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During the course of an epidemic of a potentially fatal disease, it is important that the case fatality ratio be well
estimated. The authors propose a novel method for doing so based on the Kaplan-Meier survival procedure, jointly
considering two outcomes (death and recovery), and evaluate its performance by using data from the 2003
epidemic of severe acute respiratory syndrome in Hong Kong, People’s Republic of China. They compare this
estimate obtained at various points in the epidemic with the case fatality ratio eventually observed; with two
commonly quoted, naı̈ve estimates derived from cumulative incidence and mortality statistics at single time points;
and with estimates in which a parametric mixture model is used. They demonstrate the importance of patient
characteristics regarding outcome by analyzing subgroups defined by age at admission to the hospital.
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Abbreviation: SARS, severe acute respiratory syndrome.

The epidemic of severe acute respiratory syndrome
(SARS) in 2003 showed how rapidly new infectious diseases
can spread. Within a month of its recognition, SARS had
spread worldwide, with epidemics occurring in China, Hong
Kong, Taiwan, Vietnam, Singapore, and Canada (1). Al-
though the worldwide case incidence remained relatively
low (8,098 cases), relatively high mortality (774 deaths)
resulted in widespread concern and alarm, sometimes to
the point of panic, in the populations affected (2, 3). Coupled
with the economic costs resulting from restriction of move-
ment placed on the affected countries (4), the epidemic
highlighted the need for a rapid international response to
disease control. More recently, the outbreak of H5N1 influ-
enza in birds in southeast Asia has again reinforced the
potential for pandemic spread of newly emerging or evolv-
ing infectious agents.

During an outbreak of a novel or emerging infectious
agent such as SARS, one of the most important epidemio-
logic quantities to be determined is the case fatality ratio—

the proportion of cases who eventually die from the disease.
This ratio is often estimated by using aggregate numbers of
cases and deaths at a single time point, such as those com-
piled daily by the World Health Organization during the
course of the SARS epidemic (5). However, simple esti-
mates of the case fatality ratio obtained from these reports
can be misleading if, at the time of analysis, the outcome is
unknown for a nonnegligible proportion of patients. The
estimates obtained during the SARS epidemic by dividing
the number of deaths by the total number of reported cases
were much lower (3–5 percent during the first few weeks of
the global outbreak) than those obtained when appropriate
statistical techniques were used and varied significantly be-
tween countries (6–8). Furthermore, as the epidemic pro-
gressed, these statistically naı̈ve estimates falsely suggested
a rise in the case fatality ratio (9), fueling the already high
levels of public alarm in the affected populations.

In this paper, we show how to estimate the case fatality
ratio during the course of an epidemic by adapting the

Correspondence to Dr. Azra Ghani, Infectious Disease Epidemiology Unit, Department of Infectious and Tropical Diseases, London School of

Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom (e-mail: azra.ghani@lshtm.ac.uk).

479 Am J Epidemiol 2005;162:479–486

American Journal of Epidemiology

Copyright ª 2005 by the Johns Hopkins Bloomberg School of Public Health

All rights reserved

Vol. 162, No. 5

Printed in U.S.A.

DOI: 10.1093/aje/kwi230



Kaplan-Meier method for use with two outcomes—death
and recovery. We illustrate this procedure with the complete
SARS data from Hong Kong (all 1,755 cases) and compare
the results with estimates computed from aggregate or cu-
mulative numbers of cases and deaths at different stages of
the epidemic and by using parametric mixture models (10, 11).

STATISTICAL METHODS FOR ESTIMATING
THE CASE FATALITY RATIO

Simple estimators

Two simple estimators can be obtained for the case fatal-
ity ratio from aggregate case reports. If, at any given time
point s, D(s), R(s), and C(s) denote the cumulative number
of deaths, recoveries, and cases, respectively, then these
estimators are

e1ðsÞ¼DðsÞ=CðsÞ;
e2ðsÞ¼DðsÞ=fDðsÞþRðsÞg:

ð1Þ

The first estimator ignores the censoring that arises when
patients remain ill in the hospital. The second implicitly
assumes that the case fatality ratio for those who remain in
the hospital will be similar to that for thosewhose outcome is
known. Furthermore, for the second estimator to work rea-
sonably well, the hazards of death and recovery at any time t
measured from admission to the hospital, conditional on an
event occurring at time t, should be proportional. Binomial
confidence intervals for the underlying probability of death
can be calculated from either estimate by using exact meth-
ods or a normal approximation, as appropriate.

