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Summary 
Cognitive abilities of primates, including humans, continue to improve through adolescence 1,2. 
While a range of changes in brain structure and connectivity have been documented 3,4, how they 
a ect neuronal activity that ultimately determines performance of cognitive functions remains 
unknown. Here, we conducted a multilevel longitudinal study of monkey adolescent neurocognitive 
development. The developmental trajectory of neural activity in the prefrontal cortex accounted 
remarkably well for working memory improvements. While complex aspects of activity changed 
progressively during adolescence, such as the rotation of stimulus representation in 
multidimensional neuronal space, which has been implicated in cognitive flexibility, even simpler 
attributes, such as the baseline firing rate in the period preceding a stimulus appearance had 
predictive power over behavior. Unexpectedly, decreases in brain volume and thickness, which are 
widely thought to underlie cognitive changes in humans 5 did not predict well the trajectory of 
neural activity or cognitive performance changes. Whole brain cortical volume in particular, 
exhibited an increase and reached a local maximum in late adolescence, at a time of rapid 
behavioral improvement. Maturation of long-distance white matter tracts linking the frontal lobe 
with areas of the association cortex and subcortical regions best predicted changes in neuronal 
activity and behavior. Our results provide evidence that optimization of neural activity depending on 
widely distributed circuitry e ects cognitive development in adolescence. 

 

  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2024. ; https://doi.org/10.1101/2024.08.23.608315doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.608315
http://creativecommons.org/licenses/by-nd/4.0/


Introduction 
Maturation of executive functions including working memory is a hallmark of human cognitive 
development 1,6. Delayed response tasks reveal an improvement in performance throughout 
childhood and adolescence in both precision and reaction time7-9 . Although such tasks are simple 
conceptually, enhancement in their performance proceeds in precise tandem with improvement 
across a range of other cognitive domains, including response inhibition, task switching, and 
planning suggesting a domain-general process of cognitive maturation 10. Age-related cognitive 
improvement coincides with brain structural changes, including inverted U-shaped trajectories of 
total brain volume, driven by decreasing gray matter volumes in adolescence, while white matter 
volumes continue to increase into adulthood 3 . An overall pattern of decreased thickness in 
prefrontal cortex is evident into adulthood 5,11 and is thought to represent restructuring processes 
such as pruning of infrequently used synapses 12-14 . Changes in prefrontal cortex and its 
connections with other regions continue to progress late in adolescence 15,16. Myelination in the 
underlying white matter providing connectivity between frontal and other regions correlates with 
development of working memory and other cognitive functions17,18. Abnormalities in such 
processes have been associated with psychopathology of mental illnesses that emerge at the end 
of adolescence, such as schizophrenia 19,20. 

The changes in brain activity that underlie cognitive development through adolescence have been 
addressed primarily with fMRI studies, which reveal distinct di erences in prefrontal activity 
patterns between childhood and adulthood in humans during working memory tasks 21,22. More 
direct evidence about changes in activity of single neurons and populations has been obtained 
from non-human primate models of adolescence 23,24. Rhesus monkeys (Macaca mulatta) enter 
puberty at approximately 3.5 years of age and reach full sexual maturity at 5, aging at a rate of 
approximately 3 times faster than humans 25,26. Anatomical studies suggest a protracted period of 
prefrontal cortical development that parallels that of humans 27-29. Cortical thickness, surface area, 
and white matter myelination also appear to follow similar trajectories to those of humans, at least 
in childhood 30 31. Biochemical and anatomical changes have also been characterized in the 
monkey prefrontal cortex from pre-puberty to adulthood, including changes of interneuron 
morphology and connections 32,33.  

However, a direct link between cognitive performance in terms of underlying changes in neural 
activity and concomitant structural brain changes has been lacking. We were therefore motivated 
to track behavior, neuronal activity, and anatomical imaging measures at multiple developmental 
stages with key developmental milestones in a cohort of developing monkeys. By determining the 
relationship of such measurements, we identify the brain mechanisms that can account for the 
cognitive improvement seen during this critical period of life. 
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Results 
We tracked developmental measures longitudinally in a cohort of eight monkeys (Group A, six 
males, two females) on a quarterly basis, in tandem with neurophysiological recordings and MR 
imaging, from an age of 3.0±0.1 to 7.1±0.1 years (corresponding to human ages of ~9-21 years). 
Another six older monkeys matched for training time in the task at di erent time points were used 
for control comparisons (groups B and C). At the beginning of the study, morphometric measures 
were all consistent with individuals in a growth trajectory, however, the emergence of 
developmental markers and secondary sexual characteristics, such as the eruption of canines, 
varied considerably between individuals (Extended Data Fig. 1). This reflects the variability in 
pubertal timing, which defines the period of adolescence. We therefore sought to align individual 
growth trajectories on a biological developmental marker rather than chronological age and relied 
on the closure of the epiphysial growth plate, a well-established indicator of skeletal maturation in 
humans 34,35. Thus, we defined a “mid-adolescence” age for each monkey as the time of the tibial 
epiphyseal closure (see methods). We also examined the developmental trajectory for each 
morphometric measure on chronological age and mid-adolescence age independently using non-
linear regression models (general additive mixed models - GAMM). We compared models aligned 
on chronological age and mid-adolescence age for each of 7 morphometric measures using the 
Akaike Information Criterion (AIC). All but one morphometric measure had lower AIC when using 
mid-adolescence age, compared with using chronological age (table S1). For example, plotting 
canine length as a function of age across individuals generated a deceptively monotonic curve 
throughout adolescence and into adulthood (Extended Data Fig. 1b). Instead, aligning on mid-
adolescence age revealed that lengthening of canines was completed 21.7 months after the mid-
adolescence age on average (Extended Data Fig. 1c). Mid-adolescence age thus provided a more 
accurate representation of each animal's developmental stage compared to their chronological age 
allowing us to e ectively account for the individual variability and more directly examine the e ects 
of maturation (Extended Data Fig. 1b-c). The mean mid-adolescence age across individuals was 
57.9±3.6 months (corresponding to a human age of ~14.5 years). All morphometric measures 
exhibited significant development-related di erences and followed a similar, non-linear 
developmental trajectory, with rapid changes before and around mid-adolescence age, before 
plateauing when adulthood was reached (Extended Data Fig. 1c-h).  
 

Working memory performance and developmental measures follow a 
common trajectory 
We evaluated working memory performance with variants of the oculomotor delayed response task 
(Fig. 1a-c), which has been extensively used in human studies 7,10. Monkeys were required to 
observe a visual cue that could appear at one of eight locations and, after a delay period, to make 
an eye movement to the location of the remembered visual stimulus. A distractor stimulus 
appeared in a variant of the task (ODR + distractor). Behavioral performance was collected at time 
points spaced ~4 months apart from 3.4 to 6.2 years old. Animals were able to perform the task 
from their earliest time point and achieved an average of 79% correct responses (excluding trials 
aborted before the end of the delay period – Extended Data Fig. 2), in agreement with previous 
studies in monkeys 23 and human children 8.  Human studies have revealed that the precision of 
working memory improves in adolescence7,8,10. We similarly sought to capture changes in working 
memory functions beyond simply task performance.  
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Figure 1 | Saccade precision and latency improve during adolescence. (a) Sequence of events in the ODR 
task. The monkey is required to maintain fixation while a cue stimulus is presented and after a delay period, 
when the fixation point turns o , saccade to the remembered location of the cue. (b) Sequence of events in 
the ODR with distractor task. After the delay period, a distractor stimulus appears, which needs to be 
ignored. The monkey is still required to saccade to the remembered location of the cue. (c) Possible locations 
of the stimulus presentation on the screen. (d) Schematic illustration of variability of two groups of saccades. 
Gray dots represent endpoints of individual saccades for two stimulus locations. Dispersion Index (DI), 
defined as the area within one standard deviation from the average landing position of each target is shown. 
(e) DI in the ODR task, during neural recording sessions. Each dot is one session; data from di erent monkeys 
are shown in di erent colors. Blue line shows the GAMM fitted trajectory. Gray shaded regions denote the 
95% confidence intervals (CIs). Dashed vertical line denotes the mid-adolescence age 0. The horizontal 
dashed bar denotes significant developmental e ect intervals. The horizontal solid bar denotes significant 
developmental e ect intervals. (f) As in e, for reaction time of saccade in the ODR task. (g) As in e, for DI in the 
ODR with distractor task. (h) As in f, for reaction time in the ODR with distractor task. (i) Schematic diagram of 
the three cohorts of monkeys (Groups A-C) used to evaluate behavioral improvement. (j) DI in the ODR task of 
Group A and B at first (TP1) and second time points (TP2). The violin plot shows the distribution of DI values 
for both groups at two distinct time points, with the width of the plot indicating the density of data points. (k) 
DI in the ODR task of Group A and C at the first time point. (*** p < 0.0001). 
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We therefore used the dispersion index (DI - Fig. 1d) to quantify precision of saccadic endpoints 
(see Methods), and relied on GAMMs to examine development-related e ects. Similar to prior 
findings in humans using the same task 36,  working memory precision improved with maturation 
(GAM, F(1, 568) =  3.31, p = 0.0002; Fig. 1e). Additionally, we examined response latency by 
calculating the reaction time (RT) of each trial. Importantly, reaction time became faster with 
maturation indicating that improved precision was not achieved as a result of speed-accuracy 
tradeo  (GAM, F(1, 568) =  7.76, p = 1.41e-06; Fig. 1f). Working memory precision and latency also 
improved with age for the variant of the working memory task involving a distractor (DI GAM, F(1, 
238) =  2.09, p = 0.0001; RT GAM, F(1, 238) =  5.96, p = 3.47e-05, Fig. 1g-h). In both tasks, significant 
developmental improvements were found to occur in early adolescence (-31 to 0 months relative to 
the mid-adolescence age). Reaction time was found to have significant growth rates throughout 
adolescence (-31 to -7 months relative to the mid-adolescence age), with greater changes earlier. In 
general, rapid and large developmental improvements were found to occur before and around mid-
adolescence age of the monkeys for both saccade precision and latency, followed by a slowdown 
of change and plateau in late adolescence and early adulthood. 

