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Abstract: Glioblastoma (GBM) is the most common and aggressive primary brain tumor. Currently,
treatment is ineffective and the median overall survival is 20.9 months. The poor prognosis of GBM
is a consequence of several altered signaling pathways that favor the proliferation and survival of
neoplastic cells. One of these pathways is the deregulation of phosphodiesterases (PDEs). These
enzymes participate in the development of GBM and may have value as therapeutic targets to treat
GBM. Methylxanthines (MXTs) such as caffeine, theophylline, and theobromine are PDE inhibitors
and constitute a promising therapeutic anti-cancer agent against GBM. MTXs also regulate various
cell processes such as proliferation, migration, cell death, and differentiation; these processes are
related to cancer progression, making MXTs potential therapeutic agents in GBM.
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1. Introduction

Glioblastoma (GBM) is the most aggressive and most frequent primary malignant tumor of
the central nervous system (CNS) [1]. It occurs more frequently in men and in people older than
55 years [2]. Pathological characteristics of GBM include cellular heterogeneity, angiogenesis, high
proliferation rate, and increased migratory capacity [3]. The treatment of GBM consists of surgical
resection, radiotherapy, chemotherapy, and novel therapies such as alternating electrical fields [4].
Nevertheless, even with these novel therapeutic approaches, the overall survival of patients is around
20.9 months [5].

Activation of aberrant signaling pathways in GBM may promote the survival of neoplastic cells [6]
and can provide new therapeutic targets. For example, phosphodiesterase (PDE) dysregulation in
GBM leads to the survival, proliferation, and dedifferentiation of neoplastic cells [7]. Targeting this
pathway could therefore be a valuable tool therapy for GBM.

Due to the ineffectiveness of the current GBM therapy, diverse natural compounds have been
evaluated as chemotherapeutic agents, for example, resveratrol, curcumin, epigallocatechin 3-gallate
gallate (EGCC), and others. These agents can be used as adjuvant therapy to improve standard
treatments [8]. Curcumin is effective alone and combined with standard therapy in glioma cells; it
also induces neural differentiation of human pluripotent embryonal carcinoma cells [9]. The EGCC in
green tea induces cell death and reduces cellular proliferation and invasion in diverse glioma cell lines.
It also enhances the efficacy of chemotherapy and radiotherapy in GBM [10]. Among these agents are
the methylxanthines (MXTs); these are natural compounds with anti-cancer properties, the induction
of apoptosis, the reduction of cellular migration, the arrest of the cell cycle, and the inhibition of PDEs.
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All these properties constitute therapeutic targets against GBM. Information about the effectiveness
and mechanisms of the action of MTXs on GBM is summarized in the present review.

There are several natural or synthetic compounds that inhibit the activity of PDEs, such as
MXTs, which are natural PDE-inhibitors and are currently used as therapy for several non-neoplastic
diseases, with adequate pharmacokinetic, pharmacodynamic, and security profiles [11]. Due to their
pharmacological properties, MXTs could become an adjuvant therapy against GBM [12,13]. However,
their potential effectiveness against GBM remains controversial (Table 1). In the following paragraphs,
we will discuss the current status of natural MXTs as therapy for GBM in vitro and in vivo (Figure 1).

Table 1. Effect of methylxanthines in glioma.

Main Author
(Reference) Methylxanthine Type of

Study Relevant Methodology Relevant Results

Moon et al., 2012 [14] Theophylline In vitro A-172 and U87MG cell lines Reduces the survival and
proliferation

Nagai et al., 1971 [15] Theophylline In vitro
Human glioblastoma cells

and glioma cells induced by
MC in C57 black mouse

Induces morphological
changes

Sato et al., 1975 [16] Theophylline In vitro Mouse glioma cell line
Induces glial-like

morphological changes and
expression of S-100 protein.

Takanaga et al., 2004 [17] Theophylline In vitro C6 cell line

N6,2′-O-dibutyryl cAMP
(Bt2AMP) and theophylline

caused delayed
phosphorylation of STAT3
and expression of GFAP.

Sugimoto et al., 2014 [18] Theobromine In vitro U87MG cell line

Anti-tumoral and
anti-inflammatory effects.
Inhibits proliferation and

induces apoptosis.

