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Abstract

Numerous microbial pathogens modulate or interfere with cell death pathways in cultured cells. However, the precise role
of host cell death during in vivo infection remains poorly understood. Macrophages infected by pathogenic species of
Yersinia typically undergo an apoptotic cell death. This is due to the activity of a Type III secreted effector protein,
designated YopJ in Y. pseudotuberculosis and Y. pestis, and YopP in the closely related Y. enterocolitica. It has recently been
reported that Y. enterocolitica YopP shows intrinsically greater capacity for being secreted than Y. pestis YopJ, and that this
correlates with enhanced cytotoxicity observed for high virulence serotypes of Y. enterocolitica. The enzymatic activity and
secretory capacity of YopP from different Y. enterocolitica serotypes have been shown to be variable. However, the
underlying basis for differential secretion of YopJ/YopP, and whether reduced secretion of YopJ by Y. pestis plays a role in
pathogenesis during in vivo infection, is not currently known. It has also been reported that similar to macrophages, Y.
enterocolitica infection of dendritic cells leads to YopP-dependent cell death. We demonstrate here that in contrast to Y.
enterocolitica, Y. pseudotuberculosis infection of bone marrow–derived dendritic cells does not lead to increased cell death.
However, death of Y. pseudotuberculosis–infected dendritic cells is enhanced by ectopic expression of YopP in place of YopJ.
We further show that polymorphisms at the N-terminus of the YopP/YopJ proteins are responsible for their differential
secretion, translocation, and consequent cytotoxicity. Mutation of two amino acids in YopJ markedly enhanced both
translocation and cytotoxicity. Surprisingly, expression of YopP or a hypersecreted mutant of YopJ in Y. pseudotuberculosis
resulted in its attenuation in oral mouse infection. Complete absence of YopJ also resulted in attenuation of virulence, in
accordance with previous observations. These findings suggest that control of cytotoxicity is an important virulence
property for Y. pseudotuberculosis, and that intermediate levels of YopJ-mediated cytotoxicity are necessary for maximal
systemic virulence of this bacterial pathogen.
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Introduction

It is generally thought that the ability of bacterial pathogens to

cause host cell death in vitro is important for virulence in vivo [1].

However the role of host cell killing in bacterial virulence during in

vivo infections remains poorly understood. Whether a particular

optimal level of cell death might exist during bacterial infection,

and how such a level might be achieved is a question that has not

yet been addressed. Standard genetic approaches to investigate the

basis of microbial pathogenesis typically screen or select for loss of

function mutants in which a particular virulence property is

completely abrogated. However, modulating the level of activity of

individual virulence factors by bacterial pathogens has been shown

to be important for maximizing overall virulence. This may be

because of two opposing selective pressures that act on any given

virulence property: positive selection for enhanced bacterial

replication is countered by a selection for reduced host detection.

Thus, because host organisms possess mechanisms to sense

infection and are likely to respond to disruption of signaling

pathways, bacterial pathogens must evolve additional mechanisms

for modulating an initial baseline activity of particular virulence

factor. For example, during the process of cell invasion, the activity

of the Salmonella GEF protein SopE is counteracted by the

phosphatase SptP [2], and this activity of SptP is important for

limiting TNF-a production by Salmonella infected cells [3].

Additionally, replacement of the Listeria monocytogenes pore-forming

toxin LLO with the related but much more active toxin PFO leads

to attenuated bacterial replication in vitro and in vivo [4]. We

wished to examine whether bacterial proteins that trigger cell

death might also possess an optimal level of activity for a given

bacterial pathogen. We therefore devised a system in which the

cytotoxicity of the facultative extracellular pathogen Yersinia

pseudotuberculosis could be altered in a tunable fashion. This

approach enabled us to uncover a requirement for limiting the

extent of cell death during the course of animal infection that has

not previously been appreciated in studies of Yersinia virulence.

The Gram negative genus Yersinia contains three pathogenic

species whose close evolutionary relationship provides an ideal

system with which to investigate the evolution of bacterial

virulence [5]. Y. pestis (the etiologic agent of plague) and Y.

pseudotuberculosis are the most closely related, with Y. pestis believed

to have recently evolved from Y. pseudotuberculosis [5]. Y. enterocolitica

comprises a more distantly related, heterogeneous group of

biotypes that are both highly pathogenic and non-pathogenic in
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animal infection models. A common feature of Yersinia infection is

a tropism for lymphoid tissues. Interestingly, despite the shared

enteric lifestyle of Y. pseudotuberculosis and Y. enterocolitica, highly

virulent serotypes of the latter appear to trigger more acute

pathology in infected tissues[6], and have a 10-50-fold lower LD50

in experimental mouse infections [7,8]. This difference in

pathology and virulence characteristics may reflect diverse

selection pressures faced by these two species over the course of

their evolution away from a common ancestor.

All three pathogenic Yersinia species harbor a virulence plasmid

of approximately 70 kB that encodes a Type III Secretion System

(TTSS) as well as secreted effector proteins designated Yersinia

outer proteins or Yops [9,10]. The virulence plasmid interferes

with key immune functions during infection [11,12,13,14].

However, the tropism of Yersinia species for lymphoid tissue

appears to be dependent upon bacterial chromosomal factors, as

bacteria lacking the virulence plasmid can still colonize mesenteric

lymph nodes following oral infection [15].

Among the best studied aspects of Yersinia infection is its

cytotoxicity toward mammalian macrophages. This cytotoxicity is

caused by a type III secreted effector protein, designated YopJ in

Y. pestis and pseudotuberculosis and YopP in Y. enterocolitica [16,17].

YopJ and YopP interfere with NF-KB and MAPK signaling

pathways in infected cells, leading to a block in cytokine secretion

and macrophage death [13,18]. Studies have suggested that the

mechanism of YopJ activity lies in its ability to deubiquitinate

signaling proteins, including TRAF6 and IKKb, that are required

for NF-kB and MAPK responses to bacterial infection [19,20].

More recent studies propose that YopJ/P acylates substrates such

as MKK6 and MEK2 which prevents their subsequent phosphor-

ylation and activation [21,22]. Regardless of the precise

mechanism, it is clear that one of the major consequences of

Yersinia infection is the YopJ/P-dependent death of infected

macrophages, and that YopJ contributes to systemic virulence

following mouse oral infection [23].

Despite the close evolutionary relationship between the

pathogenic Yersiniae, heterogeneity exists among Yersinia enterocolitica

isolates with respect to the presence or absence of a high-affinity

iron-transport system encoded by the high pathogenicity island

(HPI) [24,25], and presence or absence of YopT among Y.

pseudotuberculosis isolates [26]. It has also been observed that YopP

of different Y. enterocolitica serotypes can differ in enzymatic activity

due to the presence of an arginine/serine polymorphism at amino

acid 143 [27]. The presence of R143 correlates with high virulence

among Y. enterocolitica isolates [28]. Although YopJ of Y. pestis and

Y. pseudotuberculosis contains the R143 polymorphism associated

with higher activity, it was recently shown that YopP from the

high-virulence Y. enterocolitica O:8 serotype is more cytotoxic to

macrophages than YopJ of Y. pestis, and expression of YopP in Y.

pestis increases its in vitro cytotoxicity [29]. This difference in

cytotoxicity was shown to be due to an increase in the secretion of

YopP relative to YopJ of Y. pestis. However, the basis for reduced

secretion of YopJ, and whether control of Yop secretion plays a

role in Yersinia virulence in vivo remains unknown.