The monkeys tested later in development had more cumulative exposure to the task than in early 
age, as an inevitable consequence of our longitudinal experimental design. To evaluate the e ect of 
exposure to the task, we compared the behavioral performance of this group of animals (Group A) 
with 2 other groups of animals’ performance following similar training and developmental 
procedures (Fig. 1i). We reanalyzed a group with 4 animals (Group B, all males) that was introduced 
to the same task at a similar starting age (median 4.3 years) and were trained under the same 
protocol 23. After completing their first time point (young stage), their second time point for 
behavioral testing began 1.6–2.1years later. We compared the saccade precision and its changes in 
the two groups of animals during their respective 1st and 2nd testing time points. Group B animals 
had slightly lower DI than the Group A animals during first testing time point that did not reach 
statistical significance, considering they are slightly older than Group A monkeys (Mean DI of Group 
A = 15.36, Mean DI of Group B = 13.66, p = 0.21, two-sample t test; Fig. 1j). When comparing the DI 
in the second time point, we saw a significant di erence in the saccade precisions between the 
groups even though the two groups had comparable exposure in the task (Mean DI of Group A = 
13.15, Mean DI of Group B = 7.59, p = 2.83e-04, two-sample t test; Fig. 1j). The result indicates that 
the di erence of age during the two testing time points in two groups accounted for significant 
di erence in saccade precisions in the second time points. We then proceeded to train and test a 
third group (Group C) of two animals that were first trained to perform the task as adults (6.5 y.o.), 
with the same training procedure. Adult animals achieved a significantly lower DI in the ODR task 
despite having the same training exposure as the young animals during their first testing time point 
(Mean DI of Group A = 15.36, Mean DI of Group C = 10.54, p = 9.35e-05, two-sample t test; Fig. 1k). 
These results indicated that development confers an improvement in cognitive function and that 
this cannot be accounted for solely by cumulative task experience.  

Reliability of firing metrics of PFC neurons improves with adolescent 
development 
Neurophysiological recordings were made in areas 46 and 8a of the dorsolateral prefrontal cortex 
(Fig. 2a), from each animal. To make an unbiased comparison of PFC neural activity, we recorded 
all neurons we encountered. For each neuron, we determined an age relative to the mid-
adolescence age of the animal at the day the neuron was recorded.  
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Figure 2 | Neurophysiological recordings and neuron firing metrics. (a) Reconstructed MRI T1 image of one 
monkey’s brain with the placement of recording chamber indicated. (b) Distribution of neurons recorded 
across time points. Each point represents a neuron at its recorded time to mid-adolescence age shown in the 
y-axis. Each vertical distribution represents one subject. (c-e) Lognormal average baseline, cue-, and delay-
period firing rate of neurons in each session recorded during ODR task. Each dot is one session. Blue line 
shows the GAMM fitted trajectory. Gray shaded regions denote the 95% confidence intervals (CIs). Blue circle 
denotes the time of peak development velocity. The red triangle denotes the time of maximum or minimum 
value. Black bar indicates regions of significant development-related change. (f – h) Coe icient of variation 
(CV) of firing rate, CV of Inter-spike intervals and Fano factor of neurons in each session recorded during ODR 
task. The dashed vertical line denotes the mid-adolescence age 0. The horizontal bar denotes significant 
developmental e ect intervals. 

In total, our database contained 2131 neurons from 387 sessions across 8 animals (table S2), 
covering an extended range of adolescence (Fig. 2b). We first determined what aspects of PFC firing 
rate change over the course of development that could account for the changes we observed in 
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working memory task performance. PFC activity during the baseline (pre-cue) fixation, visual 
response (cue) and delay epoch changed along with maturation and each followed a trajectory 
similar to the common trajectory body growth and cognitive function shared, characterized by a 
significant increase early on, continuing to increase after the mid-adolescence age (Fixation period: 
F(1, 378) =  5.9, p = 3.4e-06, GAM; significant developmental improvements -31 to 11 months 
relative to mid-adolescence age; Fig. 2c; Cue period: F(1, 378) =  4.4, p = 0.00023, GAM; significant 
developmental improvements -31 to 11 months relative to mid-adolescence age; Fig. 2d; Delay 
period: F(1, 378) =  4.7, p = 0.00020, GAM; significant developmental improvements -31 to 11 
months relative to mid-adolescence age; Fig. 2e). We computed the correlation between the GAMM 
fitted trajectories of behavioral measures and baseline activity of PFC neurons, which revealed a 
remarkable correlation of neural activity with saccadic precision (DI vs. baseline activity:  r = -0.997, 
permutation test, p<0.0001, Extended Data Fig. 17a) and also strong correlation with reaction time 
(RT vs. baseline activity: r = -0.930, permutation test, p<0.0001, Extended Data Fig. 17b).   

Since the improvement in behavior was to a large extent a decrease in variability, we sought to test 
whether measures of neural firing variability also declined. We therefore calculated the coe icient 
of variation (CV) of inter-spike interval and firing rate across trials during pre-cue fixation, which 
represents the baseline activity, to investigate the intrinsic firing properties of neurons at di erent 
developmental stages. Both CV of ISI and baseline firing rate significantly decreased before 
stabilizing at the adult level (CV of firing rate: F(1, 378) =  3.68, p = 0.00014, GAM; significant 
developmental improvements -31 to 6 months relative to mid-adolescence age, Fig. 2f; CV of ISI: 
F(1, 378) =  2.16, p = 0.002, GAM; significant developmental improvements -21 to 7 months relative 
to mid-adolescence age, Fig. 2g). Similarly, we tested the Fano factor of spike counts. Overall, Fano 
factor values were significantly lower in the adult than in the young prefrontal cortex (Fig. 2h), and 
the changes along the maturation resembled the trajectory observed in firing rates (F(1, 326) =  1.8, 
p = 0.0049, GAM; significant developmental improvements -19 to 5 months relative to mid-
adolescence age).  

Other aspects of neuronal firing remained relatively stable in adolescence. These included the 
width of tuning curves for the eight cue locations measured during the cue and delay period. The 
tuning width did not show significant changes during adolescence in either the cue (p = 0.109, 
GAM) or delay (p = 0.271, GAM) period. The result did not change after eliminating neurons with low 
firing rate (baseline ≤0.5 Hz) and poor Gaussian fitting (R2 < 0.5) (cue: p = 0.273, GAM in Extended 
Data Fig. 3a; delay: p = 0.091, GAM in Extended Data Fig. 3b). We also quantified the amount of 
information carried in single neurons about the location of the cue. Here, we used the percentage 
of explained variance (ωPEV) statistic to measure the extent to which the variability in neural firing 
rate in di erent trials was explained by cue location during stimulus presentation. Overall, PFC 
neurons were selective for cue locations during the cue period (session average ω2 = 0.034, 
permutation test, p = 0.003) and delay period (session average ω2 = 0.033, p = 0.012). We then 
examined the developmental e ect on single neuron stimuli selectivity. ωPEV during visual cue or 
memory delay did not change significantly during adolescence (p = 0.995, Extended Data Fig. 3c). 
We assessed whether this averaged measure is driven by subpopulations of neurons that are task 
responsive. Task responsive neurons had higher ωPEV than the whole population, but there was not 
significant development e ect on ωPEV during visual cue (p = 0.065, GAM) or memory delay (p = 
0.372, GAM).  We additionally tested whether the results for the whole population were a ected by 
neurons with low firing rate during certain task epochs. The result did not change even after 
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eliminating neurons with low mean firing rate in each epoch (≤0.5 Hz). The intrinsic timescale is 
another fundamental property that reflects how quickly a neuron responds to changes in input or 
internal states. The intrinsic timescales remained stable during the adolescent period (p = 0.227, 
GAM; Extended Data Fig. 3d).  

