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Genetic variants such as copy number variation (CNV), microsatellite instability (MSI),
and tumor mutation burden (TMB) have been reported to associate with the immune
microenvironment and prognosis of patients with breast cancer. In this study, we
performed an integrated analysis of CNV, MSI, and TMB data obtained from The
Cancer Genome Atlas, thereby generating two genetic variants-related subgroups. We
characterized the differences between the two subgroups in terms of prognosis, MSI
burden, TMB, CNV, mutation landscape, and immune landscape. We found that cluster
2 was marked by a worse prognosis and lower TMB. According to these groupings,
we identified 130 differentially expressed genes, which were subjected to univariate
and least absolute shrinkage and selection operator-penalized multivariate modeling.
Consequently, we constructed an 11-gene signature risk model called the genomic
variation-related prognostic risk model (GVRM). Using ROC analysis and a calibration
plot, we estimated the prognostic prediction of this GVRM. We confirmed the predictive
efficiency of this GVRM by validating it in another independent International Cancer
Genome Consortium cohort. Our results conclude that an 11-gene signature developed
by integrated analysis of CNV, MSI, and TMB has a high potential to predict breast
cancer prognosis, which provided a strong rationale for further investigating molecular
mechanisms and guiding clinical decision-making in breast cancer.

Keywords: breast cancer, prognostic signature, genetic variants, copy number variation, microsatellite instability,
tumor mutation burden

INTRODUCTION

Breast cancer is the most commonly diagnosed cancer and the second leading cause of cancer-
related deaths in women worldwide (DeSantis et al., 2019). While patients diagnosed with early-
stage tumors have increased the 5-year survival rate to more than 90%, the 5-year survival rate for
patients with metastatic diseases is reduced to ∼25% with currently available systemic treatment
modalities including chemotherapy, endocrine therapy, and targeted biological therapy (Bonotto
et al., 2014). The success of immune checkpoint blockade (ICB) in melanoma, non-small cell lung
cancer, and other solid tumors has led to emerging enthusiasm for investigating immunotherapy
to treat patients with breast cancer. Breast tumors have been generally considered immunologically
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cold, characterized by limited effector lymphocyte infiltration,
and low mutation and neoantigen burden (Bates et al., 2018;
Adams et al., 2019). Therefore, there is still an unmet need
in identifying novel biomarkers for patients who might benefit
from ICB therapy.

Some common genetic variants in cancer cells have
been shown to associate with PD-1– and PD-L1–based
immunotherapy (Cristescu et al., 2018). Pan-cancer analyses
revealed that high copy number variation (CNV) was associated
with increased proliferation signature and decreased immune
infiltration signature (Taylor et al., 2018). Correspondingly,
somatic CNV was reported to negatively correlate with response
to CTLA-4 and PD-1/PD-L1 blockade (Davoli et al., 2017). High
tumor mutation burden (TMB) has emerged as a biomarker of
responsiveness to immunotherapy in several tumor types (Rizvi
et al., 2015; Samstein et al., 2019). Microsatellite instability (MSI)
was also recognized as a predictive marker for immunotherapy
response (Le et al., 2015, 2017). MSI caused by deficiency of
DNA mismatch repair genes is associated with accumulation
of mutational load and neoantigen production, which may
contribute to the better response of ICB. Of note, MSI and
TMB were subsequently approved by the FDA as tissue-agnostic
predictive biomarkers for pembrolizumab (Passaro et al., 2020).
Moreover, CNV, TMB, and MSI were found to be associated
with breast cancer prognosis (Horlings et al., 2010; Fusco et al.,
2018; Thomas et al., 2018). Hence, integrated analysis of gene
expression based on these three genetic variants may more
accurately identify a gene signature model to predict the immune
response and prognosis in breast cancer.

In this study, we performed an integrated clustering of somatic
CNV, MSI, and TMB of 1,079 breast cancer samples from The
Cancer Genome Atlas (TCGA) database, for which complete
clinical parameters and prognosis are available. Consensus
clustering based on k-means revealed two subgroups. We further
explored their differences in survival, mutation pattern, TMB,
CNV, immune cell infiltration, and potential immune response of
ICB by the Tumor Immune Dysfunction and Exclusion (TIDE)
algorithm. Next, we identified an 11-gene signature associated
with prognosis based on the differentially expressed genes
(DEGs) between the two subgroups using least absolute shrinkage
and selection operator (LASSO) Cox regression. The prognostic
impact of this genetic variants-related risk score was validated
with external datasets. To predict survival for an individual
patient with breast cancer, we developed a prognostic nomogram
model by integrating the genetic variants-related risk score and
clinicopathological features. The performance of the nomogram
was evaluated by calibration curve and decision curve analysis.