Studies on the interaction of Y. enterocolitica and DCs have

suggested that like macrophages, DCs are highly susceptible to

killing by Yersinia infection, and that this killing is dependent upon

the activity of YopP [30]. Other studies have indicated that killing

of DCs by Y. enterocolitica interferes with the priming of adaptive T

cell responses in infected mice [31]. More recent work has further

suggested that blocking of MAPK pathways by YopP in DCs

infected by Y. enterocolitica prevents DC pinocytosis and antigen

uptake [32].

Our initial examination of Y. pseudotuberculosis infection of DCs

did not show high levels of cell death, although in accordance with

previous studies, macrophages showed significant levels of cell

death in response to the same infectious dose of Y. pseudotuberculosis.

Our studies therefore reveal that DCs are markedly more resistant

than macrophages to induction of cell death by Y. pseudotuberculosis,

in contrast to previous reports indicating that both DC and

macrophage cytotoxity is limited during Y. pestis infections [29,33].

We suspected that Y. pseudotuberculosis may thus have evolved a

species-specific means of reducing its cytotoxicity toward DCs. We

demonstrate that two amino acid polymorphisms in the N-

terminus of YopJ and YopP are responsible for controlling their

levels of secretion and translocation, which correlates directly with

the extent of cytotoxicity of Y. pseudotuberculosis relative to Y.

enterocolitica and their differential ability to inhibit MAPK

activation in infected dendritic cells. The biological importance

of this reduced DC cytotoxicity was revealed upon infection of

mice with Y. pseudotuberculosis strains that differed in their

cytotoxicity toward DCs: surprisingly, we found that enhancing

cytotoxicity of Y. pseudotuberculosis resulted in its attenuation

following oral infection. This level of attenuation was similar to

that seen with a yopJ deficient strain of Y. pseudotuberculosis [23].

These data suggest that maximal virulence of Y. pseudotuberculosis

requires an intermediate level of YopJ-mediated cytotoxicity.

Results

Dendritic cells are more resistant than macrophages to
apoptosis induced by YopJ but not YopP

We initiated our studies by examining the extent of cell death in

macrophages and dendritic cells infected with Y. pseudotuberculosis

and Y. enterocolitica. Macrophage death following infection with

Yersinia occurs through caspase-3 by a pathway involving Bid

cleavage [34]. We therefore examined cleavage of the Caspase-3

substrate poly-ADP ribose polymerase (PARP) as a means of

comparing the extent of cell death in macrophages and dendritic

cells (DCs). PARP was cleaved in macrophages infected either with

Y. enterocolitica or Y. pseudotuberculosis at low and high MOI, as

Author Summary

The ability of bacterial pathogens to modulate death of
infected host cells is an important virulence determinant.
For pathogenic members of the genus Yersinia, the type III
secreted effector protein YopJ/YopP is required for
Yersinia-induced macrophage death. The YopJ protein is
expressed by Y. pseudotuberculosis, while the ninety-four
percent identical YopP protein is expressed by Y.
enterocolitica. Y. enterocolitica infection also triggers
YopP-dependent killing of dendritic cells, which are critical
antigen presenting cells of the immune system. We
demonstrate that in contrast to macrophages, dendritic
cells are resistant to Y. pseudotuberculosis-mediated
cytotoxicity. However, Y. pseudotuberculosis expressing
YopP in place of YopJ was highly cytotoxic toward
dendritic cells. This difference in cytotoxicity was attribut-
able to a difference in the delivery of YopJ and YopP into
mammalian cells. Furthermore, mutation of two amino
acids at the N-terminus of YopJ enhanced its delivery and
cytotoxicity. Remarkably, we found that enhancing the
cytotoxicity of Y. pseudotuberculosis by expression of YopP
led to its attenuation in a mouse model of Yersinia
infection. This indicates that optimal virulence for a given
pathogen requires careful regulation of virulence proper-
ties and highlights the potential evolutionary tradeoffs
between cellular cytotoxicity and in vivo virulence.

Yersinia Virulence Enhanced by Low YopJ Secretion
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expected (Figure 1A). However, DCs infected with Y. pseudotuber-

culosis showed no cleavage of PARP at low MOI, and only very

low levels of PARP cleavage at high MOI. This was in contrast to

DCs infected with Y. enterocolitica, which had high levels of PARP

cleavage at both low and high MOI (Figure 1B). Death of Yersinia-

infected macrophages is mediated by the YopJ/YopP proteins

[16,17]. We therefore used the low copy plasmid pACYC184 to

complement a yopJ mutant of the Y. pseudotuberculosis strain IP2666

with either yopJ (called pYopJ) from Y. pseudotuberculosis or yopP

(called pYopP) from Y. enterocolitica. Complementation with pYopJ

or pYopP resulted in PARP cleavage in Y. pseudotuberculosis infected

macrophages; however, only expression of YopP in Y. pseudotuber-

culosis enabled PARP cleavage in infected DCs (Figure 1A and 1B).

We confirmed that caspase-3 was indeed differentially activated in

DCs infected by these various strains of Yersinia using a cell-

permeable fluorescent caspase-3 substrate. Consistent with the

extent of PARP cleavage, a much greater percentage of cells

activated caspase-3 following infection with either Y. enterocolitica or

Y. pseudotuberculosis expressing YopP than cells infected with Y.

pseudotuberculosis expressing YopJ (Figure 1C). Macrophages were

not more permissive for Yop translocation than DCs, as equivalent

levels of a YopE-b lactamase reporter fusion protein were

translocated into both macrophages and DCs (Table S2). It is

also unlikely that differential attachment of Y. pseudotuberculosis to

DCs accounts for the observed difference, as expression of YopP

alone in Y. pseudotuberculosis was sufficient to cause markedly

increased caspase-3 activation and PARP cleavage in DCs.

MAPK activation in dendritic cells is more potently
inhibited by YopP than YopJ

The observation of increased PARP cleavage and caspase-3

activation in DCs infected with Y. pseudotuberculosis expressing YopP

but not YopJ suggested an intrinsic difference between YopJ and

YopP. Recent studies showed that although Y. pestis and Y.

enterocolitica infection show equivalent inhibition of macrophage

p38 MAPK activation, Y. pestis YopJ and Y. enterocolitica YopP are

differentially translocated into infected macrophages [29]. Mac-

rophages infected by Yersinia are thought to undergo cell death due

to inhibition of NF-kB and MAPKs by YopJ/P in the context of

stimulation by bacterial LPS [35,36]. This is due to the

requirement for NF-kB and MAPK signaling in the synthesis of

anti-apoptotic gene products following treatment with pro-

inflammatory stimuli [37].We therefore examined MAPK activa-

tion in dendritic cells following Yersinia infection.