Dimensionality of PFC responses increases in adolescence 
Measures of neural activity examined so far relied on mean values computed over entire task 
epochs. However, dynamics of neural activity vary at a finer time scale, and we wished to examine 
how the representation of task conditions may vary in neural responses over time. We employed a 
method to evaluate the e ective temporal coding dimensionality of each neuron using principal 
component analysis (PCA; see Methods). We then determined the e ective dimensionality of 
neural activity, Ne , as a measure that penalizes small eigenvalues which could arise due to noise. 
Higher Ne  values suggest a high coding dimensionality37. A cell with a high temporal dimensionality 
can have a time-varying magnitude of stimulus selectivity or changes in its order of stimulus 
selectivity over time (e.g. mixed selectivity). E ective dimensionality during encoding of visual 
stimuli increased before it plateaued, showing a significantly higher temporal coding 
dimensionality in mature PFC neurons (F(1, 354)  = 3.66, p = 0.000156, GAM; significant 
developmental improvements -31 to 8 months relative to the mid-adolescence age; Fig. 4a). 

In recent years, it has been recognized that population measures of neural activity contain 
information about stimuli and tasks that may not be apparent in single-neuron measures. Higher 
dimensionality of population responses, in particular, has been linked to greater cognitive flexibility 
38,39, which is known to improve in adolescence 40. We thus hypothesized that the neural activity 
followed a high dimensional trajectory not only in single neuron temporal space, but within the full 
neural state space as well. We therefore calculated the dimensionality of neural responses in the 
full N-dimensional neural space (where N is the number of neurons in each maturation interval, see 
methods) across di erent maturation intervals. Indeed, the dimensionality of the full neural space 
increased over adolescent maturation (F(1, 9999) = 8079, p <2e-16, GAM; significant increase -31 to 
-1 months relative to mid-adolescence age; peak at -1 month; Fig. 3b). 

The PFC maintains working memory information and manages cognitive processes such as 
suppressing irrelevant stimuli or distractors during task performance by dynamically representing 
stimuli in a task-specific manner41,42. The same stimuli can be represented in di erent subspaces 
when used in the context of di erent tasks, e.g. creating distinct dimensions for sensory and 
memory representations to mitigate interference between sensory inputs and memory 
representations39,43 . Since working memory and resistance to distractors becomes increasingly 
e icient during adolescent development, we speculated that the representation of cue and 
distractor stimuli may be rotated orthogonally in the neural population space and this relative 
rotation may improve with maturation, allowing PFC the ability to filter out distractors better. We 
therefore utilized the distractor task (Fig. 1b), which required animals to view stimuli drawn from an 
identical set of locations and to keep track of the context of the sensory inputs. In each maturation 
interval, we applied PCA on a firing rate matrix constructed with each neuron’s average firing rate to 
each stimulus separately in cue and distractor epochs. The first three principal components 
generally explained more than 50% of the variance. To ensure fair comparations between di erent 
populations of neurons at each maturation interval, we reduced the population firing pattern to the 
first 3 dimensions to measure the representation structure in low dimensional space. We quantified 
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the di erences in representation of the same stimuli based on the angle between subspaces 
defined by the di erent task context (target or distractor; Fig. 3c; see methods). The acute angle 
between the target and distractor subspaces is the largest around mid-adolescence age (peak at -4 
month relative to the mid-adolescence age). The representations of the same stimuli during the cue 
and distractor epochs increased in early adolescence and decreased slightly before plateauing 
with a significant angle of rotation, indicating that the orthogonal coding emerged during 
adolescent development (F(1, 7499) = 343.5, p <2e-16, GAM; significant increase -30 to -4 months 
relative to the mid-adolescence age; Fig. 3d).  

 

Figure 3 | Neural Dimensionality and subspace rotation as a function of mid-adolescence age. (a) 
E ective temporal dimensionality as a function of mid-adolescence age. Each dot is the Ne  estimated in a 
single neuron. Blue line shows the GAMM fitted trajectory. Gray shaded regions denote the 95% confidence 
intervals (CIs). Blue circle denotes the time of peak development velocity. Red triangle denotes the time of 
maximum or minimum value. The dashed vertical line denotes the mid-adolescence age as time 0. The 
horizontal bar denotes significant developmental e ect intervals. (b) Full Neural Dimensionality. Scatter plots 
show distribution of the dimensionality of the full neural response during the stimulus presentation and delay 
epochs. Each dot is the estimated e ective dimensionality of a pseudo population of neurons at the average 
mid-adolescence age of the neurons (see methods). Blue line showed the GAMM fitted trajectory. Gray 
shaded regions denote the 95% confidence intervals (CIs). Blue circle denotes the time of peak development 
velocity. The red triangle denotes the time of maximum dimensionality. The dashed vertical line denotes the 
mid-adolescence age 0. The horizontal bar denotes significant developmental e ect intervals. (c) An example 
of low dimensional representation of spatial stimuli during the cue and distractor epoch in correct trials in 
ODR with distractor task (population mid-adolescence age = -20 month). Rotation φ=44°. (d) Rotation angle 
between cue and distractor subspace as a function of mid-adolescence age. Each dot is the rotation angle of 
a pseudo population of neurons at the average mid-adolescence age of the neurons (see methods). Blue line 
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showed the GAMM fitted trajectory. Gray shaded regions denote the 95% confidence intervals (CIs). Blue 
circle denotes the time of peak development velocity. The red triangle denotes the time of maximum rotation 
angle. The dashed vertical line denotes the mid-adolescence age 0. The horizontal bar denotes significant 
developmental e ect intervals. 

Some structural brain changes predict adolescent cognitive 
improvements 
We wished to determine the aspects of brain structural changes that best explain changes in neural 
activity and behavior we observed. Since neurophysiological recordings were obtained from these 
animals, we performed volume measurements of cortical and subcortical structures on the 
hemisphere opposite to the one where recordings were performed. We first considered global brain 
measures for white and gray matter (Extended Data Fig. 4-10), subcortical areas (Extended Data Fig. 
11-12) and fiber tracts (Extended Data Fig. 14-16). Overall, we observed increases in all brain 
structure volumes (Fig. 4a-c). We also examined more specific measures in brain areas implicated 
with working memory ,including the lateral prefrontal cortex (Fig. 5).  

In humans, gray matter (cortical) volume peaks during childhood and decreases thereafter 3, 
thought to be driven by processes such as synaptic pruning. In monkeys, a global volume maximum 
is also observed in childhood (0.74 years), however many areas exhibit a second period of increase 
in adolescence 4. Indeed, in our cohort, which was tracked after year 3, we observed increases in all 
brain structure volumes of the macaque’s brain (Fig. 4a-c). We found that whole brain cortical 
matter volume increased in our dataset (F(1, 75) = 4.2, p = 0.0467, GAM; significant increase -33 to -
12 months relative to the mid-adolescence age; Fig. 4b). Peak gray matter volume was observed at 
a chronological age of 78 months, in late adolescence. Although volume increase was relatively 
small in the cerebral cortex (3.5% from -43 to 20 months relative to the mid-adolescence age, Fig. 
4b), it was more pronounced in non-cortical areas and particularly white matter (15.3%, Fig. 4b), 
subcortical structures (10.0%, Fig. 4b), diencephalon (20.0%, Fig. 4c), mesencephalon (22.0%, Fig. 
4c), myelencephalon (39.0%, Fig. 4c), cerebellum (12.5%, Extended Data Fig. 10b), and cerebellum 
white matter (21.6%, Extended Data Fig. 10c). Cerebral white matter exhibited a relatively linear 
increase in adolescent monkeys (F(1, 75) = 25.8, p = 2.5e-6, GAM; significant increase -43 to 20 
months relative to the mid-adolescence age; Fig. 4a-b), as observed in humans.  

As expected, the variation in lobar cortical volumes (Fig. 4g), thickness (Fig. 4h), and surface area 
(Fig. 4i) was minimal, corresponding to the relatively small variation in whole brain cortical 
volumes. However, the variation and the inverse U-shape of the frontal lobe cortical thickness 
stands out when compared to metrics or other lobes (Fig. 4e). To investigate this further, we 
focused on the finer segmentation of brain regions and fiber tracts associated with working memory 
and the frontal cortex (see Methods - Fig. 5a-f, Extended Data Fig. 6). Thickness in lateral PFC and 
motor cortex increased early on and peaked before the mid-adolescence age, followed by a 
decrease later in adolescence (Fig. 5b, e). This was also the case in posterior parietal cortex, a 
region functionally and anatomically highly interconnected with the lateral prefrontal cortex 
(Extended Data Fig. 5d, 7). In contrast, most other frontal cortical regions including the orbitofrontal 
cortex and anterior cingulate cortex did not show any significant change in cortical thickness with 
maturation (Fig. 5b, e). Most regions in the other lobes (parietal, temporal, occipital) did not show 
significant variations in the three metrics, except for primary areas such as the somatosensory 
cortex (Extended Data Fig. 4) and the primary visual cortex (Extended Data Fig. 5), as well as the 
previously mentioned motor cortex (Fig. 5b, e). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2024. ; https://doi.org/10.1101/2024.08.23.608315doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.608315
http://creativecommons.org/licenses/by-nd/4.0/


Even for the case of the lateral prefrontal cortex, the volume of which exhibited an overall decrease, 
volume did not predict behavioral performance well (DI vs. volume: r = 0.132, permutation test, p = 
0.394; RT vs. volume: r = -0.171, p = 0.1800). Thickness and surface area were only weakly 
correlated with measures of behavioral performance (DI vs. thickness: r = 0.031, p = 0.963; RT vs. 
thickness: r = -0.299, p = 0.008; DI vs. surface: r = 0.422, p < 0.0001; RT vs. surface: r = 0.106, p = 
0.569). 