Parametric mixture models

Parametric mixture models (or cure models) are com-
monly used to study situations in which a proportion of
individuals never develops the primary outcome of interest
(11, 12). In this setting, these individuals are those who
recover from infection. Suppose that we have two terminal
states (death and recovery) that occur with probability
h0 and h1, respectively (where h0 þ h1 ¼ 1). We denote the
conditional density that an individual will reach terminal
state i time t after being admitted to the hospital by f(tji)
for i ¼ 0,1. This conditional density can be modeled in
a parametric form, for example, the gamma distribution.
The parameters can be estimated by using maximum likeli-
hood methods. An individual who dies at time t after admis-
sion contributes

l0¼ h0 f ðtji¼ 0Þ
to the likelihood. Similarly, an individual who recovers at
time t after admission contributes

l1¼ h1 f ðtji¼ 1Þ
to the likelihood. Finally, an individual who remains in the
hospital at time t after admission contributes

lc ¼ h0ð1�Fðtji¼ 0ÞÞþh1ð1�Fðtji¼ 1ÞÞ

to the likelihood, where FðtjiÞ ¼
R t

0 f ðxjiÞdx: Confidence
bounds for the parameter estimates (including the estimate
of the case fatality ratio ĥ0ðsÞ made at time s in the epi-
demic) can be calculated by using likelihood ratio statistics.

Extension of the Kaplan-Meier method for two
outcomes

We have two terminal states (death and recovery) whose
hazard functions are denoted by h0(t) and h1(t), respectively,
where t is measured from time of admission to the hospital,
with associated (possibly incomplete) survivor functions

SiðtÞ¼ exp �
Z t

0
hiðxÞdx

� �
ð2Þ

and corresponding density functions fiðtÞ ¼ hiðtÞSiðtÞ: If we
let tmax(s) denote the maximum observed time from hospital
admission to death or recovery that has occurred by time s in
the epidemic, the probability of death (h0(s)) or discharge
(h1(s)) at or before time s can be obtained from

hiðsÞ¼
Z tmaxðsÞ

0
HðtÞhiðtÞdt; ð3Þ

where H(t) is the survival function if both endpoints are
treated as a single composite endpoint. When the epidemic
is complete, h0ðsÞ þ h1ðsÞ ¼ 1 and ĥ ¼ ĥ0ðsÞ is an estimate
of the case fatality ratio. During the epidemic, however, the
survivor functions for death and recovery, Si(t), are incom-
plete; hence, h0ðsÞ þ h1ðsÞ < 1: It follows that our estimate
of the case fatality ratio at time s should lie between ĥ0ðsÞ
and ð1� ĥ1ðsÞÞ. To obtain an estimate, we must make an
assumption about the pattern of deaths and discharges be-
yond the point of observation. A sensible assumption is that
the remaining outcomes occur with the same relative prob-
abilities as observed up to the time of analysis, so that our
estimate of the case fatality ratio at time s is

ĥðsÞ¼ ĥ0ðsÞ=fĥ0ðsÞþ ĥ1ðsÞg: ð4Þ
Figure 1 illustrates this approach.

At any time point s in the epidemic, the hazard function
can be estimated by discretizing time into days and using the
simple estimator ĥijðsÞ ¼ dijðsÞ=njðsÞ, where dij(s) is the
number of events of type i on day j (where j is measured
from time of admission to the hospital) and nj(s) is the num-
ber remaining at risk j days after admission to the hospital.