Stewart et al., 1987 [19] Caffeine Clinical
25 patients with gliomas

Caffeine added to cytosine
arabinoside plus cisplatin

Presence of caffeine-induced
seizures 48% of the patients

responded.

Janss et al., 1998 [20] Caffeine In vitro U251 glioma cells
Caffeine reduced the ID50

and ID90 of cisplatin
promoting apoptosis.

Chen et al., 2014 [21] Caffeine In vitro C6 and U87MG cell lines
Caffeine decreases migration
by inhibition of ROCK-focal
adhesion complex pathway.

Sinn et al., 2010 [22] Caffeine In vitro U87MG, T98G and U373MG
cells lines

Inhibits PI3K,
downregulating the

PI3K/Akt pathway and
induces apoptosis.

Ku et al., 2011 [23] Caffeine In vivo Mouse xenograft model of
GBM Inhibits of the IP3R3.

ID50, inhibitory dose 50. ID90, inhibitory dose 90. STAT3, signal transducer and activator of transcription 3. MC,
methylcholantrene. ROCK, rho-associated protein kinase. PI3K, phosphoinositide 3-kinase. Akt, protein kinase B.
IP3R3, inositol triphosphate receptor type 3. RR, relative risk. CI, confidence interval. mL, milliliters. NIH-AARP,
National Institutes of Health-American Association of Retired Persons.
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cathepsin B); cell proliferation (NF-kB); cell cycle (pRB) and epigenetic mechanisms (HAT‒histone 
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Figure 1. Mechanisms of action of methylxanthine (MTXs) in glioblastoma (GBM). The figure shows
common pathways regulated by MTXs (black arrows) including inhibition of phosphodiesterases
(PDEs) (reducing the levels of cyclic Adenosine Monophosphate (cAMP)); regulation of cell proliferation
(PI3K/AKT-mTOR); and cell death (caspase 3). Particularly, caffeine (blue arrows) promotes cell death
(FOXO1-Bim); cell migration (by these proteins ROCK/FAK pathway, MAPK and cathepsin B); cell
proliferation (NF-kB); cell cycle (pRB) and epigenetic mechanisms (HAT-histone acetyltransferases and
HDAC-1). Theobromine (orange arrow) regulates cell proliferation (ERK) and apoptosis (JNK and
p38). Theophylline (green arrow) regulates cell differentiation (JAK/STAT3 pathway), the epigenetic
mechanism (HDAC-2) and alternative splicing (SRSF3). The figure was designed using Servier Medical
Art©.

2. Phosphodiesterases in Glioblastoma (GBM)

PDEs are enzymes that hydrolyze the phosphodiester bond in the cyclic Guanidine Monophosphate
(cGMP) and cyclic Adenosine Monophosphate (cAMP), lowering their intracellular concentration.
These nucleotides act as second intracellular messengers and participate in cellular metabolism, cell
growth, differentiation, and proliferation. They also participate in functions such as reproduction,
cardiac function, vision, inflammation, and oncogenesis [24].

The PDE gene family has 11 different members (PDE1 to PDE11) with 21 genes that encode up
to 100 different subtypes of proteins. They are grouped by their substrate specificity: cAMP-specific
are PDE4, PDE7, and PDE8; cGMP-specific are PDE5, PDE6, and PDE9; the rest use both cAMP and
cGMP [12,24].

Alterations in PDE activity contribute to tumorigenesis, reducing the levels of the cyclic nucleotides,
which are described in malignant cells [25,26]. In GBM, overexpression of PDE4A1 correlates with
reduced levels of cAMP [27,28]. On the other hand, PDE5 expression was associated with prolonged
overall survival and the inhibition of PDE5 induced a more aggressive phenotype in vitro [7]. Breast
and colon cancer cells treated with PDE inhibitors elevate their intracellular cAMP levels, which induce
apoptosis, decreased cell migration, and growth arrest [12].

There is not enough information to define the role of cyclic nucleotides or PDE in GBM (Table 2).
Some reports point to cyclic nucleotides as pro-oncogenic signals, and the regulation of PDEs constitutes
a therapeutic alternative [12]. However, there are also reports that show that PDEs are related to an
overall benefit to the patient. It is important to elucidate the exact role of cyclic nucleotides to propose
their inhibitors as candidates for adjuvant therapy in GBM.
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Table 2. Role of phosphodiesterases on glioblastoma.

Phosphodiesterase Gene
Chromosome Substrate Main Function Participation in GBM Ref.