Figure 1. Y. enterocolitica YopP induces apoptosis more potently than Y. pseudotuberculosis YopJ in dendritic cells. (A) PARP cleavage
was measured by immunoblotting of macrophage and (B) dendritic cell lysates after infection with indicated Y. pseudotuberculosis (Yp) and Y.
enterocolitica (Ye) strains at indicated multiplicity of infection (MOI). P- indicates bacteria lacking the virulence plasmid. Immunoblots are
representative of 3 independently infected preparations of cells. (C) NucViewTM 488 Caspase-3 fluorescent substrate labeling of dendritic cells
infected at an MOI of 5 with indicated bacterial strains.
doi:10.1371/journal.ppat.1000067.g001
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As anticipated, DCs infected with virulence plasmid-deficient

bacteria of either species rapidly phosphorylated p38 and SAPK/

JNK; in contrast, wild-type Y. enterocolitica completely blocked p38

and SAPK/JNK phosphorylation but Y. pseudotuberculosis did not

(Figure 2A and B). This suggested that in contrast to prior

observations in macrophages, dendritic cells are differentially

sensitive to MAPK inhibition by YopJ or YopP. Indeed, the

increased inhibition of MAPK activation in DCs infected with Y.

Figure 2. YopP inhibits MAPK activation to a greater extent than YopJ. (A) Cell lysates from dendritic cells infected for indicated number of
minutes with wild type Y. pseudotuberculosis or enterocolitica (Yp or Ye, respectively) or their virulence plasmid-deficient counterparts (YpP- or YeP-)
were probed for phospho-p38 and total p38. (B) Identical cell lysates as in (A) were probed for phospho-SAPK/JNK and total SAPK/JNK. (C) Cell lysates
from dendritic cells infected with Yp DyopJ expressing either YopP or YopJ as indicated were probed for phospho- and total-MAPK proteins as in (A)
and (B). All immunoblots are representative of three independently performed experiments. (D) Flow cytometry analysis of annexinV-positive DCs
treated with vehicle (DMSO) or the p38 inhibitor SB202190 immediately prior to being left untreated, treated with LPS, or infected with Yp, YpP-, Ye,
or YeP-. Data are represented as bar graphs of the mean of triplicate samples, and are representative of three independently performed experiments.
doi:10.1371/journal.ppat.1000067.g002

Yersinia Virulence Enhanced by Low YopJ Secretion
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enterocolitica was specifically due to YopP, as expression of YopP

alone in Y. pseudotuberculosis was sufficient to inhibit p38 and

SAPK/JNK phosphorylation to virtually the same extent as Y.

enterocolitica (Figure 2C). Notably, kinetics of MAPK activation in

cells infected with virulence plasmid- deficient bacteria differed

markedly between Y. enterocolitica and Y. pseudotuberculosis: activation

of both p38 and SAPK/JNK was much more rapid in YeP-

infected cells than YpP- infected cells. This may be due to subtle

differences in the LPS of Y. enterocolitica and Y. pseudotuberculosis, as

heat killed bacteria showed similar differences in kinetics of

MAPK activation (data not shown). We did not observe

differential inhibition of NF-kB activation in DCs infected with

Y. enterocolitica and Y. pseudotuberculosis (data not shown). This

suggested that increased MAPK inhibition was primarily respon-

sible for the increased death of DCs infected by Y. enterocolitica.

Indeed, specific inhibition of p38 in the context of wild-type Y.

pseudotuberculosis infection was sufficient to increase dendritic cell

death to nearly the same extent as cells infected by Y. enterocolitica

(Figure 2D). That this effect was not due to nonspecific increase in

death was demonstrated by LPS-treated DCs or DCs infected with

Y. pseudotuberculosis lacking the virulence plasmid, which did not

show dramatically increased death upon p38 MAPK inhibition.

Together with the PARP cleavage, these data indicated that an

intrinsic difference between the YopJ and YopP proteins was most

likely responsible for the differences in phenotypes observed

between Y. enterocolitica and Y. pseudotuberculosis.

Enhanced dendritic cell death in Y. enterocolitica-infected
cells is due to N-terminal polymorphisms that enhance
secretion and translocation of YopP relative to YopJ

Recent work has indicated that Y. pestis YopJ and Y. enterocolitica

YopP are differentially translocated into infected macrophages

when expressed from a strong promoter on a high-copy plasmid

[29]. However, the basis for this differential translocation is

unknown. We therefore examined the in vitro secretion of Yops

from a yopJ mutant of Y. pseudotuberculosis expressing YopJ or YopP

on a low copy plasmid, as well as from wild-type Y. pseudotuberculosis

and Y. enterocolitica. Similarly to published observations [38,39],

YopJ of Y. pseudotuberculosis was poorly detected in bacterial culture

supernatants, in contrast to YopP which was easily observed by

SDS-PAGE of TCA-precipitated Yersinia culture supernatants

(Figure 3A). YopP ectopically expressed in Y. pseudotuberculosis also

was secreted at higher levels than YopJ (Figure 3A). The yopP

coding sequence alone was sufficient for this enhanced secretion,

since replacement of the yopJ protein coding sequence with that of

yopP, generating a plasmid designated pYopJP, resulted in

markedly greater levels of protein secretion than the pYopJ or

the converse pYopPJ plasmid (Figure 3A). A schematic diagram of

the construction of pYopJP and pYopPJ is provided in supporting

information (Figure S1A).

Type III secretion in Yersinia is thought to depend upon both

mRNA and primary amino acid sequences within the first 10–15

codons/amino acids of the secreted effector protein [40,41,42,43].

We examined this region of YopP and YopJ for insight into the

basis of their differential secretion. The coding sequences of yopP

and yopJ have four nucleotide polymorphisms within this region

(Figure S1B). Two of these polymorphisms are synonomous

changes, while two are non-synonomous, resulting in an IS to SP

change at amino acids 10 and 11. We therefore generated

mutations in the yopJ coding sequence of plasmids pYopJ and

pYopPJ, creating substitutions in all 4 polymorphic nucleotides.

These plasmids were designated pYopJn or pYopPJn, and

demonstrate that whereas wild-type YopJ is poorly secreted,

mutation of 4 nucleotides at the 59 end of yopJ is sufficient to

markedly enhance secretion of YopJ (Figure 3A, compare YopPJ

to YopPJn). We separated the non-synonomous and synonomous

mutations by making constructs pYopPJ2aa, with ISRSP amino

acid changes in YopJ, and pYopPJ2nt, with two nucleotide

changes in yopJ but no alteration of the YopJ protein sequence

(Figure S1C). Mutation of ISRSP was in fact sufficient to enhance

YopJ secretion, indicating that the YopJ/P amino acid sequence

was primarily responsible for the level of secretion (Figure S1D). In

order to measure the amount of protein actually translocated into

infected cells, we constructed reporter plasmids encoding a GSK

tag in the pYopJ, pYopP, pYopJn and pYopPJn plasmids. This tag

is phosphorylated by host cell Ser/Thr kinases only upon

translocation of the fusion protein into the cytosol, and is therefore

a useful tool to measure the extent of protein translocation [44].

Indeed, we observed that the translocation of YopP and YopPJn

was significantly higher than that of YopJ and YopJn, as detected

by levels of phospho-GSK fusion protein (Figure 3D, left panel).

