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Abstract

Chemical looping is a near-zero emission process for generating power from coal. It is based on a 

multi-phase gas-solid flow and has extremely challenging nonlinear, multi-scale dynamics with 

jumps, producing large dynamic model uncertainty, which renders traditional robust control 

techniques, such as linear parameter varying H∞ design, largely inapplicable. This process 

complexity is addressed in the present work through the temporal and the spatiotemporal 

multiresolution modeling along with the corresponding model-based control laws. Namely, the 

nonlinear autoregressive with exogenous input model structure, nonlinear in the wavelet basis, but 

linear in parameters, is used to identify the dominant temporal chemical looping process 

dynamics. The control inputs and the wavelet model parameters are calculated by optimizing a 

quadratic cost function using a gradient descent method. The respective identification and tracking 

error convergence of the proposed self-tuning identification and control schemes, the latter using 

the unconstrained generalized predictive control structure, is separately ascertained through the 

Lyapunov stability theorem. The rate constraint on the control signal in the temporal control law is 

then imposed and the control topology is augmented by an additional control loop with self-tuning 

deadbeat controller which uses the spatiotemporal wavelet riser dynamics representation. The 

novelty of this work is three-fold: (1) developing the self-tuning controller design methodology 

that consists in embedding the real-time tunable temporal highly nonlinear, but linearly 

parametrizable, multiresolution system representations into the classical rate-constrained 
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generalized predictive quadratic optimal control structure, (2) augmenting the temporal 

multiresolution loop by a more complex spatiotemporal multiresolution self-tuning deadbeat 

control loop, and (3) demonstrating the effectiveness of the proposed methodology in producing 

fast recursive real-time algorithms for controlling highly uncertain nonlinear multiscale processes. 

The latter is shown through the data from the implemented temporal and augmented 

spatiotemporal solutions of a difficult chemical looping cold flow tracking control problem.
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1. Introduction

The current transition to clean power generation involves both the use of renewables, such as 

hydrokinetics [1], and cleaner coal-based techniques. The latter are projected to still supply 

power for the foreseeable future due to the abundance of coal in many industrialized and 

developing countries; however, they will be required to meet the hard caps on carbon 

emissions. Chemical looping (CL) is a near-zero emission coal-based technology in which 

multiple interacting loops of flowing, reactive, gas/solid mixtures produce energy via solid-

oxygen carrier based combustion [2–4]. Chemical looping has remained an area of active 

research focused on improving its economic viability and reducing environmental footprint 

[5,6]. To reduce waste stream volumes and required energy, advanced optimizing control 

systems for the chemical looping process are required. However, the process exhibits 

extremely challenging nonlinear multi-scale dynamics that are hard to characterize and 

depend on a particular design. These features render traditional robust control techniques 

marginally successful in experimental trials.

The goal of the present paper is to present the development of the real-time computational 

control-oriented models and the corresponding model-based control design strategies found 

to provide the desired chemical looping tracking performance. In particular, we demonstrate 

a novel model-based process control methodology to control the pressure drop in the riser of 

a single loop chemical looping process, where the air flow rate is the controlled variable. 

This control approach was implemented and successfully tested on an industrial single loop 

cold gas/solid flow chemical looping testbed, where the previously available techniques had 

exhibited difficulties.

Prior to being able to control the process, it is imperative to characterize the system’s 

response to control inputs. Classically, this would be done by devising a physical model of 

the system from first principles, but this often yields limited practical utility for increasingly 

complex nonlinear models when viewed from the perspective of process control design. To 

meet this challenge, an alternative technique, identification of a model constructed on the 

basis of the wavelet multiresolution analysis (MRA), is used in the present work. MRA has 

become one of the major tools in neural networks [7–10] and nonlinear system modeling 

[11–18]. Wavelet-based multiresolution decomposition has been proven to constitute a 

universal approximator for a wide range of function spaces in terms of linear combination of 
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scaling and wavelet functions. Wavelet approximation has no smoothness requirement on the 

target function, making it an appropriate candidate for identification of complex nonlinear 

systems with multiscale dynamics, such as those encountered in chemical looping processes. 

Several controller designs incorporating wavelet system representations have been proposed 

in the literature. Reference [18] proposed adaptive adjustment of the model resolution and 

the corresponding structure of the nonlinear adaptive controller. However, no optimality in 

controller synthesis was introduced and no testing was done on the real multiresolution 

system. In [19] an optimal model predictive multiresolution control law with constraints was 

derived. However, the controller was given as a sequence of computational steps with no 

clear analytical formula for controller implementation and therefore no guarantee of the 

acceptable real-time performance; also no adaptation was included. In [20] utilization of 

wavelets in generalized predictive control (GPC)l has been proposed for reduction of the 

computational demands on the constrained GPC, but the application was not addressing 

multiresolution nonlinear system modeling and was restricted to linear systems only. Thus, 

there has been a clearly identifiable gap in producing an optimal adaptive control law with 

rate constraints and guaranteed real-time performance for systems with nonlinear multiscale 

dynamics.

The present work fills this gap through the development of the self-tuning wavelet MRA-

based topology that combines temporal and spatiotemporal loops into a single closed loop 

control system. The GPC structure is employed for embedding into it the identified temporal 

nonlinear multiscale model due to its real-timable recursive receding horizon calculation, 

local optimality by the virtue of being a variant of LQG [21], relatively easy incorporation of 

rate constraints on the control signal, tunable robustness properties (not pursued in this 

paper), and natural embedding of the integrator to address setpoint step changes in the 

chemical looping based power generation.

The paper completes the brief presentation of the results of chemical looping project at 

Alstom Thermal Power given in a conference publication [22] through the addition of the 

temporal controller derivation, and presents the previously unreleased experimental data 

along with the corresponding discussion, as well as the derivation and implementation of an 

additional spatiotemporal controller for the fast process dynamics related to the riser. The 

material presented is based in part on two unpublished documents, an internal technical 

report [23] and the PhD thesis [24] of the first author; however, the detailed controller 

derivation was not given in either and is presented here for the first time.

Embedding highly nonlinear, but linear in parameters, adaptable multiresolution model into 

GPC is a novel idea requiring nontrivial analytical effort presented in this paper. Several 

researchers have successfully applied GPC proposed by Clark et al. [25,26] to many control 

areas [27–31]. GPC, however, has limitations, some of which have been discussed by 

Grimble in [32]. Since GPC uses a linear dynamic model to make predictions of process 

outputs over the prediction horizon, its performance will significantly degrade when the real 

process has severe nonlinearities and runs in a wide range of operating conditions, as is the 

case for a chemical looping process. Therefore, it is imperative to incorporate a high fidelity 

nonlinear dynamic model into the GPC scheme. Accordingly, we embed a wavelet MRA 

model of the nonlinear single loop cold flow of the chemical looping process into the GPC 
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scheme. Specifically, first, a single-input-single-output (SISO) nonlinear autoregressive 

exogenous model (NARX) based on wavelet MRA is identified on-line using the chemical 

looping process test rig. Then, a GPC-type performance index is formulated, which 

incorporates the MRA model, and a gradient descent (GD) algorithm is developed for tuning 

both the weighting parameters of the wavelet MRA model and the control sequence in the 

GPC scheme. Further, the Lyapunov function-based theorems are proven to separately 

guarantee the convergence of the wavelet MRA identified model and the stability of the 

proposed GPC scheme without constraint and provide a guidance on both controller and 

identifier performance tuning. A rate constraint is then imposed on the control signal to 

smooth out the CL process transients. The resulting controller is shown to yield a 

satisfactory closed loop performance over a broad operating range, effectively meeting the 

challenge of handling the chemical looping process complexity.