PDE1
PDE1A, B, C

2q32.1, 12q13.2,
7q14.3

cAMP and
cGMP

Promotes cell proliferation
and migration

PDE1C is overexpressed on
GBM [29–32]

PDE2 PDE2A
11q13.4

cAMP and
cGMP

Regulates endothelial
permeability and

proliferation and nNOS
expression.

PDE2A is overexpressed in
low grade glioma [33,34]

PDE3
PDE3A, B
12q12.2,
11p15.2

cAMP and
cGMP

Smooth muscle contraction,
insulin signaling, blood
vessel formation, and

antiapoptotic and
anti-inflammatory pathways

N. D. [35–37]

PDE4

PDE4A, B, C, D
19p13.2, 1p31.3,

19p13.11,
5p11.2-q12.1

cAMP

Promotes blood vessel
formation, monocyte and

macrophage activation, and
antiapoptotic and

anti-inflammatory pathways

PDE4 promotes the tumor
growth

Hypermethylation of the
PDE4C promoter is

associated with high
malignant grade and

reduced overall survival

[36,38–41]

PDE5 PDE5A
4q26 cGMP Regulates cell signaling

PDE5 is overexpression
correlates with longer

overall survival, and its
inhibition induces an

invasive phenotype of GBM

[7,42]

PDE6
PDE6A, B, C
5q32, 4p16.3,

10q24
cGMP Participates in rod and cone

photoreceptor function N. D. [43–45]

PDE7 PDE7A, B
8q13, 6q23-24 cAMP Modulation of T-cell

proliferation
PDE7B overexpression
induces tumor growth [46–49]

PDE8
PDE8A, B
15q25.3,
15q13.3

cAMP Controls T cells and breast
cancer cells motility

PDE8A expression correlates
with an increased overall

survival
[50–53]

PDE9 PDE9A
21q22.3 cGMP

Participates in synaptic
plasticity and cognitive

function
N. D. [54,55]

PDE10 PDE10A
6q26

cAMP and
cGMP

Regulates intracellular
signaling and controls

striatal gene expression

PDE10A is deleted on GBM
tissue [56–58]

PDE11 PDE11A
2q31.2

cAMP and
cGMP

Contributes to sperm
development N. D. [59]

GBM, glioblastoma; Ref., reference; PDE, phosphodiesterase; cAMP, cyclic Adenosine Monophosphate; cGMP, cyclic
Guanosine Monophosphate; nNOS, neural Nitric Oxide Synthetase; N. D., no data. Cursive for gene names.

3. Methylxanthines

MXTs are natural alkaloids and secondary metabolites in various botanical species (Camellia
sinensis L., Theobroma cacao, and Coffea sp.) such as caffeine, theophylline, and theobromine. They occur
in dietary products like tea, coffee, chocolate, and energy drinks [60,61].

MXTs are clinically used in the treatment of various diseases, such as obesity, hyperlipidemia,
chronic obstructive pulmonary disease, asthma, peripheral vascular disease, and apnea of
prematurity [62]. Their use is under investigation in the treatment of cancer and neurodegenerative
diseases. Recently, their potential role as antineoplastic has gained attention [12,60,63].

MXTs bind to adenosine receptors [64], which participate in several cellular functions, and their
expression correlates with tumor survival, chemoresistance, grade, and cancer cell survival [65,66].

Adverse effects (AE) of MTXs are dizziness, irritability, nervousness, tremors, sleep difficulty,
diarrhea, nausea, and vomiting [67]. The most relevant AEs are cardiovascular, arrhythmias and
cardiac arrest. Caffeine and theophylline show similar AEs, whereas theobromine requires higher
doses to become toxic [60]. For caffeine, 15 mg/L is the threshold for toxicity in humans; doses up to
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20 g can lead to death secondary to cardiac arrhythmias, ventricular fibrillation, or kidney failure [68].
Administration of MTXs to pregnant women requires special attention [67,69].

3.1. Caffeine

Caffeine (1,3,7-trimethylxanthine) is extracted from the Coffea sp. and from the leaves of some teas.
The physiological effects of caffeine include central nervous system (CNS) stimulation, smooth muscle
relaxation, and tachycardia [70]. Caffeine has a wide absorption via the digestive system, easy passage
of the blood-brain barrier (BBB), and good systemic distribution. Once absorbed, 95% of caffeine is
metabolized to paraxanthine (85%), theobromine (10%), and theophylline (5%) [71,72].