MATERIALS AND METHODS

Data Source
The Cancer Genome Atlas-BRCA gene expression data
(n = 1,072), mutation data (n = 986), copy number data
(n = 1,080), and corresponding clinical data (n = 1,079) were
downloaded from the UCSC Xena1 website. The patients’

1http://xena.ucsc.edu/

characteristics involved are shown in Supplementary Table 1. In
this study, we investigated the transcriptional data in both counts
and Fragments Per Kilobase of transcript per Million mapped
reads (FPKM) values, raw counts data were used for differential
expression analyses, while the gene expression units for
downstream analyses were transformed with log2([FPKM] + 1).
We selected significantly mutated genes derived by identification
of driver gene studies and a molecular portrait of MSI across
multiple cancers (Kandoth et al., 2013; Cortes-Ciriano et al.,
2017). The BRCA-KR data from the International Cancer
Genome Consortium (ICGC) was used as an independent
validation cohort (n = 50).

Microsatellite Instability Data Processing
Microsatellite instability was identified at the transcriptional level
using the PreMSIm algorithm (Li et al., 2020) in R software
for TCGA-BRCA data. Under the default parameters, PreMSIm
first scanned the FPKM data (log2-transformed) to distinguish
MSI-high (MSI-H) cancers from MSI-low/microsatellite stability
(MSS) samples, leading to obtaining a binary matrix for MSI
identification. In this MSI classification call, 1 represents MSI,
and 0 represents MSS. Samples of quantitative MSI burden were
obtained from previous work done by Cortes-Ciriano et al.
(2017).

Somatic Copy Number Alteration Data
Processing
The somatic copy number alteration (SCNA) genome feature was
defined as a repetitive region with a change in copy number
determined by the algorithm GISTIC2.0 (Mermel et al., 2011).
We determined the SCNA features and their binary status in
each sample by using the SCNA processing method based on a
previous study (Ciriello et al., 2013). The specific methods are
illustrated as follows: We extracted the peak area of GISTIC
results of all tumor types as SCNA features. For peak regions with
the same gene, only one peak region was reserved. To determine
copy number alteration events, we used the set of discrete copy
number calls provided by GISTIC: homozygous deletion (−2);
hemizygous deletion (−1); diploid (0); low-level gain (1); and
high-level amplification (2). When more than half of the genes in
the amplified or deleted peak region were high-level amplification
(2) or homozygous deletion (−2), the copy number of the peak
region is defined as changed. To obtain the SCNA by a sample
binary matrix, we assigned a value to each SCNA feature of each
sample where 1 represents feature changes, and 0 represents no
feature changes, leading to an SCNA feature description matrix.

SCNA burden scores were computed using masked copy
number segment data from the UCSC Xena website and defined
as the sum of the log2-transformed copy-number ratio (tumor vs.
normal) of genomic segments normalized by segment length.

modified TMB Data Processing
modified TMB (mTMB) was defined as the total number
of unique genes with mutations. Only seven types of
mutations were considered in this study: Nonsense_Mutation,
Nonstop_ Mutation, Missense_Mutation, Frame_Shift_del,
Frame_Shift_Ins, Splice_Site, and Translation_Start_Site. For
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mTMB features, (1) after merging the MAF data of TCGA-BRCA,
we extracted 1,399 most frequently mutated genes according to
the cut-off of a certain gene mutation sample accounting for
1% of the total number of samples; (2) significantly mutated
genes were obtained by identification of driver gene studies
(Kandoth et al., 2013).

Integrating of Genomic Variation Data
We constructed a total of 1,536 genome variant features,
including 46 copy number amplifications, 21 copy number
deletions, 1 MSI, and 1,468 genes after a series of data processing.
We then characterized the SCNA, MSI, and mTMB features
in each tumor sample in a binary manner to indicate whether
genomic variations occurred in each tumor sample. This resulted
in three binary features of the sample matrix constructed by
SCNA, MSI, and mTMB, where 1 represents the presence of
genomic alterations, and 0 represents no genomic alterations in
the matrix. Here, the above three matrices were called genome
variation feature description matrices.