To calculate confidence bounds at time s in the epidemic,
we take the asymptotic variance of ĥijðsÞ to be dijðsÞ=ðnjðsÞÞ2:
Toobtain aworking approximation,we ignore the correlation
between ĥijðsÞ and the ĤjðsÞ; treat the different ĥijðsÞ as in-
dependent, and treat the ĤjðsÞ as estimates of a single
uncensored survival distribution (in which both states are
treated as a single composite endpoint). Thus, the variance-
covariance matrix of the vector ĤjðsÞ is X(s), say, with
elements

xjjðsÞ¼ ĤjðsÞf1� ĤjðsÞg=n*ðsÞ;
xjkðsÞ¼ ĤjðsÞf1� ĤkðsÞg=n*ðsÞ;

ð5Þ
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where j > k and n*(s) is an effective total sample size, taken
to be halfway between the total sample size and the total
uncensored sample size at time point s in the epidemic.
Alternatively, using Greenwood’s formula (13),

xjkðsÞ¼ ĤjðsÞĤkðsÞ
X
j

P
j
dijðsÞ

njðsÞðnjðsÞ�
P
j
dijðsÞÞ

: ð6Þ

Then, approximately by local linearization (the delta
method),

varðĥiðsÞÞ¼
X

ĤðsÞ2j varðĥijðsÞÞ

þ ĥiðsÞTXĥiðsÞ
covðĥ0ðsÞĥ1ðsÞÞ¼ ĥ0ðsÞTXðsÞĥ1ðsÞ;

ð7Þ

where ĥiðsÞ is the column vector of the ĥijðsÞ:When the delta
method is used again, the variance of the estimator ĥðsÞ is
given by

varðĥðsÞÞ ¼fðĥ1ðsÞÞ2varðĥ0ðsÞÞþðĥ0ðsÞÞ2varðĥ1ðsÞÞ
� 2ĥ0ðsÞĥ1ðsÞcovðĥ0ðsÞ; ĥ1ðsÞÞg

ðĥ0ðsÞþ ĥ1ðsÞÞ4
:

ð8Þ

Confidence bounds for ĥðsÞ can be calculated by using a nor-
mal approximation. However, when the case fatality ratio is

low, it is better to calculate bounds by using a normal ap-
proximation on the logit scale. Thus,

logitðĥðsÞÞ¼ logðh0Þ� logðh1Þ;

varðlogitðĥðsÞÞÞ¼ 1

h20
varðh0Þþ

1

h21
varðh1Þ

� 2

h0h1
covðh0;h1Þ:

ð9Þ

DATA: HONG KONG SARS CASES

Our analyses were based on the complete record of the
1,755 cases of SARS in Hong Kong in 2003 defined accord-
ing to the World Health Organization clinical case defini-
tion. Detailed epidemiologic descriptions of these cases are
presented elsewhere (14, 15).

Patients are considered at risk from the date on which
they are admitted to the hospital because this date is known
at the time of analysis. An alternative would be to define
time since onset of infection. However, using this definition
could potentially bias results; those who have not yet been
admitted to the hospital could not be included in the analy-
sis. We therefore excluded from our analysis 124 cases ad-
mitted to the hospital prior to onset of infection (that is,
nosocomial infection acquired after being admitted for other
conditions), three cases whose discharge date was not
known, and 22 cases whose final outcome was not known,
reducing the number of cases to 1,606. In earlier analyses,
we used the date of final discharge from a health-care facil-
ity as the date on which an individual was considered to
have recovered (14, 15). However, some patients, particu-
larly the elderly, were discharged earlier than this date from
the acute care hospital to rehabilitation care facilities
(mostly as a precautionary measure because the natural his-
tory of SARS was unknown at the time of the 2003 out-
break, particularly the infectiousness of those who had
recovered). In the analyses presented here, we consider
these individuals to have recovered (at the date on which
they were discharged from the acute care hospital) since no
additional individuals later died of SARS-related causes.

To compare the different estimators, we analyzed the data
as they would have been observed at seven different time
points in the epidemic (table 1). Prior to April 2, 2003, there
was insufficient outcome data (on death and recovery) to
estimate the case fatality ratio.