 

Figure 4 | Longitudinal developmental trajectories of the macaque brain. (a) Map of volume changes for 
white and gray matter and subcortical areas. (b and c) Volumes of brain segmentations and structures as a 
function of age. (d-f) In each lobe, segmented using Charm atlas level 1, (d) volumes, (e) thickness, (f) surface 
as a function of age. Solid curves indicate significant developmental e ect of the GAMM fittings. Shaded 
ribbons denote the 95% confidence intervals (CIs). Circle denotes the time of peak development velocity. 
Triangle denotes the time of maximum value. (g-i) Proportional change during adolescence compared of 
di erent lobes for (g) volume, (h) cortical thickness and (i) surface area. Color represented proportional 
change of each lobe relative to the earliest data points (-43 months to the mid-adolescence age). 

Lastly, developmental e ects on white matter maturation, quantified using fractional anisotropy 
(FA), radial di usivity (RD) and mean di usivity (MD), were evident across the brain, with most 
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tracts reflecting increases in FA and decrease in RD and MD with development (Fig. 5g, Extended 
Data Fig. 13). We also examined in more detail tract maturation that most closely paralleled the 
trajectory of working memory performance improvement and prefrontal cortical activity changes. 
We performed correlation analyses between tracts we identified and behavioral performance of 
ODR task including DI and RT. FA changes in several white matter tracts had high negative 
correlation (|r| > 0.9) with the precision (DI) of behavioral performance in the ODR task (Extended 
Data Fig. 18). These tracts include the middle longitudinal fasciculus (MLF), superior fronto-
occipital fasciculus (SFOF), and anterior cingulum which projected from or to the frontal lobe 
(permutation test, p<0.0001, in each case). Strong negative correlations were also observed 
between FA trajectories with RT during adolescence (Extended Data Fig. 19). 

 

 

Figure 5 | Structural changes during development in frontal lobe and white matter tracts. (a-c) 
Longitudinal developmental trajectories of areas in the frontal lobe for (a) volume, (b) cortical thickness and 
(c) surface area. Solid curves indicate significant developmental e ect of the GAMM fittings. Shaded ribbons 
denote the 95% confidence intervals (CIs). Circle denotes the time of peak development velocity. Triangle 
denotes the time of maximum volume. (d-f) Proportional change during adolescence compared of di erent 
brain areas in Charm atlas level 2 for (d) volume, (e) cortical thickness and (f) surface area. Color represents 
proportional change of each lobe relative to the earliest data points (-43 months to the mid-adolescence 
age). (g) Fractional anisotropy (FA) of major white matter tracts as a function of age. Each row is an ROI 
grouped to projection, association, commissural tracts, brainstem white matter regions and short-range 
white matter. Rows are sorted by time of maturation in each group. 
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Discussion 
Human cognitive ability improves significantly from childhood through adolescence 7,36, but the 
underlying changes in neural activity have not been hitherto well investigated. In this study, we 
illuminate the processes underlying cognitive maturation, employing non-human primates as a 
model. Monkeys, as humans, exhibited substantial variability in development, we therefore relied 
on skeletal assessment to best physical development and align growth trajectories of di erent 
individuals.  We used an ostensibly simple task to track the trajectory of working memory function, 
using the precision and latency of responses in the oculomotor delayed response task as primary 
behavioral outcomes. This choice allowed us to track performance from the earliest time points, as 
all animals were able to master that readily and to compare results with the extensive human 
childhood and adolescence literature 7,8. Critically, recent studies have shown that these variables 
track adolescent development remarkably well across a range of abilities, including much more 
complex processes such as planning, response inhibition, and other aspects of executive function 
10. Neuropsychiatric conditions and mental illnesses that emerge in adolescence to early 
adulthood, most notably schizophrenia, are also associated with decreased performance in 
working memory tasks 44. Our results revealed a progressive improvement in both precision and 
latency (defeating a speed-accuracy tradeo ) with a shape that closely resembled human 
development.  

Neurophysiological recordings from the prefrontal cortex revealed the changes in neural activity 
that could account for these behavioral changes. Prior studies had suggested higher firing rates in 
adult animals particularly in the delay period of working memory tasks 23. Our current results 
suggested that changes even in the baseline firing rate of prefrontal neurons during the fixation 
period of the task could capture well the trajectory of behavioral improvement. Computational 
models suggest that recurrent connections between prefrontal neurons allow activity to 
reverberate in the network during working memory tasks, and increased synaptic drive will generally 
render a network more stable 45 46. The improvement in saccade precision metrics indicates that 
decrease in trial-to-trial variability is an important developmental milestone. Indeed fMRI measures 
related to fluctuations in the amplitude of task-related brain states stabilize during development 47. 
Excessive variability is also a sensitive marker of cognitive function in conditions such as 
schizophrenia 48 and ADHD49. We now tie these behavioral variability measures to changes in neural 
variability metrics, including the coe icient of variation of inter-spike intervals and Fano factor. 
Reduced behavioral and firing rate variability, too, can be mapped to stronger synaptic drive in 
neural networks, which renders the peak of activation in the network less susceptible to drift in 
each trial 50 . Variability may also reflect a period of plasticity in adolescence as circuits are being 
engaged di erently to identify optimal function into adulthood in a Hebbian process selecting 
circuitry that is most highly used due to its e icacy. 

Our analysis also revealed more complex measures of neural activity that change during 
adolescent development. The dimensionality of neural representations increased, as did the extent 
of rotation of stimulus representations when these were presented as cue stimuli, or as distractors, 
in a variant of the ODR task. Higher dimensionality of population responses, and the related 
phenomenon of nonlinear mixed selectivity has been linked to greater cognitive flexibility 38,51. 
Rotation of stimulus representation is a critical mechanism in suppressing irrelevant stimuli or 
distractors during task performance by dynamically representing stimuli in a task-specific 
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manner39,41-43 . Such changes observed during development now account for cognitive 
improvements in domains such as cognitive flexibility52 and ability to withstand distraction22, which 
improve through adolescence.  

Recent structural imaging studies have codified the trajectory of age-related brain changes across 
cohorts of hundreds of individual humans 3 and monkeys 4. A hallmark of brain development is the 
decrease of cortical volume and thickness after childhood 5, thought to be driven by pruning of 
infrequently used synapses 12 , although the apparent decrease in thickness may also be driven by 
myelination of gray matter fibers 53. Pruning confers clear improvements in neural computations 54, 
however decreases in gray matter volume were not drivers of the working memory enhancement 
that we observed. Instead, our findings pointed out an association between the maturation of 
specific white matter tracts, and improvements in working memory performance and prefrontal 
cortical activity during adolescence. These results align with existing literature that highlights the 
prolonged maturation of white matter pathways in humans, which continues well into early 
adulthood 55,56. The observed FA increases in tracts connecting the frontal lobe to cortical and 
subcortical regions are consistent with findings that show an association between the maturation 
of white matter and improvements in cognitive tasks that depend on these connections, such as 
working memory and executive functions. Taken together, these results show new evidence for 
significant neural maturation through adolescence into adulthood. Disruptions in the maturation of 
these systems may play an important role in psychopathology that emerges at this time (e.g., 
schizophrenia, mood disorders, substance use disorders) and are typically associated with 
impairments in executive function. 
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Methods 
Subjects 
Behavioral, imaging, and neurophysiological recordings were obtained from a total of 14 (10 male 
and 4 female) rhesus monkeys (Macaca mulatta) of three cohorts: Cohort A: eight monkeys (6 male, 
2 female); cohort B :four monkeys (4 male); and cohort C: two monkeys (2 female). All surgical and 
animal use procedures were reviewed and approved by the Institutional Animal Care and Use 
Committees of Wake Forest University and Vanderbilt University, in accordance with the U.S. Public 
Health Service Policy on Humane Care and Use of Laboratory Animals and the National Research 
Council’s Guide for the Care and Use of Laboratory Animals. 

Developmental profiles 
We tracked developmental measures of Cohort A monkeys on a quarterly basis before, during, and 
after neurophysiological recordings. Similar to previous studies 23,24 , we obtained morphometric 
measures including body weight, trunk length, femur length, canine eruptions and length. Testicle 
length, width and volume was additionally determined for male monkeys (with a Prader 
Orchidometer, ESP Limited, Rustington, UK), and nipple length was determined for female 
monkeys. To determine each monkey’s developmental progress, we determined bone maturation 
via X-rays of upper and lower extremities, and assayed hair concentration of hormones including 
testosterone and dihydrotestosterone. We relied primarily on skeletal assessment to best capture 
physical development 35,57,58 and align the growth trajectories of di erent individuals.  Using these 
measures, we defined a mid-adolescence age for each monkey, defined as the time of each 
monkey’s distal tibial epiphyseal closure, as observed by veterinary professionals evaluating the X-
rays, blind to findings of other aspects of the study.  

