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Abstract 

Computational methods for drug combination predictions are needed to identify effective therapies that improve 
durability and prevent drug resistance in an efficient manner. In this paper, we present SynGeNet, a computational 
method that integrates transcriptomics data characterizing disease and drug z-score profiles with network mining 
algorithms in order to predict synergistic drug combinations. We compare SynGeNet to other available 
transcriptomics-based tools to predict drug combinations validated across melanoma cell lines in three genotype 
groups: BRAF-mutant, NRAS-mutant and combined. We showed that SynGeNet outperforms other available tools in 
predicting validated drug combinations and single agents tested as part of additional drug pairs. Interestingly, we 
observed that the performance of SynGeNet decreased when the network construction step was removed and 
improved when the proportion of matched-genotype validation cell lines increased. These results suggest that 
delineating functional information from transcriptomics data via network mining and genomic features can improve 
drug combination predictions. 
 
Introduction 

Drug combination therapies are rapidly becoming the mainstay of cancer therapy in order to improve durability and 
curb resistance to targeted therapies. Melanoma is the most deadly form of skin cancer, accounting for nearly 10,000 
deaths in the United States in 2016 (1, 2). Oncogenic driver BRAF mutations (V600E/K) are found in 40-60% of 
melanoma patient tumors, and median patient survival is extended by 5-6 months via targeted BRAF inhibitor 
therapies. However, the majority of patients eventually become resistant (3-5). Furthermore, dual inhibition of the 
MAPK signaling pathway via the targeted combination therapy of vemurafenib (BRAF inhibitor) and trametinib 
(MEK inhibitor) only extends patient survival by an additional 4-6 months (6). Thus, new therapies that can 
synergize with existing therapies and decrease drug resistance are urgently needed.  

Unfortunately, traditional approaches for drug discovery are costly and laborious, and thus even more prohibitive to 
the approval of effective drug combinations. It is estimated that an average of 1 billion dollars and 15-20 years is 
needed for the approval of new therapies in the current drug discovery pipeline (7). Additionally, over half of 
clinically tested drugs fail during phase 1 trials, and only 25% of compounds proceed from phase 2 to phase 3 
clinical trials (8). Success rates for large-scale experimental drug screens are low at 4-10% (9, 10). Furthermore, it is 
infeasible, with limited resources, to experimentally screen millions of pair-wise drug combinations derived from 
thousands of currently available, FDA-approved therapies for synergistic effects across diverse cell lines and 
human-derived models. Thus, developing computational approaches that can reduce the search space for pairwise 
comparisons of effective drugs and prioritize high-confidence predictions is of great interest and remains an open 
problem. Several computational methods have been proposed to discover drug combination therapies that model 
data ranging from high-throughput drug and functional genetic screens to large-scale molecular “omics” profiles and 
biological networks (11).  

Several valuable drug data resources for computational drug repurposing and drug combination studies include large 
collections of drug-induced gene expression profiles in human cell lines from the Connectivity Map (CMap v2; 
1,309 compounds, 5 cell lines) and Library of Integrated Network-based Cellular Signatures (LINCS; 20,413 
compounds, 77 cellular contexts) databases (12, 13). Three drug combination prediction methods that employ drug-
induced gene expression data from CMap and LINCS include Combinatorial Drug Assembler (14, 15), DrugPairSeeker 
(DPS) (16) and DrugComboRanker (DCR) (17). CDA and DPS are available as user-friendly tools for bench scientists, 
and are methodologically similar in that they calculate “connectivity scores” of drug pairs that maximize the reversal 
of disease-associated gene signatures. By contrast, DCR is a more complex method incorporating both 
transcriptomics and network mining algorithms, and is not currently publicly available. Due to its modular 
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framework, the DCR approach permits the utilization of multiple data sources and network mining algorithms. Here 
we present a novel extension of the DCR framework that emphasizes the analysis of disease signaling network 
structure in calculating drug synergy scores, termed “Synergy from Gene expression and Network mining” 
(SynGeNet). Briefly, our approach models disease signaling networks via the integration of transcriptomics, protein-
protein interaction and drug-target interaction data. Drug pairs are first identified that have can reverse the gene 
expression patterns characterizing the disease signaling network, and then ranked based on drug targets’ distribution 
within the network. Importantly, drug combination agents are prioritized that target highly central or influential 
nodes in the overall disease network. This paradigm of targeting topologically important nodes exhibiting high 
degrees of “hubness” or “betweenness centrality” has been proposed as a robust strategy to therapeutically alter 
disease signaling processes in biological networks (18, 19).  