Caffeine is used for treatment of apnea of prematurity in infants between 28 and 33 weeks of
gestational age; it is effective in other pathologies such as fatigue [73]; headache; migraine [72,74];
orthostatic hypotension [75]; and other neurological diseases such as depression [76], brain injury [77],
anxiety [78], and Alzheimer’s [79] and Parkinson’s disease [80].

Another promising clinical application of caffeine is in neuro-oncology. The population with
the greatest caffeine consumption showed a reduced prevalence of gliomas [81]. Caffeine has been
tested as a therapeutic adjuvant in the treatment of gliomas; Stewart et al. showed the beneficial
effect of the combination of caffeine plus cytosine arabinoside and cisplatin [19]. Caffeine potentiates
cisplatin-induced and camptothecin-induced apoptosis (G2 phase shortening) in glioma cell lines [20],
increasing the subG1 stage [21].

Sinn et al. [22] showed that caffeine can sensitize radiation-resistant cells (U87MG, T98G, and
U373MG), due to the activation of the checkpoint in the G1 phase. This effect may be explained by
the capability of caffeine to inhibit phosphoinositide 3-kinase (PI3K), down-regulating the PI3K/Akt
pathway and inducing apoptosis.

Caffeine can induce apoptosis and cell cycle arrest via different mechanisms; apoptosis can be
induced by inhibition of PI3K, by activation of caspase-3, poly(ADP-ribose) polymerase (PARP), or
forkhead box protein O1 (FoxO1) [23,82,83]. Caffeine in combination with tetrandrine (a natural
alkaloid isolated from the root of the plant Radix Stephania Tetrandrae) induces apoptosis, independent
of caspase activation [84]. Additionally, epigenetic modifications such as decreased activity of histone
deacetylase 1 (HDAC1) and increased activity of histone acetyltransferase have been related to induction
apoptosis by caffeine [85]. The MXT arrest the cell cycle in G0/G1 suppressing Rb phosphorylation [82],
whereas caffeine also induces shortening of the G2 phase [20].

An important aspect of the malignancy in GBM is its ability to infiltrate healthy brain parenchyma.
It has been proposed that caffeine can induce a cytotoxic effect, preventing the invasive behavior of
glioma cells. These effects may result of interactions of caffeine with intracellular calcium. They can be
due to the inhibition of the inositol triphosphate receptor type 3 (IP3R3), which has been associated
with longer survival in a mouse xenograft model of GBM [86].

Focal adhesion complexes are used by GBM cells to invade and migrate. This complex is regulated
by Rho-associated protein kinase (ROCK); caffeine inhibits migration of glioma cells, apparently
through phosphorylation of p21, glycogen synthetase kinase 3 beta, and the ROCK pathway [23]. This
decreased migration correlates with an experimental reduction of tumor growth [21,87].

Another important feature of GBM is angiogenesis. Hypoxia induces the expression of
hypoxia-inducible factor 1 alpha (HIF-1a) protein, which promotes the expression of vascular endothelial
growth factor (VEGF), inducing the formation of new blood vessels. Caffeine inhibits the expression of
HIF-1α and VEGF [88].

In summary, caffeine can block several pathological pathways in GBM. Caffeine induces apoptosis,
blocks the cell cycle, prevents migration and invasion of neoplastic cells, and inhibits angiogenesis.

3.2. Theophylline

Theophylline (1,3-dimethylxanthine) is extracted mainly from the tea plant (Camellia sinensis
L.) and yerba mate (Ilex Paraguariensis) [89,90]. Theophylline stimulates the CNS and induces
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bronchodilatation [91,92]. Theophylline decreases metastasis, inflammation, and therapy-resistance
in cancer cells. The role of theophylline has been related to the inhibition of PI3K, an activated
pathway in cancer that favors metastasis and resistance to treatment [93]. In addition, it acts as an
immunomodulator due to the activation of the HDAC-2 protein, which suppresses the expression of
inflammatory genes [63,91,94]. This drug reduces survival and proliferation of A-172 and U87MG
glioma cells [14]. Theophylline has been tested in other types of cancer, such as lung cancer. Domvri et al.
showed the synergic effect between PDE inhibitors and chemotherapeutic agents (docetaxel, cisplatin,
and carboplatin) [95]. In cervical and breast cancer cells, theophylline mediates alternative splicing
through suppression of serine/arginine-rich splicing factor 3 (SRSF3) and its target genes, these effects
alter the status of p53 isoforms, which contributes to cancer progression in these cells [96].