The resulting cold flow testbed control system was then further improved by augmenting the 

temporal closed loop structure described above with the additional spatiotemporal control of 

fast dynamics of the riser loop, which were not captured in the original low-frequency 

wavelet MRA system model. The response time of the 2-partial differential equations (2-

PDE) riser model used for this purpose is much shorter than that of the identified NARX 

model, for which the sampling time is 1 s. Therefore, the control-oriented riser 

representation was obtained through the use of the 2-PDE riser model as follows: The model 

was simulated to obtain the riser impulse response, the latter was employed to approximate 

the faster dynamics of the system, and the result was used in a convolution to obtain a model 

of the transients. To simplify the calculations, the impulse response was approximated using 

Gaussian spatial and temporal wavelets. Simulation and experimental results verified the 

validity of the spatiotemporal wavelet-based control system topology augmentation.

The paper is organized as follow: Section 2.1 provides the nomenclature for the main 

variables and symbols used in the paper. Section 2.2 introduces the chemical looping process 

model. A NARX model representation and a wavelet MRA representation are given in 

Section 2.3. Section 2.4 provides derivation of a wavelet MRA-based GPC strategy for 

solving the tracking problem for a single loop cold flow system. The convergence of the 

prediction error of the wavelet MRA model identification algorithm and the tracking error of 

the proposed GPC control strategy are separately proven in Section 2.5. An input-

constrained GPC scheme is presented in Section 2.6. Experimental results are discussed in 

Section 3. The closed loop topology augmentation with the spatiotemporal model-based 

control to account for the pressure drop DP47 over the riser related to the fluidizing air flows 

is presented in Section 4. The discussion of the results is presented in Section 5. A 

conclusion is provided in Section 6.

2. Materials and Methods

2.1. Nomenclature

ϕj,k(x): orthonormal basis for Vj; ψj,k(x): orthonormal basis for Wj; y(t): system output; u(t): 
system input; w(t): system noise; e(t): model output estimation error; ny: maximum lag in 

the output; nu: maximum lag in the input; θ: weighting parameter vector trained on-line; gi: 

multivariable scaling or wavelet basis function of past inputs and outputs; γθ: adaptation 
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gain for the control input vector; U: control input vector; Δutarget: unconstraint control signal 

calculated by the predictive control law; μ: design parameter; ε: voidage; us: solid velocity; 

Ug: superficial gas velocity; S1,w(t): control command calculated by wavelet adaptive GPC 

control; yr(t): reference signal; ∇θJ1(n): gradient of loss function J1 with respect to θ; 

∇UJ2(n): gradient of the loss function J2 with respect to U; ∇θe(n): sensitivity derivative at 

time n.

2.2. Chemical Looping Process

The modeling and control methodologies proposed in this paper focus on the hybrid 

combustion-gasification chemical looping (CL) process initially developed by Alstom 

Power. Chemical looping is a two-step process which first separates oxygen (O2) from 

nitrogen (N2) in an air stream in an air reactor. The O2 is transferred to a solid oxygen 

carrier. Next, the oxygen is carried by the solid oxide and is then used to gasify or combust 

solid fuel in a separate fuel reactor. As shown in Figure 1, a metal or calcium material 

(oxygen carrier) is burned in air forming a hot oxide (MeOx or CaOx) in the air reactor 

(oxidizer). The oxygen in the hot metal oxide is used to gasify coal in the fuel reactor 

(reducer), thereby reducing the oxide for continuous reuse in the chemical looping cycle. CL 

coal power technology is an entirely new, ultra clean, low cost, high efficiency coal power 

plant technology for the future power market. The concept promises to be the technological 

link from today’s steam cycle power plants to tomorrow’s clean coal power plants, capable 

of high efficiency and CO2 capture.

The CL process with its multi-phase flows and complicated chemical reactions is 

characterized by process nonlinearities and time delays due to mass transport and chemical 

reactions. The specific operational characteristics are new and are still being studied. Hence, 

there is a need for further investigation and the potential for advanced control solutions. In 

this paper, we have focused on developing a control-oriented model for a single loop cold 

gas/solid flow test rig which omits all chemical reactions and interactions with other loops.

The block diagram of a single loop cold flow CL process is shown in Figure 2. It consists of 

a lower level pipeline, a riser pipeline, an upper level horizontal pipeline, a cyclone, a dip 

leg, seal pot control valves (SPCV), and a solid return leg. The lower level pipeline accepts 

air flow and solids returned from both seal pot control valves and solids which are added 

manually. In the riser the air-solid mixture (two-phase) flows upwards, turns into the 

horizontal pipeline, and then enters the cyclone. The cyclone separates the solid particles 

from the air. The separated solids then drop into the dip leg and enter the SPCV. The SPCV 

splits the solids between the return leg in its own loop and the return leg in another loop. The 

SPCV also maintains a pressure control boundary.

In our test rig, the manipulated variables (MV) include S1, S2—two fluidizing air flow rates 

into the SPCV, which change pressures in the SPCV and the flow conditions upstream and 

downstream of the SPCV. The controlled variable (CV) of interest is DP47, which stands for 

the pressure drop measured across the riser—a substantive indicator of solid/gas flow 

transport stability along the whole loop. The performance of the test rig implementing the 

controller to track a reference command was evaluated both under step-changes and cycling 

operation.
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A wavelet MRA modelling and its embedding into a GPC-based predictive controller are 

described in the next two subsections.

2.3. Wavelet MRA Model Structure

Wavelet multiresolution analysis [14] is a function approximation tool representing function 

details at different scales of resolution in both the time and the frequency domains in terms 

of shifted and dilated scaling and wavelet functions. In general, MRA consists of a sequence 

of successive approximation closed subspaces Vj ∈ L2(R), j ∈ Z satisfying:

⋯V −1 ⊂ V 0 ⊂ V 1⋯, (1)

with the following properties:

∪j ∈ Z V j isdenseinL2 R ; ∩j ∈ Z V j = 0 , (2)

f x ∈ V j f 2x ∈ V j + 1 (3)

f x ∈ V j f x − 2−jk ∈ V j, k ∈ Z, (4)

V j = span ϕj, k, k ∈ Z , (5)

where Z is the set of all integers, ϕj,k(x) = 2j/2ϕ(2jx − k) is an orthonormal basis for Vj and 

L2(R) is the space of square integrable functions of scalar real variable.