Recently, DCR was shown to outperform CDA in predicting drug combinations in lung and breast cancer using 
literature evidence as a performance metric (17). However, there has been no systematic comparison of these methods 
using results from high-throughput drug combination screenings. In this study, we implemented the SynGeNet 
method and compared its performance to other available transcriptomics-based drug combination prediction tools 
using results from a previously published combinational drug screening study testing 40 drugs on a diverse array of 
melanoma cell lines (20). Interestingly, this high-throughput combinatorial drug screening revealed drug 
combinations specific for BRAF-mutant and NRAS-mutant cell lines, consistent with the observation that melanomas 
driven by these distinct mutations are highly mutually exclusive and have distinct clinical and molecular features (6). 
We show that the SynGeNet method can outperform existing methods, and that the application of genotype-specific 
(e.g. BRAF-mutant) melanoma transcriptomics data in a network model influences the performance of genotype-
specific drug combination prediction results.  

Methods 

The overall workflow for our approach is shown in Figure 1. Each step is described in detail below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Overview of workflow for the SynGeNet drug combination prediction approach integrating disease 
signaling network, disease- and drug-associated transcriptomics data and network topological analysis.  
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Infer transcriptional activity of disease signaling network 

Gene expression data of patient-derived BRAFV600E/K mutant melanoma tumor samples (n=16) and normal skin 
samples (n=14) was obtained from Gene Expression Omnibus (GEO) dataset GSE15605. RMA- and quantile-
normalized gene expression data was log2-transformed, and gene expression values of probesets mapping to the 
same gene were averaged. Protein-protein interaction data was obtained from the BioGRID database (21). Self-
interaction edges were removed from the network. In addition, melanoma associated genes were obtained via the 
DisGeNET database (22). To construct the melanoma disease signaling network, we employed the belief propagation 
algorithm, which integrates gene expression fold change information and protein-protein interactome data to infer 
hidden components of functional networks and signaling pathways (23). The belief propagation approach was applied 
to construct the disease signaling network by modeling the signaling flow starting from the specified disease “root” 
genes and linking them to up-regulated genes on the BioGRID background signaling network. The top ranked 
melanoma-associated disease genes from the DisGeNET database were used as root nodes to uncover the 
dysfunctional disease signaling network (22). Mathematically, it is a sub-network inference problem formatted as 
follows: Given the BioGRID background network, G = (V, E), the sub-network, G' = (V', E'), is constructed to 
minimize the cost function: 

min
!!⊆!,!!⊆!

𝑐!
!∈!!

− 𝜆 𝑏!
!∈!!

 

where ce (cost of edge) is 0.2, and bi is the gene expression fold change in this study. The parameter λ can regulate 
the size of the sub-network (bigger λ value can generate a bigger size sub-graph (more nodes)). In this study, we 
empirically set and evaluated the different values of the parameters, i.e., using different numbers (fewer or more) of 
root nodes (n=3, 5, 10, 20, 30, 40, 50, 75, 100) and lambda (lambda = 0.01, 0.02, 0.03, 0.04), and reported the 
results. 