3.3. Theobromine

Theobromine (3,7-dimethylxanthine) is derived from Theobroma cacao, which is a metabolite from
caffeine and is found in chocolate, tea, and some species of Camellia sinensis L. [60]. It has been shown
that cocoa and its metabolites are antioxidant and cardiovascular protectors; theobromine might also
possess anti-tumor and anti-inflammatory effects mediated by the elevation of intracellular cAMP
levels due to the non-selective inhibition of PDE4A1 [18].

Theobromine passes the BBB and placental barriers, inducing neurophysiological effects [97] such
as inhibition of adenosine receptors in the CNS [90]. However, as it lacks a methyl group, theobromine
has a modest metabolic activity, being limited in its distribution in the CNS [60].

In GBM, Sugimoto et al. reported that theobromine inhibits proliferation and promotes cell death
in the U87MG cell line, through inhibition of AKT/mTOR and PDE4. It was also shown that cell death
induced by theobromine was related to the switch between the activity of ERK, JNK, and p38, inducing
apoptosis; theobromine may prevent tumor progression by inhibiting NF-kB-phosphorylation [18].

4. Methylxanthines and Cellular Differentiation

The effect of theophylline as a modulator of differentiation was evaluated in GBM by Nagai et al.
They reported that theophylline induces morphological changes in human glioblastoma and in
malignant glioma cells induced by methylcholanthrene in mouse C57, to a less malignant phenotype [15].
Sato et al. also reported that theophylline induces glial-like morphological changes and expression of
a protein marker of glial cells (S-100 protein) after five days of exposure in a mouse glioma cell line.
From the sixth day of exposure, viability of this cell population was decreased [16], which could be
interpreted as programmed death of differentiated cells.

Glioma cell treatment with N6,2′-O-dibutyryl cAMP (Bt2AMP) and theophylline caused delayed
phosphorylation of the signal transducer and the activator of transcription-3 (STAT3) as well as
expression of an astrocyte marker, glial fibrillary acidic protein (GFAP) [17].

There are few publications specifically describing differentiation induced by caffeine. The first
clue about a possible role in differentiation of caffeine was mentioned by Kreider et al., in 1973; the
authors found that non-toxic doses of caffeine can induce morphological changes of mature cells in
melanoma cells [98]. In 1986, an epidemiological study in patients with breast cancer showed that
high caffeine consumption correlated with an increased degree of cell differentiation in the tissue [99].
The morphological differentiation of neoplastic cells can be induced by the addition of caffeine, in a
time-dependent manner, to sensitize the cancer cells to antineoplastic therapies like that with cisplatin,
a widely used drug against various types of cancer, including GBM [100].

As can be speculated, information about the role of MTX as a differentiating drug is promising;
nevertheless, research about this is limited.

5. Conclusions

The design of novel therapies for the treatment of GBM is urgently needed. However, the creation
of novel therapeutic substances implies a large investment of time and money. In various fields of
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pharmacotherapy, there is an alternative—namely, drug repurposing. This is a process in which
drugs that are clinically used are explored for other clinical indications. MXTs have beneficial effects
in different GBM cell types and in animal models. However, there is limited knowledge about the
specificity of these drugs to inhibit PDEs, such as the potential therapeutic use of MTXs against
malignant properties of GBM.

MXTs regulate various cell processes such as proliferation, migration, cell death, and differentiation,
all of them related to cancer progression, which are potential therapeutic targets in GBM (Figure 1).
More research should be conducted on the role of different PDEs in GBM, as well as on the specificity
of MXTs for different PDEs, which can lead to defining potential therapeutic applications of MXTs
against GBM.

MXTs are classical pharmacological substances, with defined effectiveness and safety profiles, so
the repurpose of these drugs is a fair possibility. All MXTs have similar toxicity profiles; side effects are
related to the dose, so in order to prevent them, it is important to define the target mechanisms and the
different dosages to achieve them.

There are several gaps in our knowledge of the pathological or physiological effects related to
specific PDEs and the potential benefits of different MXTs.
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