Sample Clustering Based on Genomic
Features
We integrated the three genomic variation feature description
matrices into one matrix initially. The columns and rows
represent the sample and the corresponding genomic variation,
respectively. We got a total of 961 valid samples. R package
“iClusterPlus” (Mo et al., 2013) was used for integrative clustering
analysis of multi-type genomic variations. Under the processing
of default parameters, we tried different classification modes at
k = 1–5, and finally k = 1, that is, cluster = 2 as the optimal
classification result (Supplementary Figure 1). For the features
selection, we used the quartile of the sum of the beta values
of a certain feature in all samples as the standard, and a value
greater than the upper quartile as the features that contribute
significantly to the group were filtered.

Differential Expressed Gene Analysis
Based on the gene expression data (counts) of the TCGA-
BRCA dataset, we used the “DESeq2” package (Love et al.,
2014) in R to analyze the DEGs between the two genomic
subgroups. The screening criteria for DEGs is at p < 0.05 and
absolute log2FC > 2.

Prognostic Risk Model Construction and
Analysis
The “coxph” function of the “survival” package in R was used to
perform Cox analysis on samples and corresponding genes. In
univariate Cox analysis, we considered the target gene as a factor
that independently affected the prognosis for regression analysis
and calculated the risk score and significance of each gene. The
parameters used in univariate Cox analysis were:

coxph(formula = Surv (time, status) ∼ variable, data

= clinical.data)

In the multivariate Cox analysis, we considered the target gene
as a cofactor which related to other characteristics.

The parameters used in multivariate Cox analysis were:

coxph(formula = Surv (time, status) ∼ variable1+ variable2

+ . . .+ variable (i) , data = clinical.data)

By analyzing the Cox regression coefficient of each gene, the
sum of the Cox regression coefficient and the expression of the
corresponding gene was used as the risk value to measure the
risk of the sample. The risk score formula for each sample was
calculated as follows:

Risk score = −0.0076 ∗ FGF10
(
Exp

)
+ 0.0210 ∗ CSF3

(
Exp

)
+ 0.0288 ∗ NPY

(
Exp

)
+ 0.0125 ∗ KLK3

(
Exp

)
+ 0.0158 ∗ SST

(
Exp

)
− 0.0250 ∗ XIRP2

(
Exp

)
+ 0.0275 ∗ C15orf 43

(
Exp

)
+ 0.0124 ∗ VCX3A

(
Exp

)
+ 0.0065 ∗ ISX

(
Exp

)
+−0.0343 ∗ OR6T1

(
Exp

)
+ 0.0004 ∗ FDCSP

(
Exp

)
Cox analysis was performed under the default parameters of
the “coxph” function at the degree of significance of p < 0.05.
The “glmnet” function of the “lars” package was used to
perform LASSO analysis on the samples and corresponding
genes. The parameters used in LASSO analysis were alpha = 1,
nlambda = 100, and p < 0.05 was considered as the degree
of significance.

Copy Number Variation and
Single-Nucleotide Polymorphism
Analysis
Single-nucleotide polymorphism (SNV) analysis was based on
the “maftools” package in R (Mayakonda et al., 2018). The default
parameters were used to analyze the mutations of the TCGA-
BRCA dataset. The statistics of mutation results are directly
generated by the “oncplot” function of the “maftool” package.
The analysis of CNV was performed using the GISTIC2.0
algorithm. The specific parameters used were set as follows: -ta
0.1 -armpeel 1 -brlen 0.7 -cap 1.5 -conf 0.75 -td 0.1 -genegistic 1
-gcm extreme -js 4 -maxseg 2000 -qvt 0.25 -rx 0 -savegene 1.

Immune Infiltration Analysis
The tumor immune infiltration analysis was based on the gene
expression data of TCGA-BRCA. The tumor immune cell ratio
analysis of each sample was performed through the “Cibersort”
software with the default parameters (Newman et al., 2015).
Additionally, the “TIDE” software2 was used to analyze the
difference in immune efficacy with the default parameters.