Rank individual drugs reversing disease signaling network 

Gene expression profiles (at the level of Z-scores) of 633 FDA approved drugs tested in the BRAF-mutant A375 
melanoma cell line were obtained from Library of Integrated Network-based Cellular Signatures (LINCS) L1000 
transcriptomics database (http://www.lincsproject.org/). Constituent genes of melanoma disease signaling network 
constructed from patients’ transcriptomics and protein-protein interaction data was used to match against these drug-
induced gene expression profiles. Connectivity scores quantifying the similarity between drug-induced gene 
expression profiles and the up-regulated genes in the melanoma disease signaling network were calculated using the 
Kolmogorov-Smirnov statistic (e.g. gene-set enrichment analysis (GSEA) distance metric) (12, 24). Individual drugs 
were ranked by negative connectivity scores, i.e. those drugs corresponding to a “reversal” of the melanoma disease 
signaling network gene signature. We normalized GSEA score to [-1, 1], and selected drugs whose normalized 
GSEA score  ≤ -0.50. The selected drugs were empirically prioritized using weights as: 𝑤! = 1.0 + 1.0 − 𝑟! 𝑛! , 
where 𝑤! and 𝑟! are the weight and rank of the i-th selected drug; and 𝑛! is the number of selected drugs. The drug 
weights are used in the synergy score calculation (below). Then we filtered out drugs without targets in the signaling 
network. For example, 61 drugs were selected for synergistic drug combination predictions (using the parameter 
setting: n=30 root genes and lambda = 0.02). We hypothesize that drugs acting on different targets of parallel or 
alternative pathways of the same disease signaling process could be organized in distinct drug communities (25). All 
drugs were clustered into communities using the affinity propagation algorithm (AP clustering) on the correlation 
coefficients of the z-scores of the LINCS drug-induced gene expression profiles, which may reveal functional 
mechanism of action information (26). The clustering of selected drugs was plotted using Cytoscape v 3.4.0 (27). 

Drug target mapping and network-based synergy calculation 

Drug target interaction data was obtained from DrugBank (v5.0) (28) and STITCH (v4.0) (29) databases. Drug target 
genes were mapped on the constructed melanoma disease signaling network, and the centrality of each drug target 
gene within the overall disease signaling network is calculated based on the average of betweenness, closeness and 
page-rank centrality metrics (30, 31). The weighted sum of the network centrality parameters for each of the unique 
drug targets was calculated to determine the synergy score of drug pairs (𝑑!  and 𝑑!): 𝑠!" = 𝑤!  ×  𝑤!  × 𝑐𝑠!! , where  
𝑐𝑠!!  is the sum of network centrality scores of drug targets. Drug combinations were ranked based on the weight 

centrality score in the decreasing order. 
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Combinational drug screening validation dataset 

We obtained average GI50 values, representing the drug concentration needed to achieve 50% growth inhibition, for 
40 drugs tested in combination across different melanoma cell lines from Held et al 2013 in three groups: i) BRAF-
mutant cell lines, ii) NRAS-mutant cell lines and iii) all cell lines combined (20). Of note, for BRAF-mutant and 
NRAS-mutant cell line specific screening, drug combinations were filtered to only include those with ≥15% average 
growth inhibition in the specific genotype mutant group vs. other groups and ≥50% average growth inhibition in the 
specific genotype mutant group. For screening results for all melanoma cell lines, drug combinations demonstrating 
≥75% average growth inhibition across all cell lines were included.  

Drug combination prediction tool comparison 

The same patient-derived BRAF-mutant melanoma gene expression signature (described above) was applied across 
all three methods. We implemented the Combinatorial Drug Assembler (14) method through its web-based platform 
(http://cda.i-pharm.org/index.jsp) (15). We implemented the DrugPairSeeker (DPS) method through its Java program 
available through its website (http://www.maayanlab.net/DPS/) (16). We obtained DPS drug combination prediction 
results using both the connectivity map data and more recent LINCS L1000 data options.   

 

Results 

The central feature for each of the computational drug combination prediction tools assessed in this study 
(SynGeNet, CDA and DPS) is the application of gene signatures in the form of up- and down-regulated gene lists. 
The same gene signature characterizing patient-derived BRAF-mutant melanoma tumors (GSE15605) was applied 
across all three tools (32). Table 1 shows similar and distinguishing features for each of the three methods and 
number of drug combination agents out of the total 40 screened in the Held et al 2013 study (20). The utilization of 
either the CMap or LINCS databases as the source for drug-induced gene expression profiles limited, in part, the 
number of screened drug combination agents that could be used for validation. The LINCS database is an expanded 
version of the original CMap, and contains a larger number of drugs tested on a greater diversity of human cell lines.  
While DPS and SynGeNet both used LINCS data, the SynGeNet approach requires that drug target genes be 
mapped within the melanoma disease signaling network and drugs selected by normalized GSEA score (≤ -0.50), 
thus limiting the number of testable LINCS drugs from 28 to 13.  