If we define Wj to be the orthogonal complement of Vj in Vj+1, then:

V j + 1 = V j ⊕ W j, V j ⊥ W j, (6)

W j = span ψj, k, k ∈ Z , (7)

where ψj,k(x) = 2j/2ψ(2jx − k) is an orthonormal basis for Wj. It follows from Equations (1) 

and (6) that, any Vj can be written for any l < j as:

V j + 1 = V l ⊕ W l ⊕ W l + 1 ⊕ W l + 2 ⊕ ⋯ ⊕ W j, (8)

where all the subspaces are orthogonal. Then this implies that:

L2 R = ⊕j ∈ Z W j (9)

The functions ϕj,k and ψj,k will be referred to as scaling and wavelet functions respectively. 

According to Equations (8) and (9), any f(x) ∈ L2(R) can be represented as:

f x = ∑ f, ϕJ, nn ϕJ, n + ∑ f, ψj, nj ≥ J, n ψj, n (10)
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The approximation starts from some lower resolution level J and can be truncated at certain 

higher resolution level N when:

‖f x − [∑
n

f, ϕJ, n ϕJ, n x + ∑
j = J

N
∑

n
f, ψj, n ψj, n x ]‖ < ε, (11)

for any predefined small error ε > 0.

Multivariable wavelet bases can be constructed from the tensor product of a radial basis 

function of a one-dimensional wavelet as described for images in [33]. Because wavelet 

MRA can approximate any finite energy nonlinear function to any desired accuracy level, in 

this paper, the wavelet MRA will be used to build the nonlinear empirical model for a single 

loop cold flow CL process, as shown in the next subsection.

The NARX Model Structure—Many systems in a variety of applications contain 

nonlinearities which render linear model incapable of capturing the complex dynamic 

system behavior. Therefore, it is of interest to develop for these applications sufficiently 

accurate nonlinear dynamical models. An NARX model [34] is a well-established input/

output representation for nonlinear system identification. Under some mild assumptions, a 

discrete-time stochastic nonlinear SISO system can be expressed as:

y t = f y t − 1 , ⋯, y t − ny , u t − 1 , ⋯, u t − nu + w t , (12)

where y(t), u(t), w(t) are the system output, input, and noise, and t is discrete time, 

respectively, ny and nu are the maximum lags in the output and input, w(t) is assumed to be a 

zero mean, independent, and bounded noise variable, and f(·) is some nonlinear function. 

Unless some prior knowledge of the system dynamics is available, most methods use 

nonparametric regression to estimate the nonlinear function f from the data. In our case, f is 

implemented as a linear expansion in terms of the scaling and wavelet functions of 

regressors gi such that

f = ∑i = 1
m θigi (13)

minimizes a pre-specified approximation adequacy criterion, where θ = {θi} is a parameter 

vector trained on-line, gi ∈ {ϕj,k, ψj,k} is a multivariable scaling or wavelet basis function of 

past inputs and outputs, and m is the number of basis functions to meet some given 

modeling accuracy requirement.

In the next subsection, the NARX model structure introduced above is embedded into the 

parameter adaptation law and the GPC performance criterion, and the self-tuning MRA-

based control law is derived.

2.4. Wavelet MRA-Based GPC Scheme

The basic methodology of GPC is to calculate the current control actions on-line at each 

sampling instant in order to solve a finite horizon, open-loop, optimal control problem where 

the first control in the optimal control sequence is applied to the plant. In this section, we 
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present both the online wavelet MRA system identification algorithm and the GPC based 

predictive control strategy for the stable tracking problem of a single loop CL system. To 

clearly illustrate the idea of the proposed control scheme, we derive the algorithm for a SISO 

nonlinear dynamic system. The extension to a multi-input-multi-output setting is 

straightforward.

Referring to Figure 2 and its description, let DP47 be the actual system output y and S1 be 

the control input u, while S2 is set to a constant value. Let y denote the approximated system 

output. Then, the identified wavelet MRA based model is defined as follows:

y t = f y t − 1 , ⋯, y t − ny , u t − 1 , ⋯, u t − nu , (14)

where f is defined in Equation (13). Then, the error between the real plant output y and the 

estimated output y is defined as:

e n = y n − y n . (15)

The weighting parameters θ in Equation (13) are trained online to minimize the loss 

function defined as:

J1 n = 1
2e2 n , (16)

where n indicates discrete time. To make J1 small, we employ a parameter adaptation law in 

the form of a gradient descent (GD) algorithm, which adjusts the weighting gains θ to keep 

the gradient of J1 negative, that is:

θ n + 1 = θ n − γθ∇θJ1 n = θ n − γθe n ∇θe n , (17)

where γθ is the adaptation gain, ∇θJ1(n) is the gradient of J1 with respect to θ at discrete 

time n, and ∇θe(n) is the so-called sensitivity derivative at time n indicating how the error is 

influenced by the weighting parameters θ. From Equations (13)–(15), the sensitivity 

derivative ∇θe can be derived as follows:

∇θe = − ∇θy = − ∇θf = − g θ n + 1 = θ n + γθe n g n . (18)

Suppose the future set-point signals ym(n + k), k = 1, 2, ⋯ are available. In the context of 

GPC, define another loss function as follows:

J2 = 1
2 ∑k = N1

N2 ym n + k − y n + k 2 + ∑k = 1
Nu ρkΔu n + k − 1 2 , (19)

where N1 and N2 are the minimum and the maximum output prediction horizons, 

respectively, Nu is the control horizon, Δ is the difference operator, Δu(n) = u(n) − u(n − 1), 

and ρk is the k-th control weighting factor. Assuming N1 = 1, N2 = L = Np, and identical 

control weighing factor ρk = ρ, Equation (19) can be rewritten in the vector form as:
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J2 = 1
2 Y m n + 1 − Y n + 1 2 + ρ‖ΔU n ‖2 , (20)

where:

Ym n + 1 = ym n + 1 , ym n + 2 , ⋯ , ym n + L T,
Y n + 1 = y n + 1 , y n + 2 , ⋯ , y n + L T,
U n = u n , u n + 1 , ⋯ , u n + Nu − 1 T,
ΔU n = Δu n , Δu n + 1 , ⋯ , Δu n + Nu − 1 T,

and ‖ · ‖ is the L2 norm of the n-dimensional real vectors.

The loss function J2 is now minimized to drive the system output y to the reference signal 

ym given that the wavelet MRA identifier accurately approximates the real process dynamics 

on-line. At each sampling instant, an optimal control sequence is calculated using future 

predicted output values of the identified model, but only the first one is applied to the 

system. To minimize J2, the GD method is implemented again to recursively calculate the 

Nu-dimensional control increment sequence ΔU as follows:

ΔU n = − γu∇U J2 n , (21)

where γu is the adaptation gain for the control input vector U. Noting that for any vector 

y(x), ∇x‖ y ‖2 = 2(∇xy)y, from Equations (20) and (21), the gradient of the loss function J2 

with respect to U can be obtained as:

∇U J2 n = 1
2 ∇U Ym n + 1 − Y n + 1 2 + ρ ΔU n 2

= ∇u Ym n + 1 − Y n + 1 Ym n + 1 − Y n + 1 + ρ∇U ΔU n ΔU n .

The first part of the expression above is evaluated as follows. First, we note that since ym(n) 

are the reference signals, which are preset constants, we have ∂ym(n + 1)/∂u(n) = 0. Then, 

since y n + k = θTu, y depends only on the past u, we have:

∂y n + k
∂u n + l =

∂y n + k
∂u n + l ,  whenk > l,

0,  whenk ≤ l .