RESULTS

Figure 2a shows the time course of the epidemic in Hong
Kong. The first case was reported on February 15, 2003, and
the epidemic peaked 6 weeks later, on March 27, 2003. The
mean duration of stay in the hospital over the course of the
epidemic was 23 days for those who died and 23 days for
those discharged from acute care hospitals (in most instan-
ces to a rehabilitation care facility). The latter duration was
in part decided by clinical guidelines that determined the
length of stay in the hospital prior to discharge and may not

FIGURE 1. Illustration of the adapted Kaplan-Meier method for
an epidemic showing 1 minus the estimated survivorship function for
the time from hospital admission to death (bottom line) and the
estimated survivorship function for the time from hospital admission
to recovery (top line). When the epidemic is complete, these two
curves meet. Before this time, they do not meet, and the case fatality
ratio is estimated on the basis of the past pattern of deaths/recovery
(dotted line).
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reflect the natural course of infection. Therefore, the final
outcome for patients lagged behind their identification by
approximately 3 weeks (figure 2b). Thus, when the case
fatality ratio was estimated, the degree of censoring was
heavy even at the peak of the epidemic. Table 1 illustrates
this, with 86 percent of case outcomes remaining unknown
even in the first week of April, when the epidemic had
started to decline. Our analyses focus on estimating the case

fatality ratio from this point onward; at earlier time points,
there were too few deaths or recoveries to obtain reliable
estimates.

The final case fatality ratio based on this sample was 14.2
percent, which is lower than the officially reported figure of
17.2 percent (302/1,755) for the full data set. This difference
was due mainly to exclusion of the 124 patients infected
after they had been admitted to the hospital for other

FIGURE 2. a) Incidence of cases of severe acute respiratory syndrome (SARS) in Hong Kong in 2003 by date of hospital admission; b) time from
admission to the hospital to death/ discharge for the Hong Kong SARS cases.

TABLE 1. Summary of the number of cases and the degree of censoring at different time points for the

epidemic of severe acute respiratory syndrome in Hong Kong, 2003

Date

April 2 April 9 April 16 April 23 April 30 May 7 May 14

No. of cases 925 1,201 1,367 1,489 1,547 1,582 1,607

% of observations
censored 85.9 81.2 71.5 51.6 35.1 25.2 17.3
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conditions (that is, nosocomial infections), many of whom
had multiple comorbidities and an older age distribution,
thus leading to a much higher proportion of case fatalities
than in the general sample.

Figure 3a shows the estimates obtained by using the four
methods and the case fatality ratio (eventually) observed for
those individuals who had been admitted to the hospital by
these time points. The observed case fatality ratio increased
slightly over this time period, reflecting a change in the age
distribution of the cases. Early in the epidemic, the first
simple estimator based on the ratio of deaths to cases, e1,
underestimates the case fatality ratio because many cases
remain in the hospital; hence, the numerator underestimates

the total number of SARS-related deaths that will eventually
occur in the sample.

The second simple estimate based on the ratio of deaths of
those for whom the outcome is known, e2, is reasonable at
most points in the epidemic. However, at one time point in
the epidemic (April 16), the estimate is lower than that
eventually observed, and the confidence intervals do not
contain the observed case fatality ratio.

The parametric mixture model provides reasonable esti-
mates of the case fatality ratio early in the epidemic (up to
April 30). However, late in the epidemic, the estimates
become higher that those eventually observed. This shift
to higher estimates is due to a change in parameters and

FIGURE 3. a) Estimates of the case fatality ratio and 95 percent confidence intervals over the course of the epidemic of severe acute respiratory
syndrome in Hong Kong in 2003. Black square, case fatality ratio eventually observed for patients admitted to the hospital by the time denoted on
the x-axis; black diamond, first simple estimate (deaths/cases); black triangle, second simple estimate (deaths/(deaths þ recovered)); white
square, adapted Kaplan-Meier (KM) method; black dotted line, range obtained from the adapted KM method; white circle, gamma mixture model.
b) KM curves for the nonparametric survival (bottom lines) and discharge probabilities (top lines) obtained from the data sets on April 9 (short
dashed line), April 16 (continuous line), and April 23 (long dashed line).
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reflects the poor fit of the parametric distribution (in this
example, the gamma distribution, but similarly poor fits
are obtained with the Weibull and lognormal distributions).