Furthermore, levels of translocated YopJn were notably higher

than levels of translocated YopJ. The amount of total GSK fusion

protein was similar for all of the constructs (Figure 3D, right

panel), indicating that differences in steady-state level of total

protein were not responsible for differences in translocation.

We next examined the extent of cell death caused by infection

with Y. pseudotuberculosis strains harboring these plasmids. As

expected and consistent with the known role of of YopJ/P in

macrophage death, an increase in macrophage cell death occurred

upon infection with any of the strains containing pYopJ, pYopP or

chimeric and mutant, but not vector control, plasmids, demon-

strating their functionality (Figure 3C). In contrast, death of DCs

occurred only when they were infected by strains containing

plasmids mediating high levels of YopJ/P protein secretion,

specifically pYopP, pYopJP, and pYopPJn (Figure 3D). These

plasmids also mediate high levels of Yop/P protein translocation,

suggesting that increased levels of translocated YopJ/P are directly

responsible for increased death of DCs. Interestingly, although

YopJn-GSK was also translocated at higher levels than YopJ-

GSK, this was not enough to markedly enhance the level of cell

death in DCs infected with YopJn-expressing bacteria (Figure 3D).

This suggests that a fairly high threshold of YopJ activity is

necessary to induce death of DCs, and that this threshold is

significantly higher than for macrophages. Together, these results

indicate that Y. enterocolitica has much greater levels of cytotoxicty

toward DCs than Y. pseudotuberculosis, that this cytotoxicity is

dependent upon the degree of YopP secretion and translocation,

and that the cytotoxicity of Y. pseudotuberculosis toward DCs can be

significantly increased by inducing high levels of YopJ transloca-

tion.

Evolutionary selection for differential secretion of YopP
and YopJ

Y. enterocolitica comprises a heterogeneous group of strains that

differ with respect to their degree of virulence in animal infections.

The primary basis for this difference is the presence or absence of

a ‘High pathogenicity island’ (HPI) encoding an iron transport

system [25]. Interestingly, the presence of the HPI shows strong

correlation with the presence of arginine at amino acid 143 of

YopP [27]. These two traits also correlate with apparently

increased secretion of YopP, as the Y. enterocolitica serotypes which

lack the HPI also appear to secrete less YopP [28]. Based on our

analysis of the N-terminal polymorphisms between YopP from Y.

enterocolitica 8081 and Y. pseudotuberculosis YopJ, we examined YopP

sequences from strains of Y. enterocolitica O:8 (high virulence) and

O:9 (low virulence) serotypes, as well as YopJ sequences from Y.

pestis. We found that all sequenced strains of Y. pestis and Y.

Yersinia Virulence Enhanced by Low YopJ Secretion
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pseudotuberculosis possess the same isoleucine-serine sequence at

positions 10 and 11, which correlates with reduced secretion

(Figure 4). In contrast, O:8 serotype, high virulence, strains of Y.

enterocolitica possess the serine-proline sequence which confers high

secretion. Interestingly, the O:9 serotype low virulence Y.

enterocolitica strains also possessed a mutation at position 11,

encoding a phenylalanine rather than serine found in YopP from

high virulence strains (Figure 4). YopP from the low virulence O:9

strains has been suggested to be secreted at lower levels than YopP

expressed by O:8 serotype strains [28]. This raised the possibility

that secretion of YopJ/YopP itself is a selectable trait that may

play a differential role in virulence depending on the particular

Yersinia species and serotype in which it is expressed. In order to

examine this possibility in greater detail, we investigated the

consequences of animal infection caused by Y. pseudotuberculosis

expressing YopP or YopJ.

YopP mediates greater cell death than YopJ in tissues
during in vivo infection

Both Y. enterocolitica and Y. pseudotuberculosis cause cell death

within infected tissues in vivo. Yet, a direct side-by-side

comparison between the two species during in vivo infection is

difficult due to unique gene products present or absent in one or

the other species. We therefore directly examined the in vivo

consequences of modulating Y. pseudotuberculosis cytotoxicity: we

infected mice orally with either YopJ- or YopP-expressing Y.

Figure 3. Extent of YopJ/YopP secretion correlates with degree of dendritic cell death following Yersinia infection. (A) TCA-
precipitated supernatants from indicated bacterial strains analyzed by SDS-PAGE and Coomassie blue staining. (B) Cell lysates from HeLa cells
infected with yopJ mutant Y. pseudotuberculosis expressing indicated GSK fusion proteins analyzed by Western blotting for levels of translocation of
GSK fusion protein (anti-phospho-Ser9-GSK) and for levels of total GSK fusion protein (anti-GSK3b aa1-13). White arrow indicates phospho-GSK fusion
protein, black arrow indicates total GSK-tagged fusion protein. Grey arrows indicate endogenous phospho-GSK and GSK. (C) Percentage of bone
marrow derived macrophages that stain positively with annexinV/propidium iodide (PI) 8 hrs post-infection at MOI of 20 with indicated bacterial
strains. Dotted line indicates background staining of uninfected cells. (D) Percentage of bone marrow derived dendritic cells that stain positively with
PI 16–18 hrs post-infection at MOI of 20 with indicated bacterial strains. Graphs are representative of 3 independently infected preparations of cells,
performed in triplicate. p values obtained by Student’s unpaired two-tailed t-test.
doi:10.1371/journal.ppat.1000067.g003

Yersinia Virulence Enhanced by Low YopJ Secretion
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pseudotuberculosis and assayed the extent of cell death in infected

tissues by terminal dUTP nick-end labeling (TUNEL) staining

four days post-infection. Consistent with our in vitro observa-

tions, mice infected with the YopP-expressing strain of Y.

pseudotuberculosis showed markedly increased levels of TUNEL-

positive cells in mesenteric lymph nodes among both CD11b+

(primarily macrophage) and CD11c+ (primarily dendritic cell)

populations (Figure 5A). B220+ (primarily B cell) populations also

showed increased levels of TUNEL staining in mesenteric lymph

nodes of mice infected with YopP-expressing bacteria relative to

mice infected with YopJ-expressing bacteria (data not shown).

This suggests that in vivo, multiple cell subsets are susceptible to

Yersinia-induced cell death. Further microscopic examination also

suggested than in mice infected with YopP-expressing bacteria,

cell death was more widely distributed within the infected tissues,

whereas in mice infected with YopJ-expressing bacteria, dead or

dying cells were more tightly clustered within a smaller area

(Figure 5B). In order to further corroborate and quantify these

findings, we enumerated TUNEL+ cells in infected tissue

sections. Significantly more TUNEL+ cells were present in the

spleen and lymph node sections of mice infected with YopP-

expressing bacteria than in the mice infected with YopJ-

expressing bacteria, although no significant differences were

observed in the Peyer’s patches (Figure 5B). In vivo, higher

numbers of CD11b+ cells were TUNEL+ in YopP-infected mice

than YopJ-infected mice despite the observation that bone

marrow derived macrophages were equally susceptible to death

following infection with YopP- or YopJ-expressing bacteria

(Figure 4B). However, we have observed that at low multiplicities

of infection, YopP-expressing bacteria are more cytotoxic than

YopJ-expressing bacteria to bone marrow derived macrophages

as well (Figure S2). This may suggest that the actual multiplicity

of infection within infected tissues is likely to be fairly low, even

at later timepoints post-infection. An alternative possibility is that

macrophages in vivo may behave slightly differently with respect

to Yersinia-induced cell death than bone marrow derived

macrophages in culture.