Behavioral Tasks 
Monkeys were trained to perform an oculomotor delayed response (ODR) Task 59. This is a spatial 
working memory task that requires the subject to remember the location of a cue stimulus 
appearing on a screen for 0.5 s (Fig. 1a). The cue stimulus was a 1° white square appearing at one of 
eight locations arranged on a circle of 10° eccentricity, spaced by 45 degrees (Fig. 1c). After a 1.5 s 
delay period, the fixation point was extinguished, indicating the monkey to make a saccade to the 
remembered location of the cue within 0.6 s. The saccade needed to terminate on a 6° radius 
window centered on the stimulus, and the monkey was required to hold fixation within this window 
for at least 0.1 s. Animals were rewarded with liquid rewards (typically fruit juice) for successful 
completion of a trial.  

Eye position was monitored with an infrared eye tracking system (sampling rate 240 Hz, ISCAN, RK-
716; ISCAN, Burlington, MA). Breaking fixation at any point before the o set of the fixation point 
aborted the trial and resulted in no reward. The visual stimulus display, monitoring of eye position, 
and synchronization of stimuli with neurophysiological data were performed using in-house 
software, and implemented with MATLAB 60. 

Four of the eight monkeys of cohort A (one female and three males) were additionally trained on the 
ODR task with a longer delay period of 3.0 s after they were capable of performing the shorter task. 
The same four monkeys were also trained to perform a variant of the task, the ODR with Distractor 
Task 61. This task involved a distractor, presented 1.25 s after the cue for 0.5 s, followed by another 
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1.25s delay period before fixation point was o , making the total duration of the trial the same as in 
the ODR task with 3 s delay. The cue could appear at one of four locations arranged on a circle of 
10° eccentricity, spaced by 90 degrees. For each cue location, five distractor conditions were used: 
the location of the distractor could appear at location that is diametric to the cue (180 degree), 90 
degrees counterclockwise to the cue (90 degree), 45 degrees counterclockwise to the cue (45 
degree), or the same as the cue (0 degree). The fifth condition involved no distractor presentation.  

Recording Phases 
The monkeys were initially trained in the tasks mentioned above before their neurophysiological 
recordings. They were naïve to behavioral training or task execution of any kind prior to the 
behavioral training. Once the animals had reached asymptotic performance, behavioral and 
neurophysiological recordings were obtained from the monkeys of cohort A at time points spaced 
approximately 3 months apart from 3.4 to 6.2 years old. Each behavioral time point of each animal 
contained an average of 19 sessions. Between time points, the animals were returned to their 
colony and were not tested or trained in any task until their next time point. 

MRI acquisition and processing 
Structural MRIs were collected from the monkeys of cohort A every 3 months from 2.8 years (34 
months) of age to 5.8 years (69 months) of age. In preparation for the MRI scan, anesthesia was 
induced using ketamine (5–10mg/kg) and dexmedetomidine (0.015mg/kg), and was maintained 
using isoflurane. The animals were intubated and artificially ventilated at about 20 breaths per 
minute. Expired CO2 was monitored and maintained between 35 and 45 mmHg. Animals were 
scanned under isoflurane anesthesia at 1%–1.5%. Heart rate and oxygen saturation levels were 
monitored using a pulse oximeter. Their body temperature was maintained using warm blankets. 
The MRI system was a 3 Tesla Siemens MAGNETOM Skyra (Siemens Healthcare, Erlangen, 
Germany). Anatomical images were acquired using a T1-weighted MPRAGE sequence: TR = 2700 
ms, TE = 3.32 ms, inversion time = 880, FOV = 128 × 128 mm, 192 slices of 0.5 mm thickness, 
resolution = 0.5 mm isotropic. Resting state time series data were also acquired using a multiband 
EPI sequence: TR = 700 ms, TE = 32.0 ms, flip angle = 52°, repetitions = 700, FOV = 128 × 128 mm, 
32 slices, resolution = 2 mm isotropic. 

Spatial pre-processing was performed using a pipeline coded in python, which relied on functions 
from AFNI,62 ANTs63, FSL64,  FreeFurfer65 and Connectome Workbench66 for inhomogeneity 
correction, spatial and surface registration to a standardized space, the study template space. The 
study template was based on the average of the last T1 anatomical image (T1last) of each animal 
when registered in a common space using the function “anats_to_common” from Sammba-MRI67. A 
high-resolution NMT template (NIH Macaque Template) as well as the CHARM68 and SARM69atlases 
segmentation were registered to the study template. The segmentation atlas was created directly in 
the NMT template space using automated and manual segmentation (Fig. 4a, 5a).  Individual 
anatomical T1 images (T1n) were registered to their T1last and each T1last was registered to the study 
template. The two movement parameters (T1n to T1last and T1last to study template) were combined 
to register T1n to the study template. Inversion of these movement parameters was used to register 
the atlases to the individual T1n images. The co-registrations of the atlases to T1 were individually 
inspected and corrected manually when necessary. The volumes (in mm3) were calculated using 
the function “3dhistog” from AFNI. Surface and thickness were calculated using the Connectome 
Workbench. Figures were produced using the Connectome Workbench and nilearn70.  
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DTI preprocessing 
DTI data were acquired in pairs with a reversed phase encoding direction in the second scan (e.g., 
PA vs AP). A di usion-weighted spin-echo echo-planar imaging sequence was utilized to obtain 82 
whole-brain slices of 2mm thickness in 30 directions. Data were processed for analysis using 
MRtrix3 71 and the Oxford Centre of fMRI of the Brain Software Library (FSL). The raw DICOM images 
acquired from the scanner were converted to NIFTI format using dcm2nii, and the corresponding 
bval and bvec files containing information pertinent to the di usion gradient were combined across 
scans. Images were then denoised (“dwidenoise”) and mean b=0 images were calculated. 
Following this, susceptibility induced and eddy current distortion was corrected using FSL 
(“TOPUP”) and (“eddycorrect”) respectively. A tensor model was fitted to each voxel (“dwi2tensor”) 
and fractional anisotropy (FA) maps were calculated (“tensor2metric”). A mask was also created 
from the T1-weighted image (“bet”), segmenting the brain and non-brain tissue from the whole 
head.  

Each FA image was then registered to the subject’s respective skullstripped T1-weighted image by 
a ine transformation (“flirt”). These co-registered images were subsequently registered to a 
di usion-tensor-based white matter atlas for rhesus macaques 72. This allowed for a group analysis 
of several parameters: 1) the directionality of water di usion within white matter tissue (FA), 2) the 
mean apparent di usion coe icient of the di usion tensor (mean di usivity (MD)), 3) the principal 
eigenvalue, or di usion parallel to the principal axis of di usion (axial di usivity -AD), and 4) the 
mean of the two non-principal eigenvalues, or the di usion perpendicular to the principal axis of 
di usion (radial di usivity - RD). The MD, AD, and RD maps were derived from the di usion tensor 
using the same method employed for generating the FA maps.  

After initial processing, a whole-brain region-of-interest (ROI) analysis was performed, with 53 
white matter tracts from the DTI atlas selected. Left and right hemispheres were separately 
calculated and averaged together. 

Surgery and neurophysiology 
After the animals of cohort A had reached asymptotic performance in the behavioral tasks for the 
first time, we implanted a 20-mm diameter recording cylinder over the prefrontal cortex of each 
monkey. Localization of the recording cylinder and of electrode penetrations within the cylinder was 
based on MR imaging, processed with the BrainSight system (Rogue Research, Montreal, Canada). 
Recordings in each time point (see recording phases) were collected with glass or epoxylite coated 
Tungsten electrodes with a diameter of 250 μm and an impedance of 4 MΩ at 1 KHz (FHC Bowdoin, 
ME). Electrical signals recorded from the brain were amplified, band-pass filtered between 500 Hz 
and 8 kHz, and stored through a modular data acquisition system at 25 μs resolution (APM system, 
FHC, Bowdoin, ME).  

Recordings were obtained and analyzed from areas 8a and 46 of the dorsolateral prefrontal 
cortices. Neurons were not pre-screened prior to collection; we recorded from all neurons isolated 
from our electrodes. Recorded spike waveforms were sorted into separate units using a semi-
automated cluster analysis method based on the KlustaKwik algorithm 73.  Neurons for which at 
least 4 correct trials in every stimulus condition were available in the ODR task were used in the 
following analyses.  
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Behavioral analyses 
We analyzed task performance in the ODR task and distractor task as the percentage of trials that 
resulted in correct responses and by determining the animals’ saccade precision and reaction 
time. For saccade precision analysis, we calculated each session’s saccade Dispersion Index (DI), 
defined as the area within one standard deviation from the average landing position of each target 
condition 74 . We calculated reaction times by determining the interval between the o set of the 
fixation point and the time of saccade onset. 

