body Weight (g) 276.7 ± 21.8 247.7 ± 45.7 255.5 ± 14.4 259.5 ± 18.5 247.0 ± 17.5

Blood Sugar (mg/dL) 131.7 ± 27.6 598.3 ± 27.1* 568.0 ± 40.6* 597.8 ± 48.2* 550.6 ± 66.8*

(B)-(A) Body weight (g) 28.9 ± 33.6 20.1 ± 26.1 28.9 ± 16.8 29.8 ± 16.6 20.4 ± 17.4

(A), 72 h after STZ injection; (B), 8 weeks after STZ injection.

Values are expressed as the mean ± SD of 10 rats per group.

* p < 0.01 versus Control group

doi:10.1371/journal.pone.0146438.t002
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Control group. In study groups, the mRNA levels of ICAM-1 andMCP-1were decreased in the
AST High, AST Low and lutein-fed animals compared with the animals in Diabetic group. The
FKN expression was significantly reduced only in AST High group compared with Diabetic group.

Effect of AST and lutein on expression of inflammatory proteins in retinas
To examine the effects of AST and lutein on ICAM-1, MCP-1 and FKN expression, we ana-
lyzed the protein levels by western blotting of whole retinal extracts. The estern blotting

Fig 1. Evaluation of functional changes of the retina by electroretinography (ERG). The ERGwere performed on untreated rats (Control) or STZ-
induced diabetic rats treated for 8 weeks with normal saline (Diabetes), 3 mg/kg AST (AST High), 0.6 mg/kg AST (AST Low), or 0.5 mg/kg lutein (Lutein). The
relative b-wave ratio was significantly decreased in the Diabetes, AST Low and Lutein groups compared with the Control group. The relative b-wave ratio in
AST High group had no significant difference from Control group. The ratio in AST High group was significantly higher than that in the AST Low and the Lutein
groups (p = 0.046 and p < 0.001). The data are expressed as the mean ± SD in 4 rats for each group (bar graph). *, p < 0.05 compared with the control group.
#, p < 0.05 compared with the Diabetes group. Differences among groups were analyzed by one-way analysis of variance followed by Bonferroni’s test for
multiple comparisons.

doi:10.1371/journal.pone.0146438.g001

Table 3. Thickness of the retinal layers and ganglion cell layer (GCL) cell counts.

Thickness (μm) GCL cell counts (per 100 μm)

Total retina IPL INL ORL

Control 171.3±1.4# 52.6±1.3# 26.0±1.0# 42.8±0.7# 11. 9±1.2#

Diabetes 148.7±2.3* 40.3±1.6* 20.5±1.2* 35.3±1.6* 7.4±0. 9*

AST high 170. 5±1.8# 52.1±1.7# 24.8±0.7# 42.3±0.8# 11. 7±1.0#

AST low 157.6±1.2*# 45.7±1.2*# 22.6±1.3*# 40.5±1.3*# 8.8±0.8*#

Lutein 156.7±1.6*# 45.25±1.5*# 21.4±0.9* 39.8±1.5*# 8. 9±0.8*#

INL, inner nuclear layer; IPL, inner plexiform layer; ORL, outer retinal layers indicated the combined thickness of outer plexiform and outer nuclear layers.

*, p < 0.05 versus the Control group

#, p < 0.05 versus the Diabetes group

doi:10.1371/journal.pone.0146438.t003
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Fig 2. Immunofluorescence staining of oxidative stressmediators in retinas. Retinal sections were
prepared fromControl, Diabetes, AST High, AST Low, or Lutein groups. Retinal oxidative damages were
evaluated by immunofluorescence staining of (A) 8-hydroxy-2'-deoxyguanosine (8-OHdG) (B) nitrotysine, and
(C) acrolein (original magnification 200×). (D) The relative density of immunostaining was defined as
immunostaining index of control group. For quantitation of immunostaining, we first determined the
immunostaining index, which could bemeasured and calculated from the following formula: Σ [(immunostaining
density-threshold) × area (pixels)] / total cell number. Treatment with AST and lutein decreased the staining for
nitrotysine, acrolein and 8-OHdG in the retinas compared with Diabetes group but the staining density of
nitrotyrosine and acrolein in lutein group were significantly higher than control group. Data are presented as the
mean ± SD. *, p < 0.05 versus the Control group; #, p < 0.05 versus the Diabetes group.