This yields:
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∇U Ym n + 1 − Y n + 1 =
∂

∂u n ym n + 1 − y n + 1 ∂
∂u n ym n + 2 − y n + 2 ⋯ ∂

∂u n ym n + L − y n + L

∂
∂u n + 1 ym n + 1 − y n + 1 ∂

∂u n + 1 ym n + 2 − y n + 2 ⋯ ∂
∂u n + 1 ym n + L − y n + L

⋮ ⋮ ⋱ ⋮
∂

∂u n + Nu − 1 ym n + 1 − y n + 1 ∂
∂u n + Nu − 1 ym n + 2 − y n + 2 ⋯ ∂

∂u n + Nu − 1 ym n + L − y n + L Nu × Np
=
− ∂y n + 1

∂u n − ∂y n + 2
∂u n ⋯ −

∂y n + Nu
∂u n ⋯ − ∂y n + L

∂u n

0 − ∂y n + 2
∂u n + 1 ⋯ − ∂y n + Nu

∂u n + 1 ⋯ − ∂y n + L
∂u n + 1

⋮

0 ⋯ 0 −
∂y n + Nu

∂u n + Nu − 1 ⋯ − ∂y n + L
∂u n + Nu − 1 Nu × Np

The second part of ∇UJ2(n) is evaluated by taking into account the relation Δu(n) = u(n)−u(n
−1), so that ∂Δu(n)/∂u(n) = 1 and ∂Δu(n)/∂u(n − 1) = −1. The latter yields:

∇U ΔU n =

∂Δu n
∂u n

∂Δu n + 1
∂u n

∂Δu n + 2
∂u n ⋯ ∂Δu n + Nu − 1

∂u n
∂Δu n

∂u n + 1
∂Δu n + 1
∂u n + 1

∂Δu n + 2
∂u n + 1 ⋯ ∂Δu n + Nu − 1

∂u n + 1
⋮ ⋮ ⋮ ⋱ ⋮

∂Δu n
∂u n + Nu − 1 ⋯ ∂Δu n + Nu − 3

∂u n + Nu − 1
∂Δu n + Nu − 2
∂u n + Nu − 1

∂Δu n + Nu − 1
∂u n + Nu − 1 Nu × Nu

=

1 −1 0 ⋯ 0
0 1 −1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 0 1 Nu × Nu

.

(22)

Combining the above expressions into:

∇U J2 n = − G Ym n + 1 − Y n + 1 + ρHΔU n ,

and substituting into Equation (21) as:

ΔU n = − γu∇U J2 n = γuG Y m n + 1 − Y n + 1 − γuρHΔU n , (23)

where:

G =
∂y n + 1

∂u n
∂y n + 2

∂u n ⋯ ∂y n + Nu
∂u n ⋯ ∂y n + L

∂u n

0 ∂y n + 2
∂u n + 1 ⋯ ∂y n + Nu

∂u n + 1 ⋯ ∂y n + L
∂u n + 1

⋮

0 ⋯ 0 ∂y n + Nu
∂u n + Nu − 1 ⋯ ∂y n + L

∂u n + Nu − 1 Nu × Np

(24)

and:
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H =

1 −1 0 ⋯ 0
0 1 −1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 0 1 Nu × Nu

(25)

yields the control law of the form:

ΔU n = I + γuρH −1γuG Y m n + 1 − Y n + 1 , (26)

where I is the Nu × Nu identity matrix. G can be computed from the chosen wavelet MRA 

model structure. The proposed wavelet MRA model-based GPC control schematic is shown 

in Figure 3. As a result, the tracking problem for a single loop cold flow system can be 

solved by the wavelet MRA-based GPC control strategy using the convergence tuning 

guidelines developed in the next section.

2.5. Convergence and Stability

In this section, we show the output error convergence of the wavelet MRA model 

identification algorithm and the tracking error convergence of the proposed GPC-based 

control strategy. These proofs serve to show that the system identification scheme will 

converge to the true system model of the preselected resolution, while the predictive control 

scheme will provide tracking of the desired output by the system output. The adaptive 

identification and control laws have one parameter each in the form of the adaptation gains 

chosen by the user. It has been shown [35] that adaptation gains are crucial to the stability 

and performance of an adaptive control system. Therefore, we have provided analytic 

guidelines for selecting these gains. The validity of such separate convergence analysis is 

certainly limited under significant coupling between identification and control (e.g., for 

aggressively chosen gains), and the coupled analysis will be reported elsewhere. However, 

the results are well supported by the actual implementation and testing.

2.5.1. Convergence of Wavelet MRA Identifier—Define a discrete-type Lyapunov 

function as:

V 1 n = 1
2e2 n , (27)

where e(n) defined in Equation (15) represents the output modeling error. Then, the 

increment of the Lyapunov function is given by:

ΔV 1 n = V 1 n + 1 − V 1 n = 1
2 e2 n + 1 − e2 n . (28)

The error difference can be represented using the Jacobian matrix by:

Δe n = e n + 1 − e n = ∂e n
∂θ n Δθ n (29)
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where Δθ n = Δθi n i = 1
m  represents a change in the arbitrary component of the weighting 

gain vector θ. From Equation (18), Δθi(n) can be obtained by:

Δθ n = γθe n g n , (30)

∂e n
∂θ n = − ∂y n

∂θ n = − gT n , (31)

where g n = gi n i = 1
m .

Theorem 1.: Let γθ be the adaptation gain for the weights of the wavelet MRA identified 

model and gmax be defined as gmax ≔ maxn ‖ g(n) ‖, where g is the wavelet MRA basis 

function, n is the discrete time index, and ‖ · ‖ is the L2 norm of a real vector. Then 

convergence is guaranteed if γθ is chosen as:

0 < γθ < 2
gmax2 (32)

Proof. From Equations (28)–(31), ΔV1(n) can be represented as:

ΔV 1 n = Δe n e(n) + 1
2Δe n = ∂e n

∂θ γθe(n)g n ×

e n + 1
2

∂e n
∂θ γθe n g n

= − γθe2 n ‖g n ‖2 + 1
2γθ

2e2 n ‖g n ‖4 = − λe2 n ,

(33)

where:

λ = 1
2γθ‖g n ‖2 2 − γθ‖g n ‖2 ≥ 1

2γθ‖g n ‖2 2 − γθgmax2 > 0. (34)

From Equation (32) we obtain V1(n) ≥ 0 and ΔV1(n) < 0, then the convergence of the 

weighting parameters of the identified wavelet MRA model is guaranteed. □

2.5.2. Stability Analysis of Wavelet MRA-Based GPC—Define a second discrete 

Lyapunov function as:

V 2 n = 1
2‖E n + 1 ‖2, (35)

where E n + 1 = Y m n + 1 − Y n + 1 . Then the change of the Lyapunov function is 

obtained as:

ΔV 2 n = V 2 n + 1 − V 2 n = 1
2 E n + 2 2 − E n + 1 2 . (36)
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Similarly to Equation (29), the error difference can be represented using the Jacobian matrix 

by:

ΔE n + 1 = E n + 2 − E n + 1 = ∂E n + 1
∂U(n) ΔU n , (37)

where ΔU(n) is defined in Equation (26) and ∂E n + 1
∂U n = − GT . Then Equation (37) can be 

expressed as:

ΔE n + 1 = − GT I + γuρH −1γuGE n + 1 . (38)

Theorem 2.: Let γu be the adaptation gain for the GPC control input sequence. Assume a 

control weighting factor ρ > 0. Then the stable tracking convergence of the wavelet MRA 

based GPC control system is guaranteed if:

0 < γu < 2
λmax GGT , (39)

where λmax(·) is the maximum eigenvalue of the matrix.