Statistical Analysis
The unpaired Student’s t-test was used to analyze the comparison
between two continuous variables and a normally distributed
variable. Non-normally distributed variables were analyzed
by the Mann–Whitney U test or Wilcoxon rank-sum test.

2https://github.com/liulab-dfci/TIDEpy
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To compare three or more groups, ANOVA and Kruskal–
Wallis test were performed on the parametric method and the
non-parametric method. The threshold of significance was at
P-value < 0.05 or P-value < 0.01. Different significance levels
were represented in different analyses.

RESULTS

Genomic Variation Features to Classify
the Cancer Genome Atlas Breast Cancer
Samples Into Subgroups
We characterized the three genome variants based on the MSI
data, CNV data, and SNV data of the TCGA-BRCA dataset.
After integrating the three genomic variation characteristics (a
total of 1,536), the BRCA samples were separated into two
genomic subgroups: cluster 1 and cluster 2 (Figure 1A). We
found that cluster 2 basically gathered all the death cases,
and was more inclined to have a higher-level stage, stage_M,
stage_N, and stage_T on samples (p < 0.001), suggesting that the
characteristics of genomic variation were significantly associated
with tumor malignancy. Additionally, cluster 2 was also
significantly associated with gender (p = 0.015), HER2 positive
(p < 0.001), and triple-negative breast cancer (p = 0.005), but not
BRCA1, BRCA2, ER, and PR (p > 0.05). Interestingly, there were
67 SCNA fragments among the 1,536 genomic characteristics,
where 46 fragments were copy number amplifications, and 21
fragments were copy number deletions. The remaining features
were all point mutations. In terms of point mutation types,
samples with more gene mutations were clustered in cluster
1. These results suggest that, on the one hand, copy number
amplification plays a more important role in the progression of
breast cancer than copy number deletion. On the other hand,
the malignancy of breast cancer is not contributed by all gene
mutations. From the statistical point of view of the number of
samples, the proportion of cluster 1 and cluster 2 samples was
close to 7:13 (Figure 1B).

Differences in Microsatellite Instability
Burden, Somatic Copy Number
Alteration Burden, and modified TMB
Between the Two Subgroups
Next, the relevant indicators between subgroups were analyzed.
In terms of survival differences between subgroups, the patients’
outcomes of cluster 1 were significantly better than that of
cluster 2 (log-rank, p < 0.001, Figure 1C). In terms of the three
traditional genomic variation measures of MSI burden, SCNA
burden, and mTMB, these three genomic features may have a
distinct impact on the biology of tumors (Figure 1D). Our model
stratified all tumor samples into two clusters, where cluster 1
appeared to be genomically unstable. Specifically, cluster 1 and
cluster 2 had no significant differences in MSI burden and SCNA
burden (Supplementary Figure 2), but the mTMB burden in
cluster 2 was relatively lower than cluster 1 (Figure 1E). To clarify
the differences between the two subgroups at the genomic level
in detail, the mutation landscape of the two subgroups are shown

in Figure 2A. It can be seen that the mutation load of cluster 2
was less than that of cluster 1, which is consistent with the result
in Figure 1E. Notably, most of the mutant genes were shared
between the two subgroups, and the proportion of PIK3CA gene
mutation in cluster 2 was greater than in cluster 1, and TP53
was mostly mutated in cluster 1. The CNV landscapes of the
two subgroups are shown in Figure 2B, respectively. There was
a statistically non-significant difference between cluster 1 and
cluster 2, as reflected in Supplementary Figure 2B.

Immune Landscape Between Two
Subgroups
To investigate the immune cell infiltrations between the two
subgroups, we performed CIBERSORT analysis to identify the
abundance of 22 immune cell types (Supplementary Figure 3A),
Only the ratio of Mast cells resting showed an increasing
tendency (p = 0.019) in cluster 2 than in cluster 1 but not
in other cell types (Supplementary Figure 3B). In addition,
we counted the expression level of 18 immune checkpoints
in the two subgroups, including CD274 (PD-1), PDCD1 (PD-
L1), CTLA4, LAG3, HAVCR2 (TIM-3), C10orf54 (VISTA), BTLA,
CD200, CD200R1, CD276, CD40, CD40LG, CD80, CEACAM1,
ICOS, IDO1, PDCD1LG2, and TIGIT. However, there was no
significant difference between cluster 1 and cluster 2 of all 18
immune checkpoints (Supplementary Figure 4). The immune
dysfunction and exclusion levels were then calculated by TIDE,
as shown in Supplementary Figure 5, there was no difference
between cluster 1 and cluster 2 in the TIDE score.