Increased cytotoxicity attenuates in vivo virulence of Y.
pseudotuberculosis

We investigated the impact of this increased cytotoxicity on the

virulence of Y. pseudotuberculosis by examining bacterial growth in

tissues of mice infected with the yopJ mutant strain reconstituted

with either YopJ or YopP. Surprisingly, we found that the more

cytotoxic (YopP-expressing) Y. pseudotuberculosis strain was attenu-

ated following oral infection: mice infected with bacteria

expressing YopP had significantly lower colony forming units

(cfu) in the spleen at days 3 and 5 post-infection, and in mesenteric

lymph nodes on day 5 post-infection (Figure 6A). Due to the acute

nature of the infection, not enough mice infected with YopJ-

expressing bacteria survived to be able to isolate tissues at day 7.

The Y. pseudotuberculosis strain containing only the vector, and

therefore completely lacking YopJ, was as deficient as the YopP-

expressing strain for replicating in the spleen, consistent with the

requirement of YopJ for this aspect of Yersinia virulence [23]

(Figure 6A). Importantly, 97–100% of bacteria recovered from

mouse tissues maintained the pYopJ or pYopP plasmids for at least

seven days following oral infection, and the YopP-expressing

bacteria maintained their increased in vitro cytotoxicity upon

reisolation from infected organs (data not shown).

Levels of pro-inflammatory cytokines were markedly elevated in

sera obtained from mice infected with YopJ-expressing bacteria

compared with those infected either with YopP-expressing bacteria

or the isogenic yopJ-deficient bacteria containing only vector

(Figure 6B). Elevated levels of TNF-a and IL-6 were observed on

day 3 post-infection, and rose dramatically along with IFN-c and IL-

12 on day 5, coincident with the increase in bacterial load in the

spleen. Surprisingly, lower levels of cytokines were observed in mice

infected with either YopP-expressing bacteria or bacteria lacking

yopJ (vector), despite the ability of the mice to limit the systemic

replication of these strains. Furthermore, survival of mice infected

with YopP-expressing bacteria was markedly greater than that of

mice infected with bacteria expressing YopJ (Figure 6C). This

indicated that excessive cytotoxicity was detrimental to Y. pseudotu-

berculosis replication and virulence in vivo. We obtained similar

Figure 4. N-terminal sequence polymorphisms determine differential secretion of YopP/YopJ proteins. N-terminal 14 amino acids of
YopP and YopJ from various Yersinia strains and serotypes. O:8 serotypes of Y. enterocolitica possess an SP sequence at positions 10 and 11, whereas
Y. pseudotuberculosis and Y. pestis possess the IS sequence. O:9 serotypes of Y. enterocolitica also possess a polymorphism at amino acid 11, which
likely accounts for the reduced secretion of YopP by O:9 serotypes. Ye – Y. enterocolitica, Ype – Y. pestis, Yps – Y. pseudotuberculosis. Ype Med. – Y.
pestis, biovar Medievalis.
doi:10.1371/journal.ppat.1000067.g004
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results in infection of mice with bacteria containing the pYopPJn

plasmid (Figure S3). Although this strain hyper-secretes YopJ and is

more cytotoxic in vitro than wild-type Y. pseudotuberculosis (Figure 3), it

too is attenuated in vivo as measured by survival of infected mice

(Figure S3). These data indicate that limiting cytototoxicity during

infection through control of YopJ secretion is critical for optimal

virulence of Y. pseudotuberculosis.

Discussion

Successful infection of mammalian organisms by microbial

pathogens is often associated with disruption of cell death

homeostasis within infected tissues. Triggering of host-cell death

is thought to be an important virulence characteristic of many

facultative pathogenic bacteria, since deletion of individual

Figure 5. YopP-expressing Y. pseudotuberculosis causes enhanced killing of cells within lymphoid tissue during mouse infection. (A)
TUNEL staining analyzed by flow cytometry of mesenteric lymph node cells isolated day 4 post-infection from mice given PBS as controls or infected
with yopJ mutant Y. pseudotuberculosis expressing YopJ or YopP. CD11b and CD11c populations represent primarily macrophage and dendritic cell
populations, respectively. Data are representative of six mice per group for infected mice and three mice for PBS controls. Percentage of double
positive cells is indicated in each dot plot. Bar graphs represent mean percentage of double positive cells for six infected mice for each bacterial strain
or three PBS control treated mice. (B) Spleen sections from mice infected with YopJ- or YopP- expressing bacteria as in (A), isolated on Day 4 post-
infection and stained with TUNEL reagent and DAPI. Scale bar = 40 mM. (C) Enumeration of TUNEL+ nuclei from spleen, mesenteric lymph node, and
Peyer’s patch sections isolated four days post-infection with YopJ- (light grey bars) or YopP- (dark grey bars) expressing yopJ mutant Y.
pseudotuberculosis. Data are averages of at least 10 random fields per mouse per tissue averaged from three mice per group. Similar results were
obtained for two independent infections. p values were calculated using the unpaired Student’s t-test.
doi:10.1371/journal.ppat.1000067.g005
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Figure 6. YopP-expressing Y. pseudotuberculosis is attenuated and induces lower levels of serum cytokine production during mouse
infection. (A) Bacterial CFUs present in tissues of mice infected with Yp DyopJ containing either empty vector (white triangles) or expressing YopJ (grey
squares) or YopP (grey circles) at days 3, 5, and 7 after oral infection. Mice infected with YopJ-expressing Yp DyopJ were moribund or dead from
overwhelming infection at the end of day 6. (B) Serum cytokine levels of infected mice from (A) collected on days 3 (white bars), 5 (light grey bars), and 7
(dark grey bars). (C) Survival curve of mice infected with YopJ- (grey squares) or YopP- (grey circles) expressing Yp DyopJ. p values for bacterial cfu and serum
cytokine levels were calculated using unpaired 2-tailed Student’s t-Test. p value for mouse survival curves was calculated using log-rank test.
doi:10.1371/journal.ppat.1000067.g006
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bacterial genes or secretion systems associated with causing cell

death leads, in many cases, to attenuation of virulence in

experimental infection models [1]. However, it is likely that

evolution of any given microbial pathogen has led to an optimized

set of virulence traits in which any particular characteristic, such as

the ability to cause cell death, is tightly regulated in relation to the

other traits. We examined this hypothesis by using a system in

which the degree of cytotoxicity could be modulated. We chose

Yersinia as a model system, because, despite the close evolutionary

relatedness of the pathogenic Yersiniae, they are heterogeneous in

the extent of cell death and pathology that they cause during

infection [6,27]. This provides optimal conditions for testing

whether the degree of cell death caused by a particular member of

a related group of organisms might be an evolutionarily selected

trait.