Proof. From Equations (36)–(38), ΔV2(n) can be represented as:

ΔV 2 n = 1
2 E n + 1 + ΔE n + 1 T(E n + 1 + ΔE n + 1 ) −

E n + 1 TE n + 1

= ΔET n + 1 E n + 1 + 1
2ΔE n + 1

= − GE Tγu I + γuρH −1 T I − 1
2GGT I + γuρH −1γu GE

= − GE TR1R2GE,

(40)

where:

R1 = γu I + γuρH −1 T , (41)

R2 = I − 1
2γuGGT I + γuρH −1 . (42)

□

If R1 and R2 are both positive definite matrices, it follows that ΔV2(n) < 0. Together with 

V2(n) > 0, the stable tracking of the reference signals is guaranteed.

From Equation (25) it can be shown that the eigenvalues of H are λH = 1, ⋯, 1 Nu × 1. 

Then the eigenvalues of R1 can be derived as:
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λR1 = γu 1 + γuρ −1, ⋯, γu 1 + γuρ −1
Nu × 1 (43)

Hence, all eigenvalues of R1 are positive if γu > 0. It follows that R1 > 0.

If 0 < γu < 2
λmax GGT , then:

I − 1
2γuGGT > 0. (44)

From Equation (25) we have:

γuρH > 0. (45)

Then from Equations (44) and (45)

I − 1
2γuGGT + γuρH > 0. (46)

Similarly to the way it was done for Equation (43), we can prove that I + γuρH > 0. Then 

Equation (46) can be rewritten as:

I + γuρH I − 1
2γuGGT I + γuρH −1 > 0. (47)

Since I + γuρH > 0, I − 1
2γuGGT I + γuρH −1 > 0 follows. Now we have V2(n) ≥ 0 and 

ΔV2(n) < 0. With this, the convergence of the prediction error of the wavelet MRA model 

identification algorithm and the tracking error of the proposed GPC control strategy have 

been separately proven.

2.6. Wavelet MRA GPC with Input Constraints

The stability analysis in Section 2.5 does not account for constraints. In practice, all process 

inputs are subject to certain constraints due to the actuation limits. In [36], two types of 

constraints are considered in the GPC design procedure, namely the rate and the magnitude 

limits on the input control signal, given, respectively, by:

Δumin ≤ u n + k − u n + k − 1 ≤ Δumax, (48)

umin ≤ u n + k ≤ umax, (49)

where 0 ≤ k ≤ Nu − 1. When constraints are included, the stability properties obtained above 

must be reanalyzed. The stability analysis for constrained wavelet MRA–GPC architecture 
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will be addressed elsewhere. Taking into account the CL process actuator constraints, the 

control input u is subject to an input magnitude constraint saturation:

u* n = sat u n =
umin if u n < umin
umax if u n > umax

u n  otherwise 
. (50)

In the experiments, the latter constraints were seldomly attained, whereas control rate 

constraints of the form of Equation (48) had to be introduced to achieve good experimental 

results, as presented in the next section.

3. Results

3.1. MRA Temporal Modeling of the Chemical Looping Process Testbed

This section describes implementation of the proposed wavelet MRA model-based GPC 

scheme on the single loop gas/solid cold flow CL process testbed developed at Alstom 

Power Inc. to carry out experiments without consideration of the oxidation reaction. The 

experimental facility is shown in Figure 4.

The controllers were developed in MATLAB/SIMULINK, compiled in C and run on the 

proprietary ASTOM processing platform. The software used for wavelet identification was 

MATLAB Wavenet. The system output y was selected to be the riser pressure drop DP47 

(inch H2O). Fluidizing air flow S1 (standard cubic feet per hour, scfh), was used as the 

single control input u, while the other air flow S2 (scfh) was set to a constant value of about 

20 scfh. The characterization of the complex dynamic behavior, to be obtained through the 

identification procedure, was chosen as a SISO NARX wavelet multiresolution network 

model of the form:

y t = f y t − 1 , ⋯, y t − ny , u t − 1 , ⋯, u t − nu = ∑
i = 1

m
θigi, (51)

where f is the unknown nonlinear mapping to be identified, u(t) and y(t) are the sampled 

input and output sequences, ny and nu are the maximum lags in the output and the input to 

be determined, respectively; θ = {θi} is the parameter vector trained on-line, gi ∈ {ϕj,k, ψj,k} 

is a multivariable scaling or wavelet basis function of past inputs and outputs, and m is the 

number of required basis functions to meet satisfactory modeling accuracy requirements.

First, several offline experimental tests were performed to understand the process better and 

to leverage the test results in tuning the identification structure and the model parameters. 

The input signal S1 was generated in the form of a pseudo random binary signal (PRBS) 

changed about a nominal value, and the pressure drop across the riser DP47 was measured 

as the output. All the sequences used in the experiment were generated by MATLAB 

commands. The experimental results of the PRBS test are shown in Figures 5 and 6 below, 

where the sampling period is 1 s.
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The data set consists of 3961 input and output samples. The NARX multiresolution wavelet 

MRA model was used to approximate the nonlinear relationship between S1 and DP47 

based on the experimental data. The regressor set was specified as:

y t − 1 , y t − 2 , u t − 1 , u t − 2 , ⋯, u t − 8 . (52)

Hence ny = 2, nu = 8. For MRA model we chose radial Marr scaling and wavelet functions 

[12]:

ϕ x = exp −0.5 x 2 , ψ x = dim x − x 2 exp −0.5 x 2 . (53)

The initial coarse layer index J was chosen to be 3, with the number of basis functions 

doubling when resolution was incremented by 1 starting with 10. The final resolution 

adopted was K = 6. Figure 7 below shows how the model predicted output compares with 

the experimental results.

The one-step-ahead predicted output and the test data set are shown in Figure 8. From these 

figures it is seen that the NARX wavelet MRA model obtained predicted the system outputs 

well. The model was found to be sufficiently accurate and no finer resolution levels were 

needed to be added to the model structure.

3.2. MRA–GPC Scheme Implementation on a Chemical Looping Process Testbed

In order to make the wavelet MRA GPC applicable to the CL process, the control input u 
was subjected to rate constraints of the form:

Δu = Δutarget × exp 1 − μ Δutarget  , (54)

where Δutarget is the unconstraint control signal calculated by the predictive control law and 

μ > 0 is a design parameter to adjust the rate of the control signal. The effectiveness of such 

input constrained wavelet predictive controller on the CL process is demonstrated next 

through experimental results.