doi:10.1371/journal.pone.0146438.g002
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Fig 3. mRNA levels of inflammatory mediators in retinas. (A) RNA was subjected to RT-PCR using gene-
specific primers for ICAM-1, MCP-1, FKN, and β-actin. (B) mRNA expression of ICAM-1, MCP-1, and FKN,
normalized to the expression of β-actin. Data are presented as the mean ± SD. *, p < 0.05 versus the Control
group; #, p < 0.05 versus the Diabetes group.

doi:10.1371/journal.pone.0146438.g003
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revealed significant elevation of ICAM-1, MCP-1, and FKN protein expression in the retinas of
the Diabetic group compared with the Control group (Fig 4A). Quantitation of the relative
band intensities showed that the retinas from the AST High group contained significantly
lower levels of all three inflammatory proteins than the Diabetes group (p< 0.05), and MCP-1
and ICAM-1 expression were also reduced in the AST Low group (p< 0.05). Although FKN
expressions were reduced in the retinas of the AST Low and Lutein group compared with the
Diabetes group, the difference did not reach statistically significant level (Fig 4B).

IHC detection of inflammatory mediators in retinas
We examined the expression of three NF-κB–induced inflammatory molecules, ICAM-1, MCP-
1, and FKN, in the retinas and the photomicrographs of IHC staining were shown in Fig 5A.

After quantification of the positively staining cells in the images (Fig 5B), ICAM-1, MCP-1,
and FKN were expressed at significantly higher levels in the Diabetic group than in Control
group and AST High group. ICAM-1 and FKN levels were significantly lower in AST Low
group than in the Diabetes group (p< 0.05). All three inflammatory protein staining were
reduced in Lutein group compared with Diabetic group, but they did not meet the significant
level. In contrast, the intensities of inflammatory protein staining in Lutein group were signifi-
cantly higher than Control group.

Effects of AST and lutein on ICAM-1, MCP-1, and FKN levels in aqueous
humors
Wemeasured the concentrations of ICAM-1, MCP-1, and FKN in aqueous via ELISA (Fig 6).
Groups treated with high or low dose of AST significantly reduced MCP-1 and FKN in the

Fig 4. Western blot analysis of ICAM-1, MCP-1, and FKN protein expression in retinas. Retinal cell
extracts were prepared from animals treated as described in Fig 1. (A) Blots were probed with antibodies
specific for ICAM-1, MCP-1, and FKN. β-actin was probed as a loading control. (B) The relative intensities of
the bands in (A) were determined by ImageJ software and normalized to the expression of β-actin. Data are
presented as the mean ± SD. *, p < 0.05 versus the Control group; #, p < 0.05 versus the Diabetes group.

doi:10.1371/journal.pone.0146438.g004
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Fig 5. IHC staining of inflammatory mediators in retinas.Retinal sections were prepared from animals by
each group. (A) Photomicrographs show immunocytochemical localization of ICAM-1, MCP-1, and FKN
(original magnification 400×). (B) Images in (A) were quantified with Image-Pro software. Data are presented
as the mean ± SD. *, p < 0.01 versus the Control group; #, p < 0.01 versus the Diabetes group.

doi:10.1371/journal.pone.0146438.g005
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aqueous humors (p< 0.05). In addition, ICAM-1 levels were significantly decreased in the
AST High and Lutein groups (p< 0.05).

Expression of antioxidant defense enzyme mRNA levels in retinas
Wemeasured mRNA levels of hemeoxygenase-1 (HO-1), peroxiredoxin (PRDX), and thiore-
doxin (Trx) by semi-quantified RT-PCR (Fig 7A). The retinas of the Diabetes group contained
slightly higher levels of HO-1 and Trx mRNA than the Control group, but they did not reach
the significant level. However, the retinas of AST high group had significantly increased levels
of HO-1 and PRDX mRNA than Diabetic and Control groups (p< 0.05). Lutein also signifi-
cantly increased HO-1 mRNA than Diabetic and Control groups (p< 0.05), but neither AST
nor lutein treatment groups affected Trx mRNA expression (Fig 7B).