Recent studies have shown that two of the pathogenic Yersinia

species, Y. enterocolitica and Y. pestis, possess varying degrees of

cytotoxicity, and that Y. enterocolitica YopP is translocated more

efficiently into cells than the homologous protein YopJ of Y. pestis

[29]. These studies also demonstrated that expressing YopP from a

strong promoter on a high copy plasmid in Y. pestis enhanced the

ability of Y. pestis to cause macrophage cell death in vitro.

Variation also exists among different serotypes of Y. enterocolitica

with respect to both YopP activity [27] and degree of secretion

[28]. However, nothing is currently known about the contribution

of differential YopJ/YopP secretion to cytotoxicity or virulence of

Yersinia during in vivo infection. Furthermore, the underlying basis

for the differential secretion of YopP and YopJ, as well as

differential secretion of YopP among individual Y. enterocolitica

isolates, remains unclear.

The work presented here demonstrates that YopP and YopJ are

differentially secreted and translocated due to a polymorphism in

amino acids 10 and 11 between Y. pseudotuberculosis YopJ and Y.

enterocolitica YopP. Polymorphisms at amino acid 11 are also likely

to account for differences in secretion of YopP among different Y.

enterocolitica serotypes. However, these amino acids are identical

among YopJ proteins from sequenced strains of Y. pseudotuberculosis

and Y. pestis. This suggests that selection pressures driving this

difference in secretion between the Y. enterocolitica and Y.

pseudotuberculosis proteins were maintained in the recent evolution

of Y. pestis from Y. pseudotuberculosis. It is interesting to note that

while Y. pestis YopJ contributes to host cell death and blocks

cytokine secretion in vitro, as it does for enteric Yersiniae, it appears

to be nonessential for virulence in a rat model of bubonic plague

[45]. Our study suggests that expression of YopP or a

hypersecreted form of YopJ in Y. pestis may also attenuate

virulence during in vivo infection. Our data also indicate that

despite inducing higher levels of cell death in infected tissues

(Figure 5), Y. pseudotuberculosis expressing YopP were attenuated for

colonizing and possibly replicating within the spleen and

mesenteric lymph nodes (Figure 6). An intermediate level of YopJ

protein delivery therefore appears necessary for maximal viru-

lence, as bacteria completely lacking YopJ are also deficient in

colonization of the spleen following oral infection, consistent with

earlier studies [23]. Recent work indicates that YopJ is not

required for replication of Y. pseudotuberculosis in the spleen if the

bacteria are delivered intraperitoneally, bypassing the intestinal

route [46]. Our results therefore indicate a requirement for

intermediate levels of YopJ delivery in mediating spread of

bacteria to the spleen from initial sites of colonization within the

intestine.

The underlying basis for why increasing cytotoxicity of Y.

pseudotuberculosis infection leads to attenuation are not clear at this

time, but could involve an intracellular stage during in vivo

infection [47,48]. Excessive cytotoxicity may lead to death of cells

that provide an important intracellular niche for Y. pseudotubercu-

losis, potentially for purposes of spreading from the initial site of

colonization to other tissues. Recent evidence indicates that spread

of Y. pseudotuberculosis to the spleen following oral infection occurs

directly from a replicating pool within the intestinal lumen,

through a pathway that bypasses the mesenteric lymph nodes [49].

Interestingly, despite the differential susceptibility of bone-marrow

derived macrophages and dendritic cells to YopJ-mediated killing

(Figures 1 and 3), it appears that at least within mesenteric lymph

nodes, both CD11b+ (primarily macrophage) and CD11c+

(primarily dendritic) cell populations showed either high or

intermediate levels of cell death when infected by YopP- or YopJ-

expressing Y. pseudotuberculosis (Figure 5). A particular phagocytic

cell subset within the Peyer’s patches or intestinal lamina propria

may be responsible for transporting Yersinia from the intestine to

systemic sites, and these cells may be differentially susceptible to

YopJ-mediated cell death. Recent work has highlighted the role of

a particular subset of dendritic cells within the lamina propria,

designated CX3CR1+ cells, in uptake of Salmonella typhimurium

[50,51]. Investigation of the particular cell types that interact with

Yersinia during intestinal colonization and the utilization of mouse

models enabling dendritic cell depletion are likely to provide

further insight into the mechanism of Yersinia spread to internal

tissues.

That higher in vitro cytotoxicity of Y. pseudotuberculosis can lead

to markedly reduced virulence is somewhat surprising, particularly

since we observed reduced cytokine production as well as

increased cell death in mice infected with the more cytotoxic,

YopP-expressing bacteria. An alternative hypothesis for the

requirement for intermediate levels of cytotoxicity during Y.

pseudotuberculosis infection is that proinflammatory cytokines

produced during wild-type Y. pseudotuberculosis infection could

contribute to bacterial spread by promoting tissue destruction.

This could be blocked during infection with YopP-expressing Y.

pseudotuberculosis due to death of cytokine-producing cells. In

support of this model, recent work has shown that mice infected

with the attenuated Dpla strain of Y. pestis control the infection

without producing high levels of cytokines in contrast to wild-type

infected mice, which fail to control the infection despite high levels

of cytokine production [52]. These observations may reflect the

possibility that appropriate control of bacterial replication must

occur very early during the infection process. The outcome of a

bacterial infection depends on the interplay between host

clearance mechanisms and bacterial virulence factors; misregula-

tion of bacterial virulence factors as we observed with expression of

YopP in place of YopJ therefore appears to shift the balance

strongly in favor of the host.

In addition to implications for the evolution of bacterial

virulence, this work sheds further light on mechanisms of Type

III secretion in Yersinia. It has been suggested that mRNA

sequence determines the secretion of TTSS effectors [40]. An

alternative proposal is that the amphipathic character of the N-

terminal amino acids controls the extent of secretion of TTSS

effectors [42]; this latter study further demonstrated that seemingly

minor changes in the amino acid sequence of a synthetic secretion

signal could result in dramatically different levels of secretion of a

reporter fusion construct. In agreement with this study, we

demonstrate that in the case of YopJ/P, the amino acid sequence

plays a key role in controlling secretion. It may be that alteration of

IS to SP at positions 10 and 11 generates a more optimal

amphipathic sequence leading to enhanced secretion and

translocation of YopP relative to YopJ. There may nonetheless

be a contribution from the mRNA sequence that is not revealed
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directly by these studies. Indeed, the replacement of yopJ

noncoding sequences with those of yopP to generate YopPJn from

YopJn led to markedly higher translocation of the corresponding

GSK fusion protein and secretion of the full length protein

(Figure 3B and Figure S1). We further observed that YopE was

also secreted at higher levels by Y. enterocolitica than Y.

pseudotuberculosis (Figure 4A). However, the yopE coding sequences

are identical between the two bacterial species. This suggests that

the rules governing the secretion of proteins that possess dedicated

chaperones (such as YopE) may differ from those that do not (such

as YopJ/P). Individual type III effector proteins may therefore

differ in the degree to which their secretion is governed by mRNA

or primary amino acid sequences.