The control objective of the GPC design is to ensure that the output of the system y 
asymptotically tracks the reference signal ym. The cost function to be minimized is defined 

in (19). The design parameters for GPC configuration were chosen as N1 = 1, N2 = 10, Nu = 

8, ρ = 1. The adaptation gains derived from Theorems 1 and 2, were chosen as γθ = 0.01, γu 

= 0.1. The system was initially stable around level of y0 = 13 inch H2O. Two setpoint step 

change experiments were performed consecutively. After 5 min, the setpoint was first 

increased to 16 inch H2O and stayed at the latter value for about 7 min. Then it went back to 

the original level of 13 inch H2O. The air flow S2 was set to a constant value of about 20 

scfh. The tracking response of the system output and the corresponding control efforts are 

shown in Figures 9 and 10, respectively. It can be seen from these figures that the proposed 

wavelet MRA-based GPC method effectively tracks the setpoint changes for a single loop 

CL process.
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As can be seen in Figure 9, starting at a setpoint of 13 inH2O for the duration of five 

minutes, responds to a setpoint change at 14:20 within roughly two minutes. While there is 

an initial overshoot, this overshoot has a magnitude of one inH2O, and is quickly subdued; a 

similar phenomenon is seen at 14:27, when the setpoint is restored to 13 inH2O. This points 

to an adequate response to step-changes in DP47 setpoint, which the process control 

methodology is capable of handling due to a sufficiently accurate wavelet MRA model, and 

effective GPC tuning; the latter can be seen in Figure 10, where controller rates are limited 

to within feasible bounds, and control efforts are limited, making for a subdued control input 

history.

In the second test, reference signal was set to be a sinusoidal of the form ym(t) = 13 + 2 

sin(2π × 0.01 × t), while S2 (scfh) was still held at a constant value of about 20. The 

tracking response of system output and the corresponding control effort, shown in Figures 

11 and 12, respectively, demonstrate that the controller satisfies the tracking performance 

requirement, with a time delay between the control signal and system output potentially 

addressed through prediction adjustment.

In particular, a relatively timely response to reference signal changes is clearly seen in 

Figure 11; the controller effectuates the reference signal in about 50 s, with little overshoot, 

as was seen in the previous setpoint step-change experiment. However, besides the phase 

difference between the reference and true output, large values of undershoot are seen. This 

can be attributed to the presence of overshoot; as GPC reacts to samples 10 s ahead of time, 

any overshoot is met with an overaggressive response to lower it (see Figure 12), resulting in 

excessive undershoot. This issue may be addressed by increasing the control weighing factor 

to penalize excessive actuation.

The next section presents the derivation and implementation of the spatiotemporal control 

law for the fast riser dynamics to augment the temporal controller described above and 

tighten the closed loop tracking performance.

4. Spatiotemporal Wavelet Decomposition

Since the empirically identified wavelet temporal model was obtained using data collected at 

a 1 s sampling rate, some of the fast dynamics of the plant that gave rise to jumps were not 

recorded. The fast dynamics comes primarily from the spatially distributed riser geometry. 

Hence, we simulated the impulse response of the 2-PDE riser model [37], approximated the 

faster riser dynamics with the transient spatiotemporal NARMA-L1 [38] model, and used 

the result in a convolution to obtain a spatiotemporal model of the transients. We then put 

the empirical temporal NARX model and the fast dynamics spatiotemporal model in 

parallel. Finally, we combined the temporal GPC control and the spatiotemporal deadbeat 

control, each based on its respective model, into the closed loop dual-model self-tuning 

configuration shown in Figure 13. In this configuration, the dynamic inter-loop coupling is 

rather minimal due to significantly differing time scales of each elf-tuning loop, ideally 

requiring two-sampling-rates hardware/software setting, not available for this experiment.
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The nonlinear 2-PDE model governing the evolution of the variables (voidage and solid 

velocity) in the riser can be represented [37] as:

∂ε
∂t = 1 − ε ∂us

∂x − us
∂ε
∂x,

∂us
∂t = − us

∂us
∂x + C1ε−6.7 − C2ε−5.7us + C3ε−4.7uS

2 + C4 1 − ε −0.54 − C5,
(55)

where ε is the voidage and us is the solid velocity. The other parameters are defined in [37]. 

From simulations of this model, we could obtain a response h(x, t) to an impulse actuation in 

solid velocity with area of 0.1.

Then the response to an arbitrary inlet solid velocity u(t) can be calculated as:

y x, t = ∫
−∞

t
ℎ x, τ ⋅ 10u x − τ dτ, (56)

where the scaling factor is necessary since the simulated input was not 1. The simulated 

impulse responses are shown in Figure 14.

Since the impulse response is uniformly zero after 0.6 s, Equation (56) can be limited to:

y x, t = ∫
t − 0.6

t
ℎ x, τ ⋅ 10u x − τ dτ . (57)

To obtain a low-order high fidelity finite-dimensional representation of the impulse 

response, a wavelet decomposition [39,40] was used to approximate h(x, t). That is, the 

impulse response h(x, t) was approximated as:

ℎ x, t = ∑
m = 1

mmax
∑

n = 1

nmax
βm x cm, nαn t , (58)

where {βm(x)} and {αn(t)} are wavelet basis functions.

Figure 15 is the resulting wavelet approximation of the impulse response. Here we chose 

Gaussian wavelet functions specifically. In this case, 23 spatial and 22 temporal wavelets 

were used. The coefficients cm,n were determined using a least-squares regression.

The following notation is used to divide the impulse response into separate parts for voidage 

ε and velocity us:

ℎus x, t = ∑
m = 1

mmax
∑

n = 1

nmax
βm x cm, nαn t ,

ℎε x, t = ∑
m = 1

mmax
∑

n = 1

nmax
βm x dm, nαn t .

(59)
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Then using the convolution:

Δus x, t = ℎus x, τ * 10 u − τ = 10∫
0

0.6
∑

m = 1

mmax
∑

n = 1

nmax
βm x cm, nαn τ u t − τ dτ . (60)

Since the online measurements were only available at 1 s intervals, it was assumed that:

u t − τ = 1 − τ u t + τu t − 1 , 0 ≤ τ ≤ 1, (61)

to linearly interpolate between the measurements. Then:

Δus x, t = 10∫
0

0.6
∑

m = 1

mmax
∑

n = 1

nmax
βmcm, nαn τ 1 − τ u t + τu t − 1 dτ

= 10 ∑
m = 1

mmax
∑

n = 1

nmax
βm x cm, n∫

0

0.6
αn τ 1 − τ u t + τu t − 1 dτ

= 10 ∑
m = 1

mmax
∑

n = 1

nmax
βm x cm, n∫

0

0.6
1 − τ αn τ dτ u t +

10 ∑
m = 1

mmax
∑

n = 1

nmax
βm x cm, n∫

0

0.6
ταn τ dτ u t − 1 .

(62)

Denote:

αn, 0 = ∫
0

0.6
1 − τ αn τ dτ,

αn, 1 = ∫
0

0.6
ταn τ dτ,

(63)

and:

γ0 x = 10 ∑
m = 1

mmax
∑

n = 1

nmax
βm x cm, nαn, 0,

γ1 x = 10 ∑
m = 1

mmax
∑

n = 1

nmax
βm x cm, nαn, 1 .