Fig 6. Effect of AST and lutein on ICAM-1, MCP-1, and FKN expression in aqueous humors. Aqueous humor was isolated and pooled from the eyes of
rats by each group. ICAM-1, MCP-1, and FKN levels were quantified by 3 repeat ELISA experiments. Data are presented as the mean ± SD. *, p < 0.05
versus the Control group; #, p < 0.05 versus the Diabetes group.

doi:10.1371/journal.pone.0146438.g006

Fig 7. mRNA levels of antioxidant defense enzymes in retinas.RNA was isolated from the retinas of rats
by each group. (A) RNA was subjected to RT-PCR using gene-specific primers for HO-1, PRDX, Trx, and β-
actin. (B) mRNA expression of HO-1, PRDX, and Trx, normalized to the expression of β-actin. Data are
presented as the mean ± SD. *, p < 0.05 versus the Control group; #, p < 0.05 versus the Diabetes group.

doi:10.1371/journal.pone.0146438.g007
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Effect of AST and lutein on NF-κB activity in retinas
Retinas from the Control group showed a low level of NF-κB p65 staining in the inner retinas
(Fig 8A) and it was markedly increased following diabetes induction. Notably, NF-κB p65 stain-
ing was significantly reduced in the retinas of the AST High and AST Low groups (p< 0.05; Fig
8B). In Fig 8C, NF-κB activation was assessed by EMSA. Nuclear proteins extracted from the ret-
inas of the Diabetes group showed increased NF-κB–DNA binding activity, and the binding
activity was reduced in extracts from rats treated with AST or lutein.

Discussion
AST is a member of the xanthophyll family of oxygenated carotenoid derivatives. AST is well-
known as a powerful free radical scavenger and an excellent anti-inflammatory agent that sup-
presses proinflammatory cytokine and chemokine expression [21, 29]. The molecule has
unique chemical properties derived from its distinctive molecular structure, which includes
two hydroxyl groups, two carbonyl groups, and 11 conjugated ethylenic double bonds. The
polyene system endows AST with unique chemical properties and light-absorption characteris-
tics [38]. The hydroxyl and keto moieties present on each ionone ring explain the ability of
AST to be esterified, as well as the more polar nature and higher antioxidant activity of AST
compared with other carotenoids [39]. Nakajuma and colleagues reported that AST was neuro-
protective and prevented damage to retinal ganglion cells [29]. Izumi-Nagai et al. have indi-
cated that the anti-inflammatory and antioxidant effect of AST in an animal model of laser-
induced choroidal neovascularization is mediated by inhibition of NF-κB pathway activation
[40]. AST has been used in the treatment of cardiovascular disease [41], ischemic brain damage
[42], cataracts [43], diabetes [44], and diabetic nephropathy [45, 46]. However, the mechanism
by which AST reduces STZ-induced diabetic retinopathy in rats has remained unclear. In a
previous study, Speranza et al. demonstrated AST reduced oxidative induced proinflammatory
cytokines by inhibiting NF-κB expression in U937 cells [47]. Izumi-Nagai et al. showed AST
treatment could inhibit NF-κB activation, subsequent downregulation of inflammatory mole-
cules and decreasing macrophage infiltration and then AST further suppressed choroid neo-
vascularization development in mice [40]. Suzuki et al. also proved that AST could oppose rat
endoxin-induced uveitis by inhibiting the NF-κB signaling pathway [48]. In our present study,
we demonstrated that AST reduced oxidative stress, reduced expression of inflammatory medi-
ators, increased antioxidant enzymes (HO-1 and PRDX) in the retina of diabetic rats and AST
significantly preserved the retinal architecture and function. These protective effects might be
as well as related to its inhibitory effect on the NF-κB activation.

A strong correlation between oxidative stress and the development of diabetic retinopathy
has been confirmed [3–5]. Diabetes increases oxidative stress and ROS levels in the retina, and
the induction of antioxidant enzymes is insufficient to prevent retinal damage. Yeh and col-
leagues reported that ROS levels in vitreous fluid may correlate positively with the severity of
diabetic retinopathy [49]. It is likely that increased ROS and oxidative stress causes tissue injury
through peroxidation of DNA, lipids, proteins, and carbohydrates [50], with the concomitant
production of oxidative biomarkers such as 8-OHdG, nitrotyrosine, carbonylated proteins
[51], acrolein, and lipid peroxides [17]. In our study, diabetes significantly increased retinal
expression of the oxidation products, 8-OHdG, nitrotyrosine, and acrolein. These results con-
firmed that diabetes increases oxidative stress in the retina and results in the accumulation of
peroxidation products.