Construction of the Genomic
Variation-Related Prognostic Risk Model
(GVRM)
To further assess the differences in gene expression levels between
the two subgroups, a total of 130 DEGs were acquired by
DESeq2 with the cut-off of P < 0.01 and absolute log2FC > 2
(Supplementary Table 2 and Figures 3A,B), where 100 genes
were up-regulated in cluster 2, and 30 genes were down-
regulated. Subsequently, these 130 genes were projected into
univariate Cox analysis (Supplementary Table 3). As a result,
11 genes were identified to be significantly associated with
survival (P < 0.01), in which FGF10, OR6T1, and XIRP2
were considered to be favorable factors, and SST, XIRP2,
C15orf43, FDCSP, ISX, VCX3A, CSF3, KLK3, and NPY were
risk factors (Figure 3C). After 1,000 iterations of LASSO-
penalized multivariate modeling, an 11 coefficient-based-risk
model called GVRM was constructed (Figures 3D,E and
Supplementary Table 4).

Prognostic Performance Analysis of Risk
Model and External Datasets Verification
Patients were divided into high- and low-risk groups according to
the median value of risk score. There was a significant difference
in OS between high- and low-risk groups (p< 0. 001; Figure 4A),
and the AUC values in 1-, 3-, and 5-year were all greater than 70%
(Figure 4B), which suggests a promising prognostic predictive
ability in the training (TCGA-BRCA) dataset. Remarkably, in
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FIGURE 1 | The difference in characteristics and genomic features between two subgroups. (A) The heatmap showed clusters of 1,274 genomic variation features.
Sample annotations show the different clinical characteristics. (B) The sample proportion of the two subgroups. (C) Kaplan–Meier curve showed the overall survival
in patients between cluster 1 and cluster 2 (p < 0.001). (D) The MSI burden, mTMB, and SCNA burden of each cluster. (E) The box plots showed the mTMB burden
between cluster 1 and cluster 2. ***p < 0.001.

FIGURE 2 | The differences in CNV and copy number variation between the two subgroups. (A) The oncoprint plots indicate the top 25 mutated genes in both
cluster 1 and cluster 2 samples. Different colors stand for different mutation types. (B) Cumulative CNV regions for cluster 1 and cluster 2. Deletions are represented
in blue color, and amplifications are represented in red color.

the validation cohort (ICGC_BRCA_KR), this risk model also
indicated a significant difference between the high and low-risk
groups in patient outcomes (Figure 4C), the AUC values in 1-,
3-, and 5-year were all greater than 90% (Figure 4D). From the
distribution of clinical characteristics in the high-risk and low-
risk groups in the TCGA dataset, the occurrence of death events

was relatively enriched in the high-risk group (p < 0.001), as
well as in high stage_T (p = 0.047), and stage_N (p = 0.046).
For the well-known breast cancer biomarkers, only HER2 status
was statistically significantly associated with high risk (p = 0.010),
but not others (BRCA1, BRCA2, ER, PR, p > 0.05). Particularly,
cluster 2 was more enriched in the high-risk group, which is
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FIGURE 3 | Construction of the genomic variation-related prognostic risk model. (A) The volcano plot indicates the association between log2 fold change and
P-value in DEGs between cluster 1 and cluster 2. (B) The abundance of differentially expressed genes between cluster 1 and cluster 2. The row names of the
heatmaps indicate the 130 DEGs, while the columns of the heatmaps indicate the samples. (C) Univariate analyses of 11 significant genes with overall survival
(*p < 0.05 and **p < 0.01). (D) The partial likelihood deviation (λ) under each logarithm in the LASSO Cox regression model. (E) The coefficients of each
independent variable in the LASSO Cox regression model.

consistent with the observation that cluster 2, the genetically
stable group, was significantly associated with poor prognosis
(Figures 1C, 4E).