It is notable that while bacteria secreting either YopJ or YopP

show cytotoxicity toward macrophages, as previously described

[16,17], only bacteria secreting YopP or hypersecreted mutants of

YopJ were cytotoxic toward DCs (Figures 1 and 3). This potent

cytotoxicity exhibited by Y. enterocolitica toward DCs may be a

confounding factor in the interpretation of some of the data

describing the inhibition of particular aspects of DC biology such

as maturation and phagocytosis [30,32]. We did not observe

reduced maturation of, or inhibition of cytokine secretion by DCs

infected by Y. pseudotuberculosis, in contrast to Y. enterocolitica infected

DCs (Figure S4). A recent study indicates, however, that YopJ of Y.

pestis can inhibit differentiation of monocytes into DCs and also

interferes with the ability of DCs to stimulate T cell proliferation

[53]. Many of these studies were performed with a monocytic cell

line which can be differentiated in vitro into DC-like cells or with

human monocytes isolated from peripheral blood samples.

Dendritic cells in vivo are not a uniform cell population, but rather

comprise a diverse array of closely related cells that differ in their

activation and antigen-presentation properties [54,55]. Further-

more, murine and human DC populations also differ with respect

to their activation properties and expression of TLR molecules

[56]. Experimental differences observed with different systems

may reflect potential differences between DC subsets in vivo.

Different subsets of DCs may therefore exhibit different matura-

tion or survival properties when targeted by Yersinia during in vivo

infection.

Macrophage resistance to cell death in response to inflamma-

tory stimuli such as LPS or bacterial infection is mediated by both

NF-kB and p38 MAPK-dependent transcription of a variety of

anti-apoptotic proteins [57,58]. Inhibition of both NF-kB and

MAPK signaling in the context of Yersinia infection is required for

the full extent of Yersinia-induced macrophage cell death [36].

Interestingly, pretreatment of DCs with the p38 MAPK inhibitor

SB202190 was sufficient to raise the level of DC death following Y.

pseudotuberculosis infection to that of Y. enterocolitica infected cells

(Figure 2D). We did not observe differences in the ability of Y.

pseudotuberculosis and Y. enterocolitica to inhibit IkB-a degradation in

either macrophages or DCs (data not shown). These findings

indicate that DCs and macrophages are differentially susceptible

to host cell death induced by Yersinia infection, and this may

depend on differential inhibition of MAPK pathways or

differential regulation of MAPK-dependent genes in macrophages

and dendritic cells during Yersinia infection. Data corroborating

these observations have also recently been reported by Adkins et

al. [59].

Conclusion
Our work uncovers a previously unappreciated feature of YopJ-

dependent cell death in the context of Yersinia infection.

Specifically, we have shown that this virulence property must be

carefully balanced during infection by Y. pseudotuberculosis, and that

shifting this balance in a way that leads to increased cell death

attenuates bacterial virulence. Similar findings have recently been

described in the organism Francisella novicida: bacterial genes were

identified that are necessary to tightly regulate the induction of

macrophage death in vitro, and mutants lacking these genes were

dramatically attenuated following mouse infection [60]. While this

is reasonable in light of the Francisella intracellular lifestyle, it is

surprising given the traditional viewpoint that the primary site of

Yersinia replication is extracellular. Our work therefore highlights

the importance of regulating host cell death during Yersinia

infection, and indicates that the appropriate regulation of

bacterially-induced host cell death may be a universal theme in

the pathogenesis of bacterial infection.

Materials and Methods

Cell culture
Bone marrow was isolated from 6–8 week old C57Bl/6 mice

and cultured in 12-well plates in DMEM containing 5% FCS in

the presence of GM-CSF for dendritic cells (DCs) [61] or 10%

FCS and 30% L929 cell supernatant for bone marrow

macrophages (BMMs) [62]. Cells were maintained at 37uC in a

5% CO2 humidified incubater. DCs were fed on days 2 and 4

post-isolation and infected on day 5 post-isolation. BMMs were

harvested and replated into 12 or 24-well plates on days 6–7 post-

isolation and infected the next day.

Bacterial strains and infection conditions
Strains used in this study are indicated in Table S1. Y.

pseudotuberculosis strain IP2666 and isogenic mutants were a kind

gift of Dr. James Bliska, SUNY Stonybrook. Y. enterocolitica strain

8081 was the gift of Dr. Denise Monack, Stanford University.

Bacteria were routinely grown at 26uC. For infection of cultured

cells, bacteria were grown shaking overnight at 26uC in 26YT

medium. Bacteria were diluted in 26YT containing 20 mM

MgCl2 and 20 mM sodium oxalate. Bacteria were grown shaking

for 1 hour at 26uC followed by 37uC for 2 hours to induce Yop

secretion [13]. Bacteria were harvested, washed three times with

DMEM and resuspended at the appropriate density in DMEM

before being added to cells. Bacteria were spun onto the cells at

1000 RPM for 5 minutes, and the infected cells placed in a

humidified tissue culture incubator at 37uC for 1 hour. Gentami-

cin was added to the cells 1 hour post-infection to a final

concentration of 100 mg/mL, and the cells placed in the incubator

until harvesting. LPS used in indicated experiments was O55:B5

obtained from Sigma (L2880).

Plasmid constructions
Primers used to amplify YopJ were identical to those previously

described [16]. A similar sized fragment containing both the ORF

and flanking regions of YopP was amplified from Y. enterocolitica

8081 DNA using the following primers: Forward 59-GAGA-

GAAAAGTTGCGAGAGCTG-39. Reverse 59-ACGTCGA-

TATGTCATGTATAT-39. Both YopJ and YopP amplified

fragments were cloned into the SphI/EagI sites of pACYC184.

pYopJP and pYopPJ were constructed by exchanging EcoNI/

BstEII fragments that contained the YopJ and YopP ORFs with

minimal flanking sequence from each of the parent plasmids. Site

directed mutant constructs were generated by PCR-based

mutagenesis using standard PCR conditions and primers contain-

ing altered base mutations. Multiple independently cloned

constructs were sequenced prior to further use. GSK-tag fusion

constructs were generated as follows: complimentary oligos

(Invitrogen) containing the first 39 nucleotides of the GSK-3b
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coding sequence [44] flanked by XcmI and BstEII restriction sites

were annealed and ligated into the XcmI/BstEII sites of pYopJ,

pYopP, pYopJn, and pYopPJn plasmids.

Cell Death Assay
Cells were harvested 6 hours post-infection or 18–20 hours

post-infection as indicated, and washed twice with Annexin V

staining buffer (10 mM HEPES, 140 mM NaCl, 2.5 mM

CaCl2) before being stained with Annexin V (Molecular Probes)

and propidium iodide (Sigma) (1 mg/mL final concentration) as

described in the Vybrant apoptosis assay kit (Molecular Probes).

Detection of caspase-3 activation was done with the Nuc-

ViewTM 488 Caspase-3 fluorescent substrate (Biotium, Inc.).

Flow cytometry was performed on a FACSCalibur (Becton

Dickinson) followed by analysis with FlowJo software (Treestar,

Inc.).

Western Blotting and Antibodies
Antibodies used were against cleaved PARP (R&D Systems)

and phospho- and total-MAPKs (Cell Signaling Technologies).

Antibodies against phospho-GSK-3b (Ser9) (#9336) and against

GSK-3b tag (#9325) were from Cell Signaling Technologies.