Firing metrics 
We measured three metrics of neuronal firing from di erent task epochs using correct trials in the 
ODR tasks: firing rate, Fano factor, and coe icient of variation (CV) of firing rate and interspike 
intervals (ISI), to characterize the intrinsic firing pattern for neuron at recorded at di erent 
maturation stages. The firing rate measures the activity of the neurons and the Fano factor and CVs 
measure the variability of the neural activities. The CV of ISI is defined as: 𝐶𝑉 = 𝜎𝜇  

where 𝜎  is the standard deviation of interspike intervals and 𝜇  is the mean of the interspike 
intervals. Similarly, the CV of firing rate is defined as: 𝐶𝑉 = 𝜎𝜇  

where 𝜎  is the standard deviation of firing rate during baseline across all included trials 
and 𝜇  is the mean of the baseline firing rate. Fano factor was computed as: 

𝐹𝑎𝑛𝑜𝑓𝑎𝑐𝑡𝑜𝑟 = 𝜎𝜇  

We computed the Fano factor of spike counts to measure the variance of the firing rate as in 
previous studies 75. In brief, data for each condition in each neuron are initially treated separately. 
For each condition, we computed the variance (across trials) and mean of the firing rate during the 
epoch of interest. The Fano factor was the slope of the regression relating the variance to the mean.  

Single neuron tuning 
To investigate single neuron tuning, we used firing rates from eight classes and fitted a Gaussian 
curve to the data. We defined the locations and corresponding firing rates. The Gaussian model 
function used to describe the tuning curve was: f β,loc = β + β exp −0.5 loc − ββ  

where: β1 is the baseline firing rate, β2 is the amplitude of the Gaussian peak, β3 is the location of 
the peak, and β4 is the standard deviation (width) of the Gaussian curve. The lsqcurvefit function in 
MATLAB was used to fit the Gaussian model. 
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Intrinsic Timescales 
To calculate the intrinsic timescale of single neurons, we constructed a data matrix where each row 
represented a trial and each column represented time bins for a single neuron, with the bin size of 
50 ms. We used the 1000 ms pre-cue fixation epochs of each neuron. We excluded neurons with an 
average firing rate of less than 1 spike per second and those with any time bins containing zero 
spikes across all trials. Neurons with poor fitting quality (e.g., intrinsic time scales greater than 0.5 
seconds) were excluded from the final analysis as well 76,77. The average autocorrelation was 
calculated for each time lag and normalized by the total variance of the spike counts. We then fitted 
an exponential decay model to the autocorrelation data using: 𝑅 τ = 𝐴 ⋅ exp −𝑥τ + 𝐵 

where A is the amplitude, τ is the intrinsic time scale, and B is an o set parameter. The fit function 
in MATLAB was used to fit the exponential model. 

Information contained in single neurons 
We used the bias-corrected percentage of variance-explained (ωPEV) statistic to estimate single 
neuron selectivity to task conditions, i.e. locations of visual stimuli 78. We calculated ωPEV using 
the measures of e ect size (MES) toolbox of MATLAB, version 1.6.0.0, which calculate the amount 
of variance in the neurons’ firing rate explained by the location of the stimuli. ωPEV is defined as: 𝜔𝑃𝐸𝑉 = 𝑆𝑆 − 𝑑𝑓 ∗ 𝑀𝑆𝐸𝑆𝑆 + 𝑀𝑆𝐸  

where 𝑆𝑆  denotes the total sum of squares, i.e., total variance, 𝑆𝑆  denotes the 
variance between groups, df the degrees of freedom, and MSE the mean-squared error. 

Temporal coding dimensionality 
Firing metrics use averaged measures in certain time windows and do not reflect the consistency or 
dynamic of neural responses over time. Therefore, we used principal component analysis (PCA) to 
quantify temporal coding stability for each individual neuron. We estimated the e ective 
dimensionality (Ne ) of the temporal state space of each neuron 37. PCA was performed on the 
mean firing rate of trials in the same task condition across di erent time bins during the cue 
presentation, thereby quantifying the temporal variability of task-dependent firing. For each 
neuron, we then constructed a data matrix comprising n trials × 10 time bins. For each trial, we 
computed the firing rate in each time bin. Each time bin is a 50ms time in the 500ms stimulus 
presentation. Then, we averaged binned firing rates by task condition (8 locations). Columns in the 
matrix correspond to 10 adjacent, independent time windows spanning 500 ms and rows to the 8 
task condition averages. PCA is then performed on the matrix to quantify and arrange the variance 
along the principal components in the subspace spanned by the ten independent time bins. The 
eigenvalues associated with each principal component give us the means to quantify the e ective 
dimensionality (Ne ) of our temporal state space: 

𝑁 = ∑𝜆∑𝜆  

where λ represents the eigenvalues.  
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Dimensionality in full neural space across maturation intervals 
Similar to dimensionality in temporal space of each neuron, we calculated the dimensionality of 
neural responses in the full N-dimensional neural space (where N is the number of neurons), to test 
global changes in the neural space across maturation. For the population analysis, neurons from all 
animals were pooled and analyzed together. We segmented the neurons based on their mid-
adolescence age into 20 even time intervals (each ~200 days long), spanning from the earliest to 
the latest session recorded across all animals. For each maturation interval, we combined neurons 
across animals to create a pseudo-population. We averaged the firing rate per condition (8 
locations in ODR task) within 200ms bins, stepped by 100ms. The average response was calculated 
for each condition in each time bin during the delay period of the task (1.5 s). To control for the 
e ect of sample size on dimensionality, we randomly sampled 30 neurons from each pseudo-
population, to ensure no oversampling from any populations in each iteration.  PCA was performed 
on the concatenated data: size = (condition × time) × 30 neurons. We then calculated the e ective 
dimensionality (Ne ) of each maturation interval. The distribution of Ne  values was estimated with a 
bootstrap: we resampled neurons with replacement per maturation interval for 500 times and then 
performed the estimation of Ne . This gave us a dataset of 10000 values of Ne  and these values 
were used to estimate the change in Ne  across adolescent development and fitted with GAMM. 

Rotation of subspaces 
We applied PCA to denoise and quantify the di erence between representation of the target and 
distractor. PCA was performed on the mean firing rate of neurons across 15 maturation intervals 
(200 days) from 4 animals who performed the distractor task. 

For each neuron, we calculated the average firing rate of the cue and distractor epochs in all correct 
trials for di erent task conditions (4 locations). The firing rates of each neuron formed an 8×1 vector 
(4 locations × 2 epochs). The population activity matrix sizes 8 × N where N is the number of 
neurons in the population used. Then we z-scored the population activity matrix to account for the 
baseline firing di erence among neurons. To find the rotation between two periods, we applied PCA 
on the z-scored population matrix. We selected the first three eigenvectors of the covariance and 
sorted them by decreasing order in terms of explaining the variance. 

We then projected the population activity matrix into a three-dimensional (3D) PCA space. The 
population representations of each of the four spatial locations in two task epochs was 
represented by a vector. Four spatial locations in each of two task epochs then formed a subspace 
respectively spinning in the full space. We found the best-fit hyperplanes for cue and distractor 
subspaces by least squares to minimize the distance from each point to the hyperplane, 
implemented using fminsearch function in MATLAB. To examine the relationship between the two 
subspaces, the rotation is defined as the acute angle between the normal vectors of the two best fit 
planes. 

Similar to e ective dimensionality, we randomly sampled 30 neurons from each of the 15 intervals 
to control the e ect of sample size. The distribution of rotation angles was estimated with a 
bootstrap: we resampled neurons with replacement per maturation interval 500 times and 
calculated the rotation angle in each resampling. The total dataset contained 7500 values of 
rotation angles and was then used to estimate the change in rotation of subspaces across 
adolescent development and fitted with GAMM. 
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Generalized additive mixed models 
We sought to characterize the adolescent development of non-human primates in cognitive 
function, prefrontal cortex activity and the brain regions and structures that support in our 
longitudinal sample. We expected developmental stages to exhibit a nonlinear relationship with 
each outcome. Therefore, we utilized generalized additive mixed models (GAMM). GAMM is a 
flexible, semiparametric method for identifying and estimating nonlinear e ects of covariates on 
the outcome variable when observations are not independent 79. 

All GAMM analyses were implemented using the mgcv package for R to fit a series of GAMMs for the 
outcomes of interest, each with a smooth function of mid-adolescence age as a covariate, using a 
thin plate regression spline basis to estimate this smooth function. Random e ects in each GAMM 
included subject-specific intercepts and slopes for mid-adolescence age. For proportional 
outcomes like behavioral task performance, the quasi-binomial family and logit link function was 
used. For all other outcomes, which are continuous, a Gaussian family and identity link function 
was used. For those models for which there was a statistically significant fixed e ect, the gratia 
package for R80 was used to conduct exploratory post-hoc analyses to identify significant periods of 
developmental change. Specifically, the derivatives of each estimated smooth function of age were 
approximated using the method of finite di erences, and a simultaneous 95% confidence. 

Correlation between trajectories 
To evaluate similarity between developmental trajectories, we calculated the correlation between 
the GAMM predictions of di erent measures. To ensure consistency and comparability, the 
predictor values (mid-adolescence age) were evenly sampled at 100 intervals between the earliest 
and latest time points for behavioral data. Each curve was then normalized using z-score 
normalization. 