(64)

Then Equation (62) simplifies to:

Δus x, t = γ0 x u t + γ1 x u t − 1 . (65)

Similarly, we have:

Δε x, t = η0 x u t + η1 x u t − 1 , (66)
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where:

η0 x = 10 ∑
m = 1

mmax
∑

n = 1

nmax
βm x dm, nαn, 0,

η1 x = 10 ∑
m = 1

mmax
∑

n = 1

nmax
βm x dm, nαn, 1 .

(67)

Omitting for brevity several routine manipulations (available in [23]), the output DP47 

representing the pressure drop across the riser can be given as:

P 5 − P 0 = ρgε 0 ug2 0 + ρs 1 − ε 0 us2 0
− ρgε 5 ug2 5 + ρs 1 − ε 5 us2 5

−∫
0

5
g ρgε y + ρs 1 − ε y dy,

(68)

where the riser length of 5 m is used, constant g is the gravity acceleration, u is the velocity, 

ρ is the density, the subscripts s and g refer to solid and gas, respectively, and ug =
Ug
ε x

where Ug is the superficial gas velocity. Expanding Equation (68) yields:

P 5 − P 0 = ρg
Ug

2

ε 0 + ρs 1 − ε 0 us2 0

− ρg
Ug

2

ε 5 + ρs 1 − ε 5 us2 5

− ∫
0

5
g ρgε(y) + ρs 1 − ε y dy

= ρg
Ug

2

εss 0 + Δε 0 + ρs 1 − εss 0 − Δε 0 us 0 + Δus 0 2

− ρg
Ug

2

εss 5 + Δε 5 − ρs 1 − εss 5 − Δε 5 us 5 + Δus 5 2

− gρg∫
0

5
εss y + Δε y dy − gρs∫

0

5
1 − εss y − Δε y dy,

(69)

where the subscript ss designates the steady state. Now, substituting the wavelet model 

gives:
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P 5 − P 0 = ρg
Ug

2

εss 0 + η0 0 u t + η1 0 u t − 1
+ ρs 1 − εss 0 − η0 0 u t − η1 0 u t − 1 us 0 + γ0 0 u t + γ1 0 u t − 1 2

− ρg
Ug

2

εss 5 + η0 5 u t + η1 5 u t − 1
− ρs 1 − εss 5 − η0 5 u(t) − η1 5 u t − 1 us 5 + γ0 5 u t + γ1 5 u t − 1 2

− gρg∫
0

5
εss y + η0 y u t + η1 y u t − 1 dy

− gρs∫
0

5
1 − εss y − η0 y u t − η1 y u t − 1 dy .

(70)

Our goal was to use the model given by Equation (70) to account for the spatiotemporal 

behavior of the CL system to the extent allowed by the available sampling rate, and also to 

develop the control setting to be ready to employ much higher sampling rates for 

performance improvement, once they become available on the test rig through the processor 

upgrades to the GPUs and FPGAs. It is also of interest to calculate the steady-state pressure 

drop:

ΔP0 = ρg
Ug

2

εss 0 + η0 0 u t + η1 0 u t
+ ρs 1 − εss 0 − η0 0 u t − η1 0 u t us 0 + γ0 0 u t + γ1 0 u t 2

− ρg
Ug

2

εss 5 + η0 5 u t + η1 5 u t
− ρs 1 − εss(5) − η0 5 u t − η1 5 u t us 5 + γ0 5 u t + γ1 5 u t 2

− gρg∫
0

5
εss y + η0 y u t + η1 y u t dy

− gρs∫
0

5
1 − εss y − η0 y u t − η1 y u t dy .

(71)

This is the pressure drop predicted by this model for constant input u(t), as opposed to the 

linear interpolation described above. We can then use this model to approximate the 

transient difference, and the NARX wavelet model to approximate the steady state. The 

difference between the transient pressure drop ΔP(t) and the eventual steady pressure drop 

ΔP0(t) is then equal to:

ΔP − ΔP0 = P 5 − P 0 − ΔP0 . (72)

Linearizing Equation (72) about u(t) = u(t − 1) gives:

ΔP − ΔP0 ≈ f u t − 1 u t − u t − 1 , (73)

where:
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f y = k1
k2 + k3y
k2 + k4y 4 + k5 k6 + k7y 2

+k8 1 − k2 − k4y k6 + k9y + k10
k11 + k12y
k11 + k13y 4

+k14 k15 + k16y 2 + k17 1 − k11 − k13y k15 + k18y + k19,

(74)

and:

k1 = ρgUgη1 0 , k2 = εss 0 , k3 = η0 0 + 2η1 0 ,
k4 = η0 0 + η1 0 , k5 = ρsη1 0 , k6 = us, ss 0 ,
k7 = γ0 0 + γ1 0 , k8 = − ρsγ1 0 , k9 = γ0 0 + 2γ1 0 ,
k10 = − ρgUgη1 5 , k11 = εss 5 , k12 = η0 5 + 2η1 5 ,
k13 = η0 5 + η1 5 , k14 = − ρsη1 5 , k15 = us, ss 5 ,
k16 = γ0 5 + γ1 5 , k17 = ρsγ1 5 , k18 = γ0 5 + 2γ1 5 ,

k19 = g ρg − ρs ∫
0

5
η1 y dy .

(75)

The input to the computational model was in terms of the velocity boundary condition, so 

that u(t) = Δus(0, t). This can be connected to the inputs S1 and S2 via a quadratic model 

fitted to the test data where:

u t ≈ 1
ε0

2a1S1 t − 1 + a3S2 t + a4 S1 t − S1 t − 1

+ 1
ε0

a1S1
2 t − 1 + a2S2

2 t + a3S1 t − 1 S2 t + a4S1 t − 1 + a5S2 t + a6

− us, ss(0)
= 1

ε0
a1S1 t − 1 + a3S2 t + a4 S1 t

+ 1
ε0

a2S2
2 t + a5S2 t + a6 − us, ss 0 .

(76)

Then:

ΔP − ΔP0 ≈ 1
ε0

f u t − 1 2a1S1 t − 1 + a3S2 t + a4 S1 t

+f u t − 1 1
ε0

a2S2
2 t + a5S2 t + a6 − us, ss 0 − u t − 1

= gΔP S1 t − 1 , S2 t − 1 , S2 t S1 t + fΔP S1 t − 1 , S2 t − 1 , S2 t .