Table 1. Summary of method features for computational drug combination prediction tools used in this analysis. 

Drug 
Combination 

Prediction Method 

CMap 
data 

LINCS 
data 

Pathway 
enrichment of 
query genes 

Network 
mining of 

query genes 

Drug target 
information 

# of testable 
validation 

drugs 

SynGeNet  ✔  ✔ ✔ 13 

CDA ✔  ✔   8 

DPS ✔ ✔    28 

 

Our approach to predict drug combinations was implemented via three major parts. First, we constructed a 
melanoma disease signaling network using the belief propagation algorithm to integrate the patient-derived 
transcriptomics data characterizing BRAF-mutant melanoma tumors and protein-protein interaction data from the 
BioGRID database. We tested several parameters for their impact on the size of the disease signaling network and 
number of validated drug combinations predicted, including the number of root genes in the disease signaling 
network and λ values (Figure 2). We determined that using 30 melanoma root genes in the disease signaling with 
λ=0.02 returned a moderate size network (n=131 nodes) and the highest number of validated drug combinations. In 
addition, thirty of the top melanoma-associated genes ranked by the DisGNet database were nested in the network to 
reflect important biological processes in melanoma tumorigenesis. The resultant network is shown in Figure 3A. In 
summary, there are 229 interactions (edges) among 131 genes (nodes). Second, we selected top-ranked (normalized 
GSEA score ≤ -0.50) FDA-approved drugs with available gene expression data in the BRAF-mutant A375 
melanoma cell line from the LINCS database that could reverse the melanoma disease signaling network gene 
signature. We clustered drugs into communities with similar gene expression profiles (Figure 3B). Drug target 
genes were then mapped onto the melanoma disease signaling network. Finally, drug combinations were ranked 
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according to the centrality-based synergy score and weighted by the strength of the negative GSEA score. In this 
way, we prioritize potentially synergistic drug combinations that oppose the overall transcriptional activity of the 
melanoma disease signaling pathway via molecular mechanisms targeting important or influential centrality genes. 
A network visualization for a representative SynGeNet drug combination prediction validated in the drug screening 
study is shown in Figure 4, consisting of vemurafenib (BRAF inhibitor) and bosutinib (SRC family kinase, EGFR 
inhibitor). Interestingly, inhibiting targets of bosutinib has been shown overcome BRAF inhibitor resistance in 
melanoma (33). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Assessment of the effects of various root gene set sizes and lambda values in constructing the melanoma 
disease signaling network on A) the overall network size and B) number of validated drug combination predictions. 

Among the top 700 drug combinations out of 1,830 possible drug combinations, 12 out of 13 validated synergistic 
drug combinations were discovered among all 61 selected drugs (p-value 7.827e-05, Fisher exact test). These results 
support the use of the SynGeNet approach to rank synergistic drug combinations. Table 2 shows the drug 
combinations predicted by SynGeNet that were validated in the BRAF-mutant specific melanoma cell lines. We also 
evaluated the performance of the approach when using the GSEA score only based on the gene signature with up-
regulated genes (fold change ≥ 2.0) and down-regulated genes (fold change ≤ 0.5) to select drugs for combination 
prediction.  Interestingly, none of the validated synergistic drug combinations were found among the top 100 ranked 
drugs using this gene signature alone. This result indicates that the network model used to integrate the patient-
derived gene signature significantly influences the performance of drug combination prediction results.  
 