The nonparametric Kaplan-Meier–based method pro-
vides reasonable estimates of the case fatality ratio when
the degree of censoring is moderate (from April 30 onward,
when the proportion of observations censored is less than 40
percent). However, early in the epidemic, the estimates are
lower, and, at one of the time points analyzed (April 9), the
confidence intervals do not contain the (eventually) ob-
served case fatality ratio. By inspecting the Kaplan-Meier
curves for the nonparametric survival and discharge proba-
bilities obtained from the data sets between April 9 and
April 23 (figure 3b), it appears that the estimated survivor
functions changed between these dates. This unusual pattern
in the data reduces estimates of the case fatality ratio ob-
tained before April 23.

A conservative alternative to presenting estimates and
associated confidence intervals early in the epidemic, when
the degree of censoring is high and precision is low, could be
to present the range ĥ0ðsÞ � ĥ � ð1� ĥ1ðsÞÞ: Figure 3a
shows that the observed case fatality ratio lies in this range.
However, the precision of the range is low until very late in
the epidemic.

In many situations, subgroup-specific estimates of the
case fatality ratio are desired. For SARS, one of the most
important factors determining the case fatality ratio is age
(14, 15). Table 2 shows estimates of the case fatality ratio
obtained for different age groups. The estimates obtained
based on the data observed by two time points—April 23
and May 7—are given, along with the case fatality ratios
eventually observed for all patients. The estimates obtained
at the two time points during the epidemic demonstrate the
same trend with age as for the final case fatality ratios.

DISCUSSION

Our analyses show that two methods—the simple esti-
mate of the case fatality ratio calculated for those whose
outcome is known and the modified Kaplan-Meier
method—adequately estimated the case fatality ratio during
the SARS epidemic. The first method is appealing because
of its simplicity and the ease with which it can be calcu-
lated. As case data accrue, particularly toward the end of the

epidemic, the estimates will be close to those finally ob-
served once the epidemic is complete. However, throughout
the early and middle stages of the epidemic, this estimator
ignored much of the available data. In contrast, the modified
Kaplan-Meier estimator uses these censored data and hence
will more rapidly detect changes in the case fatality ratio
(for example, due to changes in treatment). However, when
the degree of censoring is high (greater than 60 percent), as
was true very early in the epidemic, it is more appropriate to
present a range rather than a single point estimate. The
parametric mixture model performed well early in the epi-
demic. However, toward the end of the epidemic, the esti-
mates obtained were overly pessimistic because of a poor fit
of the parametric model to the data.

Our findings demonstrated the considerable bias in the
naı̈ve estimate of the case fatality ratio calculated for all
diagnosed patients. Although such methods are clearly eas-
ier to describe to policy makers and the public, important
biases mean that the drawbacks will always outweigh the
benefits and should not be used. The dangers of the naı̈ve
approach were evident in the SARS epidemic, where
changes over time in the naı̈ve estimates led some to con-
clude that the SARS infectious agent was evolving to be
more lethal (8, 9) when in fact the changes in estimates were
simply an artifact due to the estimation method. The public
health impact of inaccurate estimates, resulting in misinfor-
mation, conflicting messages, or inconsistent intelligence,
can and does exacerbate public alarm and even induce
panic, which almost always accompany major outbreaks
of infectious diseases such as SARS (2, 3).

One of the major challenges encountered during the
SARS epidemic was understanding the reasons underlying
the variation in case fatality ratios reported for different
countries. A large part of this variation could in retrospect
be attributed to difficulties in standardizing the definition of
a SARS case and in assigning cause of death. In particular, it
is clear that comorbidities such as diabetes mellitus, coro-
nary artery disease, hypertension, and chronic obstructive
pulmonary disease significantly increased the case fatality
ratio, particularly in the elderly (16–21). In addition,
a change in the case mix over time (for example, in the
age distribution of patients) could be misinterpreted as
a change in virulence of the pathogen. Furthermore, using
data on hospitalized cases, as presented here, could poten-
tially overestimate the underlying case fatality of infection if
individuals with less severe or no symptoms of disease do
not present at the hospital. Sensitive and specific serologic
tests used among contacts of SARS cases (22), as well as in
the wider community (23), have found very few previously
unidentified SARS infections, suggesting that the case fa-
tality ratio per hospital admission, as estimated here, was
essentially equivalent to the case fatality ratio per case of
infection. However, this may not be true, in fact usually is
not, for other epidemics.