Evaluation of Predictive Efficiency and
Stability on GVRM
The indicative clinical characteristics of the samples, including
age, stages, stage_T, stage_M, and stage_N were used to evaluate
the efficiency and stability of GVRM. We found that the risk
model has significant differences between high- and low-risk
samples in age, stage, stage_N, stage_M0, and stage_T (p < 0.05;
Figures 5A–J). The results suggested the high efficiency and
stability of the GVRM. We next counted the infiltration of 22
immune cells between high- and low-risk samples. A higher
proportion of gamma delta T cells was detected to be up-
regulated in high-risk patients (p = 0.031), while activated
NK cells were detected to be up-regulated in low-risk patients
(p = 0.039; Supplementary Figure 6).

We thereafter analyzed the prognostic effects of risk score for
different clinical characteristics in both TCGA and ICGC-BRCA-
KR datasets. Univariate Cox regression and multivariate Cox
regression demonstrated that the risk score was an independent

prognostic factor in breast cancer (Figure 6). We then generated
a nomogram to combine the clinical variables as well as risk
scores to evaluate the clinical benefits, then the 1-, 3-, and 5-year
survival probabilities were projected to the final sum of the scores
(Figure 7A). In addition, decision curves for the nomogram and
risk score prediction model are shown in Figure 7B; it can be
observed that our risk model performs better than the other
existing models (Mo et al., 2020; Peng et al., 2021; Yu et al.,
2021; Zhang et al., 2021). The calibration plot of the nomogram
agreed with the predictions of 3-, 5-, and 10-year OS, respectively
(Figures 7C–E).

DISCUSSION

In this study, we characterized the molecular features of two
genomic clusters divided by integrated analysis of three genomic
variants including MSI, CNV, and SNV in breast cancers. We
did not find the genomic variant-based clusters associated with
specific immune landscape or response of immune checkpoints.
TMB, the number of somatic mutations per megabase (Mb)
of the genome, has been recognized as a potential biomarker
of the immune response. Several studies reported higher
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FIGURE 4 | The performance of risk model and external validation. (A) Kaplan–Meier curve showed the overall survival in patients with high risk and low risk
(p < 0.001). (B) The prognostic values of GVRM in 1-, 3-, and 5-year OS with AUC = 0.85, 0.76, and 0.7, respectively. (C) Kaplan–Meier curve showed the overall
survival in the validation group (ICGC-BRCA-KR) with high risk and low risk (p < 0.001). (D) The prognostic values of GVRM in validation group in 1-, 3-, and 5-year
OS with AUC = 0.94, 0.95, and 0.96, respectively. (E) The abundance of 11 significant genes (involved in GVRM) with clinical features in the training group
(TCGA-BRCA).
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FIGURE 5 | The efficiency and stability evaluation of GVRM. (A,B) Kaplan–Meier curve showed the overall survival in patients with high and low risk in age subgroups
(p < 0.0001 and p < 0.0001, respectively). (C,D) Kaplan–Meier curve showed the overall survival in patients with high and low risk in stage subgroups (p < 0.001
and p < 0.001, respectively). (E,F) Kaplan–Meier curve showed the overall survival in patients with high and low risk in stage_M subgroups (p < 0.001 and
p = 0.092, respectively). (G,H) Kaplan–Meier curve showed the overall survival in patients with high and low risk in stage_N subgroups (p < 0.001 and p = 0.015,
respectively). (I,J) Kaplan–Meier curve showed the overall survival in patients with high and low risk in stage_T subgroups (p < 0.001 and p = 0.006, respectively).

FIGURE 6 | The Cox regression of clinical characteristics and risk score of GVRM. (A,B) The univariate Cox regression analysis and multivariate Cox regression of
clinical characteristics and risk score of GVRM in the ICGC-BCRA-KR cohort, respectively. (C,D) The univariate Cox regression analysis and multivariate Cox
regression of clinical characteristics and risk score of GVRM in TCGA-BRCA cohort, respectively. *p < 0.05, **p < 0.01 and ***p < 0.001.

response rates and improved PFS in patients in breast cancer
with high TMB, who received PD-1/PD-L1 immunotherapy
(Barroso-Sousa et al., 2020; Karn et al., 2020; Garrido-Castro
et al., 2021). While TMB was significantly higher in cluster 1 in

our study, the TIDE score between cluster 1 and cluster 2 was not
significantly different, suggesting there might be other molecular
mechanisms involved in the responsiveness of PD-1 blockade. Of
note, higher CNV was inversely correlated with clinical benefit
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FIGURE 7 | The nomogram of GVRM and its clinical benefit. (A) Nomogram for predicting 1-, 3-, and 5-year survival probability of BRCA patients in the training
group. The total score of clinical characteristics, as well as risk score for each patient, is located on the “Total points” axis, which corresponds to the survival
probabilities plotted on the three axes below. (B) Decision curve for the risk model, clinical factors, and other existing prognostic models. (C–E) Calibration curves for
nomogram in 1-, 3-, and 5-year, respectively.

from ICB (Davoli et al., 2017). The higher CNV level in cluster
1, though not significantly different from cluster 2, may mitigate
the prediction efficacy of immune response.