An imbalance between oxidants and antioxidants plays a critical role in the development
and progression of diabetic retinopathy. Several antioxidant systems have been suggested to be
involved. HO-1, a heat shock protein, is extremely sensitive to both oxidative and cellular stress
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Fig 8. Effect of AST and lutein on NF-κB activity in retinas. (A) Photomicrographs of IHC staining for NF-
κB p65 in retinal sections from animals treated as described in Fig 1. (B) The images in (A) were analyzed
with Image-Pro software and staining intensity was quantified. Data are presented as the mean ± SD.
*, p < 0.05 versus the Control group; #, p < 0.05 versus the Diabetes group. (C) Nuclear proteins were
prepared from the retinas of rats treated as described in Fig 1. EMSA was performed by incubation of extracts
with a biotinylated oligonucleotide containing an NF-κB consensus sequence. Lane 1: p50 subunit of NF-κB;
lane 2: free probe (FP); lane 3: control rats; lane 4: diabetic rats; lane 5: diabetic rats treated with high dose
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and is acutely upregulated in diabetes [52, 53]. HO-1 catalyses the conversion of heme to bili-
verdin with the release of carbon monoxide and free iron. Many in vitro, in vivo, and epidemio-
logical studies have shown that HO-1 has protective properties against cardiovascular disease
[54]. PRDXs, a family of stress-response antioxidants, can detoxify ROS and thus provide cyto-
protection from internal and external oxidative stress [55]. Trx also decreases ROS levels [56].
Trx participates in a variety of redox reactions, such as reversible oxidation of proteins and reg-
ulation of transcription factors and apoptosis [57, 58]. Our present study demonstrated antiox-
idants enzyme levels were not significantly elevated in the diabetic animals. (Fig 7) The
maintenance of redox homeostasis in diabetes requires that antioxidant enzyme levels must be
elevated to achieve the oxidant–antioxidant balance. AST and lutein may significant promote
HO-1 mRNA expression, and high dose AST would elevate PRDX mRNA level. But neither
AST nor lutein could increase Trx production.

ROS contribute to inflammatory responses by stimulating the activity of transcription fac-
tors NF-κB [45]. In our study, NF-κB p65 expression and activity was shown by IHC and
EMSA that it was significantly increased in diabetic retina. The results were consistent with our
hypothesis that oxidative stress associated with diabetes would activate NF-κB in the retina. In
addition, NF-κB is known to bind to the promoters and increase the transcription of the adhe-
sion molecule ICAM-1 and the chemokines MCP-1 and FKN, all of which are associated with
inflammation in diabetic retinopathy [59–62]. These inflammatory molecules could induce
vascular endothelial cell damage, increase vascular permeability, and cause cytokine release,
which lead to angiogenesis in diabetic retinopathy.

Our results indicate that AST and lutein reduce the generation of oxidation products, includ-
ing 8-OHdG, nitrotyrosine, and acrolein, in the retinas, suggesting that they inhibit the develop-
ment of diabetic retinopathy by reducing oxidative damage to DNA, proteins, and lipids. We
showed animals fed AST had significantly increased retinal levels of HO-1, and PRDXmRNA,
consistent with an advancement of the antioxidant enzyme system capabilities. In addition, our
study showed AST and lutein could prevent further retinal damage from oxidative stress and pre-
serve retinal functions. Our results are similar to those obtained by Kowluru et al. in the rat
model of diabetes. They demonstrated that micronutrients that were shown to reduce retinal
abnormalities in the major Age-Related Eye Disease Study (AREDS) (50 mg/kg of ascorbic acid;
0.5 g/kg of vitamin E; 1.5 mg/kg of beta carotene; 8 mg/kg of zinc oxide; and 0.2 mg/kg of copper
oxide) could prevent capillary degeneration in the retinal vasculature of diabetes rats. Notably,
the AREDS-based micronutrients increased antioxidant enzyme expression and decreased nitric
oxide synthase expression [63]. However, the effects of AREDS-based micronutrients in prevent-
ing the deterioration of diabetic retinopathy will require additional investigation to clarify the
mechanisms and pathways by which these antioxidants act in the retina of diabetics.

In our study, histological examination of retina showed significant morphological damage
and retinal ganglion cell loss in diabetic rats. We displayed not only the preservation of histo-
logical and functional outcomes of AST in diabetic rats but the effects of AST on oxidative and
inflammatory pathways associated with diabetic retinopathy. Our results suggest that AST has
the potential to inhibit the development of diabetic retinopathy by reducing oxidative stress,
increasing antioxidant enzymes, inhibiting NF-κB activity, and reducing the expression of
downstream inflammatory mediators. AST may thus be a beneficial nutritional supplement to
halt the progression of diabetic retinopathy and prevent vision loss in patients with diabetes.

astaxanthin (3.0mg/kg/day); lane 6: diabetic rats treated with low dose astaxanthin (0.6mg/kg/day); lane 7:
diabetic rats treated with lutein (0.5mg/kg/day); lane 8: 100–fold molar excess of unlabeled NF-κB probe, and
lane 9: p65, biotinylated probe with anti-p65 antibody.

doi:10.1371/journal.pone.0146438.g008
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