The methods presented here are applicable to any disease
for which the final outcome is not known for a proportion of
patients. The underlying assumptions for the different meth-
ods may determine which method is appropriate in different
settings. For the SARS epidemic, the nonparametric, mod-
ified Kaplan-Meier method provided the most reasonable

TABLE 2. Estimates of the case fatality ratio by age for the

epidemic of severe acute respiratory syndrome in Hong Kong,

2003

Age group
(years)

Final
case
fatality
ratio

April 23 May 7

Estimate
95%

confidence
interval

Estimate
95%

confidence
interval

�30 0.4 0 0.5 0.0, 1.3

31–44 8.2 8.7 4.3, 13.1 8.2 5.4, 11.0

45–59 14.7 13.7 6.1, 21.2 15.1 9.7, 20.4

60–74 40.4 37.8 23.5, 52.1 43.1 33.3, 52.9

�75 66.3 66.1 51.9, 80.3 74.9 64.3, 85.5

484 Ghani et al.

Am J Epidemiol 2005;162:479–486



estimates over the course of the epidemic. With this method,
one important assumption is that the relative probability of
death and discharge after the time of analysis is similar to
that up to the time of analysis. This assumption could be
violated if the mean duration from hospital admission to
death is substantially shorter than the mean duration from
hospital admission to discharge and results in biased esti-
mates of the case fatality ratio. In such settings, parametric
or semiparametric cure models may be more appropriate.

Several other factors can complicate estimation of the
case fatality ratio, even for a well-known disease. These
factors include uncertainty about case definition, case ascer-
tainment (particularly if some cases are asymptomatic or in
difficult-to-reach populations), and the impact of treatment
on identification of cases. In addition to using appropriate
statistical methods, analyses should therefore be undertaken
to determine the sensitivity of estimates to these factors.

Finally, one of the most important factors to evaluate in an
epidemic is the effectiveness of treatments. With the emer-
gence of a previously unknown pathogen or illness, partic-
ularly if the case fatality ratio is high, it is not often possible
to conduct randomized trials of new treatments.Without such
trials, evaluation of treatment must rely on evaluation of any
decrease in the case fatality ratio as treatment evolves (16, 19,
20, 24–27). Inaccurate estimates of the case fatality ratiowill
therefore adversely affect clinical practice and therapeutic
decisions. For example, clinicians, when faced with a novel,
unfamiliar disease, are likely to experiment with different
management interventions based on evolving estimates of
case fatality as the definitive clinical outcome of interest.

In future epidemics, careful estimation and analysis of any
trends in the case fatality ratio could be used to evaluate the
effectiveness of new treatments as they are introduced. In
such a situation, we recommend that the case fatality ratio
initially be defined by the range from the modified Kaplan-
Meiermethod as shown here. As data accrue, the case fatality
ratio can be obtained more precisely by using the point esti-
mate and associated 95 percent confidence interval and com-
pared with estimates obtained from parametric cure models
(14). Throughout the epidemic, analyses should be under-
taken to test the sensitivity of estimates to variations in case
definition and ascertainment as well as to test for the signif-
icance of case mix (for example, by age). To help readers and
public health practitioners apply this method, the Appendix
provides information about amacro file using Stata statistical
software (Stata Corporation, College Station, Texas) that
calculates all four estimates for a given data set.
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APPENDIX

A Stata macro that calculates all four estimates for any
given data set can be downloaded from the Statistical Soft-
ware Components archive (hosted by the Department of
Economics at Boston College (http://econpapers.repec.
org/software/bocbocode/)) by typing the command ssc
install casefat from within Stata when connected to
the Internet. The macro requires indicator variables for death
and recovery and the event time. It also includes options to set
the time at which a person becomes at risk, to set a time at
which the analysis is undertaken, to calculate the variance-
covariance matrix using Greenwood’s formula (11), and to
construct confidence intervals on the logit scale. Further de-
tails are provided in the help file associated with the macro.
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