We next compared the performance of SynGeNet with CDA and DPS. No validated synergistic drug combination 
appeared in DPS prediction results. It should be noted that a significant limitation of the publicly available program 
to implement the DPS method is that it only returns the top ten drug combination predictions, thus preventing a full 
evaluation of this method. Among the top 40,000 top-ranked drug combinations generated by CDA, only one 
validated drug combination was predicted. Therefore, we also compared the proportion of true positives and false 
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negatives for single agents predicted by SynGeNet and CDA that were validated as part of drug combinations across 
the three melanoma cell line groups (Figure 5). SynGeNet outperformed CDA in all melanoma cell line groups. 
None of the three methods predicted any of the drug combinations validated in the NRAS-mutant specific melanoma 
cell line experiments or combined cell line experiments. Similarly, the bias towards the BRAF-mutant specific drug 
combination results was also reflected in the single drug analysis. For instance, the SynGeNet method predicted 420, 
180 and 240 drug pairs with at least one drug agent validated in the combinational screening experiments that were 
BRAF-mutant specific, NRAS-mutant specific and combined across all melanoma cell lines. These genotype-specific 
effects may be due to the fact that the melanoma disease signaling network was generated, in part, using 
transcriptomics data from melanoma patient tumors harboring activating BRAFV600E/K mutations. It is also well 
known that oncogenic BRAF and NRAS driver mutations tend to be mutually exclusive in melanoma tumors and 
have distinct prognostic effects (34).  

 

Figure 3. A: BRAF-mutant melanoma disease signaling network integrating the top 30 melanoma associated genes 
from DisGeNet database and protein-protein interactions from the BioGrid database. Gene expression values from 
the melanoma patient dataset are overlaid on the network nodes. B: Top 61 predicted drugs organized in 19 
communities. Validated drug combination agents validated in BRAF cell lines are highlighted in purple.  

Table 2. Drug combinations predicted by SynGeNet validated via in vitro combinatorial drug screening in 
melanoma cell lines. Note the threshold for an efficacious drug combination is an average GI of ≥ 50%. 

Drug 1 Drug 2 Synergy 
Score 

Avg GI in mutant 
BRAF cell lines 

Avg GI in mutant 
NRAS cell lines 

Avg GI in 
wt cell lines 

bosutinib simvastatin 17.63 80.5 58.22 52.86 
vemurafenib simvastatin 16.56 64.26 42.805 36.63 

sorafenib bosutinib 9.62 64.66 47.82 47.34 
bosutinib daunorubicin 8.94 67.59 27.29 31.67 

daunorubicin bosutinib 8.94 66.17 17.04 27.96 
bosutinib vorinostat 8.65 76.92 46.12 52.71 

daunorubicin vorinostat 8.39 53.02 12.06 37.00 
vemurafenib sorafenib 8.31 56.36 20.81 28.17 
vemurafenib vorinostat 7.38 57.15 -3.74 20.89 
vemurafenib daunorubicin 6.83 55.39 5.74 37.44 
vemurafenib bosutinib 6.59 61.06 25.26 31.33 

paclitaxel bosutinib 5.91 70.58 47.605 48.99 

A B 
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Figure 4. Drug target and melanoma disease signaling network for the vemurafenib + bosutinib drug combination 
predicted by SynGeNet. Nodes highlighted in red and green represent are gene interactions with the first and second 
drugs of the combination, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Comparison of SynGeNet and CDA methods in predicting drugs validated as part of combination 
regimens observed to be most effective in several cell line groups: BRAF-mutant specific cell lines, NRAS-mutant 
specific cell lines and all melanoma cell lines. The number of true positives and false negatives are shown for each 
method in each melanoma cell line group. For CDA, TP vs. FN status was classified by negative and positive 
enrichment scores (p<0.05), respectively. For SynGeNet, TP vs. FN status was  determined by whether the drug was 
included in the final drug combination prediction list.  
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Discussion 