Secondary antibodies were horseradish peroxidase conjugated

anti-rabbit or anti-mouse (Jackson Immunoresearch). BMMs and

DCs were harvested 2 hrs post-infection for PARP cleavage and

at indicated times for phospho-MAPK detection. Cells were lysed

in buffer containing 50 mM Tris-HCl pH 8.0, 5 mM EDTA, 2%

Triton X-100, 0.02% sodium azide with protease inhibitors. 1/8

of each cell lysate was run on 12.5% SDS-PAGE and transferred

to PVDF membrane (Millipore Corporation) prior to Western

blotting. Detection was with ECL reagent (Amersham/GE

Healthcare).

Secreted Yop Analysis
Bacteria were grown overnight and diluted into 2xYT

containing 20 mM MgCl2 and 20 mM sodium oxalate as

described above. Bacteria were grown for 1 hr. at 25uC and

6 hr. at 37uC. The OD600 of the cultures were assayed and

bacteria were spun at 4000 RPM in a clinical centrifuge.

Supernatants were collected and precipitated with 10% TCA,

washed with acetone, air-dried and resuspended in SDS-PAGE

loading buffer. The protein samples were normalized for the

OD600, run on 10% SDS-PAGE gel and analyzed by staining with

Coomassie blue.

Analysis of YopJ/P translocation
The detection of translocated proteins was performed

essentially as described [44]. Briefly, HeLa cells were seeded

into 24 well dishes at a density of 36105 cells per well. Cells were

infected the following day with a yopJ mutant of Y. pseudotuber-

culosis expressing YopJGSK, YopPGSK, YopJnGSK, or YopPJnGSK

after first growing the bacteria in inducing conditions described

above. 2 hours prior to infection, cells were washed once with

DMEM without serum, and incubated in the same medium for

the rest of the experiment. Bacteria were harvested, washed 3

times in DMEM without serum, and added to the cells at an

MOI of 25. Bacteria were allowed to infect cells for three hours,

after which the cells were washed once with PBS, and lysed in

cell lysis buffer as described above. Cell lysates were run on 10%

SDS-PAGE gels, transferred to PVDF membrane, and probed

with polyclonal antibodies to phospho-GSK (Ser9). The blots

were then stripped and reprobed with polyclonal antibodies to

GSK tag (amino acids 1–13).

Mouse Infections
8–10 week old female C57Bl/6J mice were infected with 56108

to 16109 bacteria in 0.1 mL PBS by intragastric inoculation using

a feeding needle in accordance with Yale University approved

animal protocols. Mice were fasted for 14–16 hours prior to

infection. At indicated times post-infection, mice were sacrificed by

CO2 asphyxiation and the indicated organs harvested, homoge-

nized in PBS, and dilutions plated onto LB containing 2 mg/mL

irgasan. Blood was collected from infected mice just prior to

sacrificing by retro-orbital bleeding and centrifuged to collect

serum. Serum cytokines were assayed using the Luminex 200

instrument (Luminex Corp.) in combination with the BeadlyteH
Multicytokine Detection System 2 (Millipore).

TUNEL staining
Tissues from infected mice were isolated and cryopreserved in

OCT compound for sectioning or strained through nylon mesh to

generate single-cell suspensions for staining and flow-cytometry

analysis. For analysis of whole tissues, 10–12 mM thick sections

were cut, air-dried, and fixed in 4% paraformaldehyde, followed

by permeabilization in 0.1% citrate/0.1% Triton X-100. For

FACS analysis, tissues were stained with appropriate antibodies

(BD-Pharmingen) and fixed in 2% paraformaldehyde followed by

permeabilization as above. Following fixation and permeabiliza-

tion, tissues were stained with TUNEL reagent (Roche Applied

Science) according to manufacturer’s instructions and either

visualized by microscopy using a AxioPhot 2 Micropscope with

AxioVision software (Zeiss) or analyzed by flow cytometry as

described above. Single-stained and unstained samples were used

for compensation controls in accordance with standard FACS

procedures. TUNEL+ populations were determined by gating on

cells present in TUNEL-stained samples that were absent in non-

TUNEL samples.

Supporting Information

Figure S1 N-terminal amino acid polymorphisms modulate

secretion levels of YopJ and YopP. (A) Schematic diagram of YopJ

and YopP constructs described in this work. YopJ and YopP open

reading frames were exchanged by digestion of pYopJ and pYopP

with EcoNI and BstEII and replacing the coding sequences of

YopJ/P from one vector with that of the other. (B) Alignment of

N-terminal region of yopJ and yopP genes with encoded amino acid

sequence. The non-coding sequences between the EcoNI site and

the translation start site are indicated in lower case. The EcoNI

site is underlined. (C) Sequence of YopJn, YopJ2nt and YopJ2aa

mutant constructs. (D) TCA precipitated supernatants from

indicated bacterial cultures grown in low calcium medium and

analyzed by SDS-PAGE.

Found at: doi:10.1371/journal.ppat.1000067.s001 (15.17 MB

PNG)

Figure S2 Low MOI infection of bone marrow derived

macrophages reveals difference in extent of cell death caused by

Y. enterocolitica and Y. pseudotuberculosis. Bone marrow derived

macrophages were infected with MOI of 5 with indicated bacterial

strains and assayed for annexin V and propidium iodide staining

18–20 hours post-infection.

Found at: doi:10.1371/journal.ppat.1000067.s002 (1.60 MB TIF)

Figure S3 Hypersescretion of YopJ attenuates Y. pseudotuberculosis

virulence. Mice were infected orally with 56108 cfu of indicated

bacterial strains and percent survival over time post-infection was

analyzed.

Found at: doi:10.1371/journal.ppat.1000067.s003 (1.32 MB TIF)
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Figure S4 Maturation of dendritic cells infected by wild-type Y.

pseudotuberculosis but not Y. enterocolitica or Y. pseudotuberculosis

expressing YopP. (A) CD40 and CD86 surface staining on DCs

18–20 hours post-infection with indicated bacterial strains. CD40

and CD86 are upregulated on DCs treated with LPS or wild-type

and plasmid-cured Y. pseudotuberculosis as well as plasmid-cured Y.

enterocolitica. No upregulation is observed on DCs infected with

wild-type Y. enterocolitica or Y. pseudotuberculosis expressing YopP. (B)

Secretion of IL-6 and IL-12 into DC culture supernatant was

assayed 18 hours post-infection. No cytokines are detectable in

culture supernatants from cells infected with Y. enterocolitica. The

presence of the Yersinia virulence plasmid does not appear to

inhibit cytokine production in DCs infected with wild-type Y.

pseudotuberculosis.

Found at: doi:10.1371/journal.ppat.1000067.s004 (1.87 MB TIF)

Table S1 Strains and plasmids used in this study.

Found at: doi:10.1371/journal.ppat.1000067.s005 (0.06 MB

DOC)

Table S2 Percent of cells containing b-lactamase activity after

infection with Y. pseudotuberculosis expressing YopE-BlaM fusion

protein.

Found at: doi:10.1371/journal.ppat.1000067.s006 (0.03 MB

DOC)
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