The association between genetic variants and breast cancer
prognosis has been explored in terms of CNV, TMB, and MSI.
CNV has been found to strongly associate with prognostic
gene expression signatures in breast cancer (Horlings et al.,
2010). Fatima et al. revealed that all MammaPrint genes, which
were selected to predict breast cancer prognosis, had recurrent
amplifications and deletions. The concordance between CNV-
based genomic alterations and expression profiling of these
genes indicates that copy number alterations play an important
factor in tumor progression (Fatima et al., 2017). Although the
frequency of MSI-H breast cancer is reportedly low ranging
from 0.5 to 1% (Hause et al., 2016; Bonneville et al., 2017),
high discordance between MSI-high and Mismatched Repair
(MMR) proteins loss indicate the complexity of intra-tumor
heterogeneity in patients with breast cancer (Fusco et al., 2018).
MMR deficiency was found to be a prognostic marker in breast
cancer (Fusco et al., 2018). TMB is an emerging biomarker
for immunotherapy response and immune-related survival in
breast cancer (Thomas et al., 2018). These findings suggest
genetic variants-related gene signatures might be used as a
potential tool for predicting breast cancer prognosis. In our

study, we constructed the prognostic model based on the DEGs
between the two clusters derived from integrated analysis of
CNV, MSI, and TMB. We validated the prediction accuracy of
this prognostic model in the ICGC breast cancer cohort. This
provides a robust set of gene expression signatures and avoids
the need for the laborious direct measurement of genetic variants
at the DNA level.

In this study, we found that our prediction model is superior
to previous prognostic models of breast cancer. Of note, these
prognostic models were constructed by immune-related genes
or immune infiltration scores (Peng et al., 2021; Yu et al., 2021;
Zhang et al., 2021) and the CNV-related gene expression model
(Mo et al., 2020). Our findings suggested that genomic variants-
based risk stratification may be more relevant to breast cancer
prognosis compared with immune-related gene models. Our risk
model showed better performance of prognosis prediction than
the CNV-based gene expression model by Mo et al., suggesting
that integrated analysis of CNV, TMB, and MSI may capture more
accurate determinants of prognosis in breast cancer.

Among the 11-gene signature, several genes were involved
in breast cancer growth. High expression of FGF10 has been
reported in about 10% of breast cancer and correlated with tumor
progression (Theodorou et al., 2004). Therapeutic targeting of
FGFs and their receptors (FGFRs) is currently under active
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research. CSF3 (G-CSF) is a cytokine stimulating mobilization
of hematopoietic stem cells from bone marrow and promoting
differentiation of neutrophil precursors. High expression of
G-CSF secreted from breast cancer cells promotes tumor-
associated macrophages into the inflammatory phenotype,
leading to tumor growth and poor survival (Hollmén et al.,
2015). KLK3 (PSA) is an original androgen receptor-governed
prostate kallikreins. As androgen receptor pathway activation
has been found to promote a subset of breast cancer, the
role of KLK3 involved in tumor progression may need further
investigation (Thorek et al., 2019). Neuropeptide Y has been
found to promote proliferation and migration in breast cancer
cells (Medeiros et al., 2012).

In summary, we performed an integrated analysis of
three genetic variants including CNV, MSI, and TMB, which
generated two distinct subgroups. We characterized the
association between the two groups in terms of prognosis,
mutation, genetic variants, and immune landscape. We
further developed an 11-gene signature based on the DEGs
between these two subgroups. We constructed this GVRM
and validated its prognostic prediction in an independent
cohort (ICGC-BRCA-KR). Furthermore, we demonstrated
that the performance efficiency was superior to previous
published prognostic models. Consequently, we developed
a nomogram to help clinicians estimate prognosis at the
individual level.
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