In summary, this work has made several important contributions to the study of computational methods for drug 
combination predictions. First, we present a novel network and transcriptomics-based approach to predict drug 
combinations. A key observation was that using the transcriptomics data alone diminished the performance of the 
method to rank the validated drug combinations. It has also been observed that a major limitation of pathway 
analysis methods is that topology is dependent on cell-specific gene expression and disease context information, 
which is sparse and fragmented among knowledge bases (35). Our work aims to overcome limitations of using either 
data feature type alone through an integrative method. Second, we conducted the first comparison study of publicly 
available tools that utilize gene expression signatures in order to predict drug combinations. While a previous 
DREAM challenge evaluated diverse computational methods for drug combination predictions, all of these methods 
were trained on experimental dose-response curves for single drug treatments in addition to other large-scale 
“omics” and external biomedical knowledge databases (36). However, this study exclusively compared available 
software programs that are untrained to single agent drug screening results. This is an important advantage, as single 
agent drug screening results are not widely available and would be impractical to generate de novo across a wide 
variety cell lines or patient-derived models. Third, we provide the first ever validation for the SynGeNet method 
using results from a previously published in vitro combinatorial drug screening study across different melanoma cell 
lines. We demonstrated that our approach outperformed other similar transcriptomics-based methods, including 
CDA and DPS. Fourth, a key finding of this study is that drug prediction results from our approach modeling BRAF-
mutant melanoma in both the patient-derived transcriptomics data and LINCS drug profiles (i.e. BRAF-mutant A375 
melanoma cell line only) reflect the genotype-specific drug screening results shown in Held et al 2013 (20). These 
results have implications for drug combination studies in the context of precision medicine.   

Our method comparison study was limited to the 40 drugs tested in melanoma cell lines that also contained gene 
expression profiles in the CMap and LINCS databases. Furthermore, we limited the number of drugs to organize in 
drug communities in the SynGeNet approach to 61 drugs prioritized by the gene signature reversal step. Future 
studies should expand the number of drugs contained in the drug network that have reliable drug target information 
and demonstrate negative connectivity scores. We tested several root node sizes (n=3, 5, 10, 20, 30, 40, 50, 75, 100) 
when constructing the disease signaling network, simulating different use cases ranging from smaller datasets of 
well-defined pathways or diseases caused by a few genes, to larger datasets comprising complex biological 
pathways and polygenic diseases. Using network node centrality as a model for selecting synergistic drug 
combinations does not take into account the distance between two drug targets, and may result in selecting drugs 
targeting the same or neighboring genes in the network. While this may result in some predicted drugs with targets 
in close proximity, we note that it has been observed that major types of synergistic drug combinations, including 
those with anti-counteractive, complementary and facilitating actions, include targets both neighboring in the same 
pathway and in more distant pathway crosstalk (25). For instance, the combination of BRAF inhibitors with 
trametinib (MEK inhibitor) is currently the mainstay of treatment for melanoma patients with positive BRAF 
mutation status, and represents is an example of two interacting proteins within the MAPK pathway (37). 
Furthermore, observed mechanisms of drug resistance to BRAF inhibitors and the BRAF/MEK inhibitor 
combination involve aberrations in the same target protein, closely related proteins and distant pathways (3, 38). 
Consistent with these observations, we note that for the 12 validated drug combinations, there is 1 drug combination 
(vemurafenib and sorafenib) from the same community, and 11 from different communities, including drug targets 
that are both proximal and distant in the network. Future studies formally testing cluster formation and target 
interaction distance may help improve drug combination prediction methods. 

Another interesting aspect to explore further would be the potential transcriptional regulation of genes measured via 
the L1000 LINCS array by drug target genes discovered in these analyses. For instance, previous studies have 
inferred master regulators of transcription, including proteins involved in compound mechanism of action (39),(40). 
Drug repurposing resources that could be used in future studies include other high-throughput assays alongside the 
L1000 LINCS array used to screen against a library of over 6,000 compounds in The Drug Repurposing Hub: 
multidimensional proteomic assay, cell painting morphology assessment, and PRISM pooled cell viability assay (41-

43). Other disease-focused drug repositioning resources that could be further extended to predict drug combinations 
include RepurposeDB (pre-publication) and Re:fine Drugs (44). Finally, future work will be needed to compare drug 
combination prediction methods across different diseases with a wide variety of high-throughput molecular data and 
diverse sources of biological pathway information. For example, this approach could be extended to additional 
molecular subtypes of melanoma, including KIT-mutant, BRAF-wt/NRAS-wt and tumors expressing key 
immunological factors (e.g. PD-L1) that influence responsiveness to emerging immune therapies.   
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