We calculated two key metrics: the Pearson correlation coe icient (r) and the Root Mean Square 
Error (RMSE). Before calculating RMSE, each normalized curve was shifted such that the starting 
point was aligned to zero. This was done by subtracting the starting value of the curve. After shifting, 
the absolute values of the data points were taken to ensure uniformity in the direction of both 
curves, facilitating a comparable visualization using RMSE between positively and negatively 
correlated pair of curves. The RMSE was calculated as: 

𝑅𝑀𝑆𝐸 = 1𝑛 |𝑋 | − |𝑌 |  

where ∣ 𝑋𝑖 ∣ and ∣ 𝑌𝑖 ∣ are the absolute values of the shifted and normalized data points from the 
respective curves. 

We conducted a permutation test with a maxT approach to assess the statistical significance of the 
observed correlation coe icients. We randomly permuted 𝑋 and 𝑌 to recalculate the correlation 
coe icient across 1,000 permutations to simulate the null hypothesis of no correlation. The maxT 
p-value was calculated to determine the probability of observing a correlation as extreme as the 
detected one, or more extreme, under the null hypothesis.  
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Data availability 
Data for the current study will be made available upon publication. 

Code availability 
The code used to process the results and generate the figures as well as the pipeline to process the 
MRI anatomical images will be made available upon publication. 
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Extended Data Fig. 1 

 

Extended Data Fig. 1. Developmental profile and mid-adolescence age. (a) number of growth plate 
closure of each monkey as a function of chronological age. (b) Average canine length of the same subjects, 
aligned on their chronological age. Blue line showed the GAMM fitted trajectory. Gray shaded regions denote 
the 95% confidence intervals (CIs). (c) same as in (b) but aligned on their mid-adolescence age. (d and e) 
Body weight and trunk length, presented in the same fashion as in (c). (f and g) Testicle volume and testicle 
size (length of longer dimension) of the male monkeys, presented in the same fashion as in (c). (h) Nipple 
length of the female monkeys, presented in the same fashion as in (c). The dashed vertical line denotes the 
mid-adolescence age 0. The horizontal bar denotes significant developmental e ect intervals.  
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Extended Data Fig. 2 
 

 

Extended Data Fig. 2. Trial completion performance. Percentage of trials that were deemed correct and 
rewarded as a function of age. (a) Performance in the oculomotor delayed response (ODR) task. (b) 
Performance in the ODR with distractor task. The dashed vertical line denotes the mid-adolescence age 0. 
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Extended Data Fig. 3 

 

Extended Data Fig. 3. Maturation of neuronal tuning and intrinsic timescale. a. Tuning width estimated 
during the cue period as a function of time relative to the mid-adolescence age. Gray line showed the GAMM 
fitted trajectory. Gray shaded regions denote the 95% confidence intervals (CIs). The dashed vertical line 
denotes the mid-adolescence age 0. b. As in a, for tuning during the delay period of the ODR task. c. 
Percentage of explained variance (ω2) of each neuron during cue epoch of ODR task. d. Intrinsic timescale as 
a function of time relative to the mid-adolescence age, each dot is one neuron (n = 508). 
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Extended Data Fig. 4 

 

Extended Data Fig. 4. Raw data and fitted structural developmental trajectories of brain segmentations 
and lobes. (a) Total gray matter (cerebral cortical) volume as a function of age. Blue or gray curve indicates 
the GAMM fitted trajectory. Gray shaded regions denote the 95% confidence intervals (CIs). Blue circle 
denotes the time of peak development velocity. Red triangle denotes the time of maximum value. Dashed 
vertical line denotes the mid-adolescence age 0. The horizontal bar denotes significant developmental e ect 
intervals. (b) As in a, for white matter volume as a function of age.  (c)  As in a, for subcortical volume as a 
function of age. (d-g)Volume, thickness and surface area of the four lobes of the cerebral cortex as a function 
of age. In each panel, top: cortical volume; middle: cortical thickness; bottom: surface area. ROIs were 
determined using Charm atlas level 1. 
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Extended Data Fig. 5 

 

Extended Data Fig. 5. Structural changes of areas during development in parietal, temporal and 
occipital lobes. (a, d, g) (a) cortical volume, (d) cortical thickness and (g) surface area of areas in parietal 
lobe as a function of age. (b, e, h) (b) cortical volume, (e) cortical thickness and (h) surface area of areas in 
temporal lobe as a function of age. (c, f, i) (c) cortical volume, (f) cortical thickness and (i) surface area of 
areas in occipital lobe as a function of age. Each curve indicates the GAMM fitted trajectory of one area in 
Charm 2 atlas in each lobe. Solid curves indicate significant developmental e ect of the GAMM fittings. 
Shaded ribbons denote the 95% confidence intervals (CIs). Circle denotes the time of peak development 
velocity. Triangle denotes the time of maximum volume.   
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Extended Data Fig. 6 

 

Extended Data Fig. 6. Raw data and fitted structural developmental trajectories of areas in frontal lobe. 
(a-d) Volume, thickness and surface area of the areas in frontal lobe as a function of age. In each panel, top: 
cortical volume; middle: cortical thickness; bottom: surface area. ROIs were determined using Charm atlas 
level 2. Blue or gray curve indicates the GAMM fitted trajectory. Gray shaded regions denote the 95% 
confidence intervals (CIs). Blue circle denotes the time of peak development velocity. Red triangle denotes 
the time of maximum value. Dashed vertical line denotes the mid-adolescence age 0. The horizontal bar 
denotes significant developmental e ect intervals.  
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Extended Data Fig. 7 

 

Extended Data Fig. 7. Raw data and fitted structural developmental trajectories of areas in parietal 
lobe. (a-d) Volume, thickness and surface area of the areas in parietal lobe as a function of age. In each 
panel, top: cortical volume; middle: cortical thickness; bottom: surface area. ROIs were determined using 
Charm atlas level 2. Blue or gray curve indicates the GAMM fitted trajectory. Gray shaded regions denote the 
95% confidence intervals (CIs). Blue circle denotes the time of peak development velocity. Red triangle 
denotes the time of maximum value. Dashed vertical line denotes the mid-adolescence age 0. The horizontal 
bar denotes significant developmental e ect intervals.   
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Extended Data Fig. 8 
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Extended Data Fig. 8. Raw data and fitted structural developmental trajectories of areas in temporal 
lobe. (a-g) Volume, thickness and surface area of the areas in temporal lobe as a function of age. In each 
panel, top: cortical volume; middle: cortical thickness; bottom: surface area. ROIs were determined using 
Charm atlas level 2. Blue or gray curve indicates the GAMM fitted trajectory. Gray shaded regions denote the 
95% confidence intervals (CIs). Blue circle denotes the time of peak development velocity. Red triangle 
denotes the time of maximum value. Dashed vertical line denotes the mid-adolescence age 0. The horizontal 
bar denotes significant developmental e ect intervals.  
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Extended Data Fig. 9  

 

Extended Data Fig. 9. Raw data and fitted structural developmental trajectories of areas in occipital 
lobe. (a-d) Volume, thickness and surface area of the areas in occipital lobe as a function of age. In each 
panel, top: cortical volume; middle: cortical thickness; bottom: surface area. ROIs were determined using 
Charm atlas level 2. Blue or gray curve indicates the GAMM fitted trajectory. Gray shaded regions denote the 
95% confidence intervals (CIs). Blue circle denotes the time of peak development velocity. Red triangle 
denotes the time of maximum value. Dashed vertical line denotes the mid-adolescence age 0. The horizontal 
bar denotes significant developmental e ect intervals.  
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Extended Data Fig. 10 

 

Extended Data Fig. 10. Raw data and fitted volumetric developmental trajectories of cerebellum. (a-c) 
Volume of cerebellum, cerebellum cortex and cerebellum white matter as a function of age. In each panel. 
Blue curve indicates the GAMM fitted trajectory. Gray shaded regions denote the 95% confidence intervals 
(CIs). Blue circle denotes the time of peak development velocity. Red triangle denotes the time of maximum 
value. Dashed vertical line denotes the mid-adolescence age 0. The horizontal bar denotes significant 
developmental e ect intervals. 