(77)

The NARX wavelet MRA model takes the form as in Equation (51):

yw t = f y t − 1 , ⋯, y t − ny , S1−w t − 1 , ⋯, S1−w t − nu , (78)

where S1,w(t) is the control command calculated by wavelet adaptive GPC control. Then, the 

fast transient behavior model of Equation (77) can be combined with Equation (78) to obtain 

a spatiotemporal multiscale dynamic network representation of the entire CL process:
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y t ≈ yw t − fΔP − gΔPS1 t . (79)

The sign change is necessary because the pressure drop across the riser is negative in the 

model above, i.e., P(5) − P(0) < 0. Then, the deadbeat predictive controller taking account of 

fast dynamics is:

S1, fast t = yr t − yw t + fΔP
gΔP

, (80)

where yr(t) is the reference signal. Hence, the final spatiotemporal wavelet controller S1(t) 
implemented on the real CL process is given by:

S1 t = S1, w t + S1,  fast t . (81)

This controller was also implemented in the single loop cold flow CL test rig. S1 was taken 

as the single input and DP47 as the output, while S2 was mostly steady, but with jumps. The 

reference signal was set to 16 initially and then reduced to 13 around time 17:01. The 

tracking response of system output and the corresponding control efforts are shown in 

Figures 16 and 17, respectively. The controller is seen to stabilize the system quite well 

under difficult operating conditions. The pressure drop DP47 over the riser related to the 

fluidizing air flows was discussed based on the closed loop topology augmentation with the 

spatiotemporal model-based control.

5. Discussion

The control objective of developing the tracking controller for the CL test rig at ALSTOM 

Power was addressed at the start of the project through both first-principles model 

development and empirical system identification from the input/output experimental data 

record. The first approach resulted in the analytical development and the numerical 

simulation of the 1D, 2D, and 3D partial differential equation (PDE) networks—systems of 

coupled PDEs, each describing the testbed subsystem. On the basis of these models, 

approximately tuned to the process through the experimental data, first, the linear finite 

dimensional models were developed, after which robust controllers based on the H∞ 
approach were designed. The latter were implemented on the test rig; however, no 

satisfactory performance was obtained. The empirical approach initially involved a 

polynomial NARX model test fit with the use of model predictive control (MPC) with 

constraints attained through the QP (quadratic programming) based control signal 

calculation. At the same time the hypothesis was posed that the process is highly multiscale 

and that a multiscale controller design should be attempted. The experimental data was then 

subjected to multi-resolution decomposition and was indeed found to be highly multiscale 

[23]. After some debate, it was suggested to refocus the effort from model-based robust 

controller improvement and traditional constrained MPC to empirical multiresolution 

controller development. The initial step was to fit a multiresolution nonlinear, but linear in 

parameters, temporal model to the input/output data, with the subsequent steps involving the 
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self-tuning GPC-type controller development, as shown in Figure 3. After a number of 

prolonged experiments, the resulting controller was outfitted with rate constraints and tuned 

to work on the test rig, showing performance noticeably superior to that of the other 

techniques employed. Further on, since the underlying process dynamics was exhibited by 

the intrinsically spatially distributed processes, a spatiotemporal multiresolution control 

component was developed for the riser dynamics and combined with the temporal topology. 

The latter part was implemented and tested, producing reasonable overall performance, but it 

could not be fully utilized due to the computational real-time controller limitations. 

Subsequently, the results presented in this paper were acknowledged by ALSTOM as 

making a real breakthrough in the project. The findings and their implications in the broad 

context imply that if a robust linear controller does not work well on a system, the system is 

likely rather complex, and the nonlinear multiresolution modeling in combination with 

linear-type control structures under constraints could offer effective configurations for high 

performance system control.

The future theoretical effort in the temporal implementation in Section 3 should involve 

developing the proof of the simultaneous error convergence of the coupled identifier/

controller system under control rate constraints—a challenging analytical task. Future 

research should also address spatiotemporal controller development and implementation in 

more generality than that presented in Section 4. In the present work, the latter controller 

had limited efficacy due to the low sampling/computation rate of the test rig control 

processor, but the approach presented stands ready for further theoretical advancement and 

applications involving more advanced hardware.

Due to the combination of the coarser temporal and the finer spatiotemporal control in the 

overall control configuration, the results presented have a broad appeal in other applications 

involving complex multiscale spatiotemporal dynamics, such as, for example, robotic 

electrosurgery [41]. In this application, the motion of the cutting probe is strongly coupled to 

the spatiotemporal electrosurgical impact of the latter on the target tissues, and the near-field 

probe-tissue interaction process is best described by a complex time-fractional PDE [42]. 

These features make the technique proposed a good match for this application.

6. Conclusions

In this paper, the following results have been presented:

• closing the gap between the actual system output data and that predicted by the 

first-principles model of the complex chemical looping process through the 

empirically identified wavelet multiresolution analysis model initially trained on-

line to estimate the nonlinear dynamic characteristics;

• embedding the multiresolution model into the generalized predictive control 

structure to obtain self-tuning control strategy for stable tracking of a chemical 

looping process with complex process dynamics under actuator rate constraints;

• showing boundedness of the adaptation gains for identification and control laws 

using the Lyapunov function theorems, and providing a guidance for attainment 
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of asymptotic stability of the closed-loop system through the choice of these 

adaptation gains;

• using a spatiotemporal wavelet decomposition of the impulse response of the 

chemical looping process riser for designing a deadbeat predictive controller for 

further enhancement of the closed loop performance to account for fast system 

dynamics.

• experimentally confirming the effectiveness of the proposed controller design 

methods though their implementation on the novel single loop chemical looping 

cold flow testbed with complex dynamics,

Limitations of the present study lie in the insufficient spatiotemporal modeling and 

controller design for the riser and the inability to fully utilize the designed spatiotemporal 

controller for it because of the insufficient real-time performance of the control processor 

and the data acquisition system. Future efforts should focus on the advancement of the 

spatiotemporal part of the design, the overall controller robustness evaluation and 

enhancement, the development of the rigorous convergence proofs for the coupled 

identification/control laws under control rate constraints for the temporal and the entire 

spatiotemporal control topologies, and the implementation of the controller using advanced 

processors. The proposed techniques is planned to be applied by the authors to other areas, 

such as robotic electrosurgery.
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Figure 1. 
Alstom’s combustion-gasification process.
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Figure 2. 
Block diagram for a single-loop cold flow CL test rig.

Zhang et al. Page 29

Energies (Basel). Author manuscript; available in PMC 2020 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Schemetic of the wavelet MRA-based self-tuning GPC control system.
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Figure 4. 
Experimental facility for control testing.
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Figure 5. 
PRBS test-input S1 and S2 (scfh).
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Figure 6. 
PRBS test-Output DP47 (inch H2O).
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Figure 7. 
PRBS test-Simulation data vs. experimental data.
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Figure 8. 
PRBS test-One-step-ahead predictions vs. experimental data.
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Figure 9. 
Pressure difference response of riser (DP47) during step setpoint changes.
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Figure 10. 
Fluidizing air flow control (S1 and S2) during step setpoint changes.
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Figure 11. 
Pressure difference response of riser during sinusoidal setpoint changes.
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Figure 12. 
Fluidizing air flow control (S1 and S2) during setpoint changes.
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Figure 13. 
Block diagram of controller implementation with fast dynamics.
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Figure 14. 
Simulated impulse response of the 2-PDE riser model: (a)—the solid velocity response, (b)

—the voidage response.
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Figure 15. 
Wavelet-approximated impulse response h(x, t): (a)—the solid velocity response 

approximation, (b)—the voidage response approximation.
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Figure 16. 
Pressure difference response of riser (DP47) during step setpoint changes.
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Figure 17. 
Fluidizing air flow control (S1 and S2) during setpoint changes.
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