  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2024. ; https://doi.org/10.1101/2024.08.23.608315doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.608315
http://creativecommons.org/licenses/by-nd/4.0/


Extended Data Fig. 11 

 

Extended Data Fig. 11. Raw data and fitted volumetric developmental trajectories of subcortical 
regions. Blue curve indicates the GAMM fitted trajectory. Gray shaded regions denote the 95% confidence 
intervals (CIs). Blue circle denotes the time of peak development velocity. Red triangle denotes the time of 
maximum value. Dashed vertical line denotes the mid-adolescence age 0. The horizontal bar denotes 
significant developmental e ect intervals. 
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Extended Data Fig. 12 

 

Extended Data Fig. 12. Raw data and fitted volumetric developmental trajectories of Brain stem 
structures. Blue curve indicates the GAMM fitted trajectory. Gray shaded regions denote the 95% confidence 
intervals (CIs). Blue circle denotes the time of peak development velocity. Red triangle denotes the time of 
maximum value. Dashed vertical line denotes the mid-adolescence age 0. The horizontal bar denotes 
significant developmental e ect intervals. 
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Extended Data Fig. 13 

 

Extended Data Fig. 13. White matter maturation during development. Similar to Figure 5g, Stages of 
significant growth and timing of maturation of Radial Di usivity (RD) and Mean Di usivity (MD) of major white 
matter tracts. Each row is an ROI grouped to projection, association and commissural tracts, and brainstem 
white matter regions and short-range white matter. Rows are sorted in the same order as in Figure 5g, 
according to their time of maturation of FA in each group. Colors represent % change per month (red = 
increase, blue = decrease).  
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Extended Data Fig. 14 
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Extended Data Fig. 14. Raw data and fitted FA developmental trajectories. Left, atlas of tracts analyzed. 
Whole-brain tractography pathways were color-coded where red represents transverse (left to right) fibers, 
blue for craniocaudal (dorsal to ventral) fibers, and green for anteroposterior (anterior to posterior) fibers. 
Right, developmental trajectories. Blue or gray curve indicates the GAMM fitted trajectory. Gray shaded 
regions denote the 95% confidence intervals (CIs). Blue circle denotes the time of peak development velocity. 
Red triangle denotes the time of maximum value. Dashed vertical line denotes the mid-adolescence age 0. 
The horizontal bar denotes significant developmental e ect intervals. Panels were sorted in alphabetical 
order. 
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Extended Data Fig. 15 
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Extended Data Fig. 15. Raw data and fitted RD developmental trajectories. Blue or gray curve indicates 
the GAMM fitted trajectory. Gray shaded regions denote the 95% confidence intervals (CIs). Blue circle 
denotes the time of peak development velocity. Red triangle denotes the time of maximum value. Dashed 
vertical line denotes the mid-adolescence age 0. The horizontal bar denotes significant developmental e ect 
intervals. Panels were sorted in alphabetical order. 
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Extended Data Fig. 16 
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Extended Data Fig. 16. Raw data and fitted MD developmental trajectories. Blue or gray curve indicates 
the GAMM fitted trajectory. Gray shaded regions denote the 95% confidence intervals (CIs). Blue circle 
denotes the time of peak development velocity. Red triangle denotes the time of maximum value. Dashed 
vertical line denotes the mid-adolescence age 0. The horizontal bar denotes significant developmental e ect 
intervals. Panels were sorted in alphabetical order. 
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Extended Data Fig. 17 

 

Extended Data Fig. 17. Correlation between the GAMM fitted trajectories of behavioral measures and 
baseline activity of PFC neurons. (a) Correlation between the GAMM fitted trajectories of DI and baseline 
activity of PFC neurons. Curves represent normalized GAMM fitted trajectories. Histogram indicates RMSE 
between corresponding prediction values of the GAMMs. (b) As in (a), for the GAMM fitted trajectories of RT 
and baseline activity of PFC neurons. 
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Extended Data Fig. 18 

 

Extended Data Fig. 18. Correlation between the GAMM fitted trajectories of DI and FA of each white 
matter tracts. In each panel, blue curve represents normalized GAMM fitted trajectory of the FA of the tract 
and red curve represents normalized GAMM fitted trajectory of DI in ORD task. Histogram indicates RMSE 
between corresponding prediction values of the GAMMs. 
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Extended Data Fig. 19 

 

Extended Data Fig. 19. Correlation between the GAMM fitted trajectories of RT and FA of each white 
matter tracts. In each panel, blue curve represents normalized GAMM fitted trajectory of the FA of the tract 
and red curve represents normalized GAMM fitted trajectory of RT in ORD task. Histogram indicates RMSE 
between corresponding prediction values of the GAMMs.  
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Extended Data Table 1:  
 

 

Extended Data Table  1. Morphometric measures and model fit parameters aligned on chronological age and 
mid-adolescence age.   

  

Measures Variable edf F P value AIC 

Body weight Chronological age 3.14 22.14 <10-6 834.10 

mid-adolescence age 5.67 26.77 <10-6 792.43 

Canine length Chronological age 1.00 153.85 <10-6 1054.95 

mid-adolescence age 4.51 39.20 <10-6 1035.80 

Femur length Chronological age 6.27 29.68 <10-6 753.19 

mid-adolescence age 5.72 13.78 <10-6 771.09 

Nipple length Chronological age 4.16 12.88 4.00x10-6 260.70 

mid-adolescence age 4.03 11.05 1.51x10-5 260.32 

Testis length Chronological age 3.55 26.73 <10-6 677.16 

mid-adolescence age 5.89 63.84 <10-6 648.43 

Testis volume Chronological age 4.04 88.10 <10-6 808.09 

mid-adolescence age 5.40 97.21 <10-6 780.90 

Trunk length Chronological age 5.16 23.23 <10-6 692.97 

mid-adolescence age 5.84 34.28 <10-6 688.83 
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Extended Data Table 2:  
 

Subject N(neuron) N(session) 
O 292 53 
P 264 52 
Q 62 16 
R 236 56 
S 330 61 
T 262 36 
U 527 75 
V 158 38 

Extended Data Table 2. Sample sizes for neurons and sessions in each subject. 
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Extended Data Table 3:  
 

 Connection Abbreviation 
Anterior Limb of the Internal Capsule - Left Thalamus and Frontal Cortical ALIC L 
Anterior Limb of the Internal Capsule - Right  ALIC R 
Anterior Cingulum WM - Left Hippocampus, Parietal, and Frontal anterior cingulum L 
Anterior Cingulum WM - Right  anterior cingulum R 
Anterior Corona Radiata - Left Internal Capsule and Cortical ACR L 
Anterior Corona Radiata - Right  ACR R 
Body of Corpus Callosum Interhemispheric Sensorimotor/Posterior body cc 
Cerebral Peduncle - Left Brainstem and Internal Capsule cerebellar peduncle L 
Cerebral Peduncle - Right  cerebellar peduncle R 
Corticospinal Tract - Left Sensorimotor CST L 
Corticospinal Tract - Right  CST R 
Dorsal Posterior Corona Radiata - Left Internal Capsule and Cortical dorsal PCR L 
Dorsal Posterior Corona Radiata - Right  dorsal PCR R 
External Capsule - Left Frontal, Parietal, Occipital, and Temporal external capsule L 
External Capsule - Right  external capsule R 
Fornix Hippocampus and Septal Nuclei fornix 
Genu of Corpus Callosum Interhemispheric Frontal genu 
Inferior Cerebellar Peduncle - Left Cerebellar Input ICP L 
Inferior Cerebellar Peduncle - Right  ICP R 
Inferior Frontal Gyrus WM - Left  IFG L 
Inferior Frontal Gyrus WM - Right  IFG R 
Middle Temporal Gyrus WM - Left  MTG L 
Middle Temporal Gyrus WM - Right  MTG R 
Midbrain White Matter WM - Left  midbrain L 
Midbrain White Matter WM - Right  midbrain R 
Middle Longitudinal Fasciculus - Left Frontal, Parietal, Occipital, and Temporal MLF L 
Middle Longitudinal Fasciculus - Right  MLF R 
Perihippocampal Cingulum - Left Hippocampus, Parietal, and Frontal perihippocampal cingulum L 
Perihippocampal Cingulum - Right  perihippocampal cingulum R 
Posterior Limb of the Internal Capsule – Left Corticospinal and Thalamocortical PLIC L 
Posterior Limb of the Internal Capsule - Right  PLIC R 
Pontine Crossing Tract Spinal Cord and Cerebellar Crossing Fibers PCT 
Posterior Corona Radiata - Left Internal Capsule and Cortical PCR L 
Posterior Corona Radiata - Right  PCR R 
Posterior Thalamic Radiation - Left Optic Radiation PTR L 
Posterior Thalamic Radiation - Right  PTR R 
Retrolenticular Limb of the Internal Capsule - 
L f

Thalamus and Posterior Cortical retrolenticular LIC L 
Retrolenticular Limb of the Internal Capsule - 
Ri h

 retrolenticular LIC R 
Superior Fronto-Occipital Fasciculus - Left Frontal, Parietal, and Occipital SFOF L 
Superior Fronto-Occipital Fasciculus - Right  SFOF R 
Superior Longitudinal Fasciculus - Left Frontal, Parietal, Occipital, and Temporal SLF L 
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Superior Longitudinal Fasciculus - Right  SLF R 
Splenium of Corpus Callosum Interhemispheric Posterior splenium 
Superior Cerebellar Peduncle - Left Cerebellar Output SCP L 
Superior Cerebellar Peduncle - Right  SCP R 
Superior Cingulum - Left Hippocampus, Parietal, and Frontal superior cingulum L 
Superior Cingulum - Right  superior cingulum R 
Superior Corona Radiata - Left Internal Capsule and Cortical SCR L 
Superior Corona Radiata - Right  SCR R 
Superior Temporal Gyrus WM - Left  STG L 
Superior Temporal Gyrus WM - Right  STG R 
Uncinate Fasciculus - Left Hippocampus and Orbitofrontal Cortex uncinate fasciculus L 
Uncinate Fasciculus - Right  uncinate fasciculus R 

 

Extended Data Table 3. Description of selected ROIs from white matter (WM) atlas analyzed.  
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