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ABSTRACT

The ready availability of vast amounts of genomic
sequence data has created the need to rethink
comparative genomics algorithms using ‘big data’
approaches. Neptune is an efficient system for
rapidly locating differentially abundant genomic con-
tent in bacterial populations using an exact k-mer
matching strategy, while accommodating k-mer mis-
matches. Neptune’s loci discovery process identifies
sequences that are sufficiently common to a group of
target sequences and sufficiently absent from non-

targets using probabilistic models. Neptune uses
parallel computing to efficiently identify and extract
these loci from draft genome assemblies without re-
quiring multiple sequence alignments or other com-
putationally expensive comparative sequence anal-
yses. Tests on simulated and real datasets showed
that Neptune rapidly identifies regions that are both
sensitive and specific. We demonstrate that this sys-
tem can identify trait-specific loci from different bac-
terial lineages. Neptune is broadly applicable for
comparative bacterial analyses, yet will particularly

*To whom correspondence should be addressed. Tel: +1 204 784 5994; Fax: +1 204 784 7546; Email: gary.vandomselaar@canada.ca
Present addresses:
Rahat Zaheer, Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1st Ave. South, Lethbridge, AB T1J 4B1, Canada.
Kelly A. Weedmark, Bureau of Microbial Hazards, Health Canada, 251 Sir Frederick Banting Driveway, Tunney’s Pasture, Ottawa, ON K1A 0K9, Canada.
Laura Patterson-Fortin, BioLargo Water Inc., 6020–118 Street NW, Edmonton, AB T6H 2V8, Canada.
Jeff Farber, Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.
Cécile Tremblay, Centre de recherche du Centre hospitalier de l’Université de Montréal 3840, rue St-Urbain, Bureau 7-355, Montréal, QC H2W 1T8, Canada.
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benefit pathogenomic applications, owing to efficient
and sensitive discovery of differentially abundant ge-
nomic loci. The software is available for download at:
http://github.com/phac-nml/neptune.

INTRODUCTION

Capacity to cheaply and quickly generate high volumes
of sequence reads has made possible the ability to study
the genomes of entire populations of organisms, especially
those organisms with relatively small genomes such as bac-
teria. Computational biologists have historically used a
wide range of bioinformatics software tools to compare
small numbers of bacterial genomes and to perform basic
characterizations at the nucleotide, gene and genome scale.
However, there now exists a need for bioinformatics soft-
ware to perform efficient comparative analysis and charac-
terization of entire populations of bacterial genomes. Some
tools have emerged. Most of these tools focus on the identi-
fication of single nucleotide variants (SNVs) using reference
mapping approaches (1,2), or distance estimations based on
small exact substrings (k-mers) (3–5) since these approaches
scale well using simple parallelization strategies. Microbial
genome-wide association studies (GWAS) that analyze bac-
terial genome populations to correlate genomic features
with phenotypic traits are now also possible, thanks to re-
cent methodological developments that address the prob-
lems inherent in bacterial genomes that confound conven-
tional GWAS approaches, such as long range linkage dise-
quilibrium and clonal population structure (6). Some soft-
ware tools for bacterial GWAS have been developed that as-
sociate SNVs or k-mers with biological traits (7). However,
for bacterial GWAS, it is important to identify all modes of
bacterial genomic variation including larger scale genomic
gains and losses, particularly for the majority of bacteria
that engage in horizontal gene transfer to acquire novel bi-
ologic traits. Scalable software that can rapidly extract the
large scale genomic loci that differentiate one population
from another while tolerating allelic variation within those
loci, is valuable to accomplish bacterial GWAS and has util-
ity for many other applications such as developing targeted
molecular diagnostics.

To address this challenge, we looked to the field of ge-
nomic signature discovery, where a signature is defined as
a sequence that is capable of discriminating a group of se-
quences of interest from a background group of sequences.
Signatures may reside in genic or intergenic regions and
may correspond to genomic islands, phage regions or entire
operons. However, there is no requirement for signatures to
contain functionally meaningful content, only that their se-
quence effectively discriminates the two groups. An effective
signature discovery algorithm is both sensitive and specific,
while quick to compute. However, in practice, it remains dif-
ficult to develop algorithms that possess all three of these
attributes. Early algorithmic approaches for signature dis-
covery were developed with the specific aim of generating
pathogen detection diagnostic assays (8). In general, these
approaches involve exhaustively comparing all sequences
using alignment-based methods, such as BLAST (9), to lo-
cate signature regions in an inclusion group that are absent
in the exclusion group. However, these approaches do not

scale efficiently and are focused on generating molecular di-
agnostic primers of a fixed length.

Other more sophisticated approaches attempt to address
efficiency by using computationally optimized string pro-
cessing approaches that encode fixed size substrings from
the genome in rapidly searchable data structures, then an-
alyzing these data structures for unique substrings (10).
These approaches are very fast and scale well, but cannot
handle variability in the target sequence and are artificially
limited to fixed length signatures. Variability in the target
can be achieved by grouping similar sequences using multi-
ple sequence alignments (8) or other clustering operations
(11). However, these common clustering techniques come
at a high computational cost and do not scale well. Some
algorithms incorporate a data reduction step prior to clus-
tering to reduce the amount of unnecessary computation.
For example, Insignia (10), TOFI (12) and TOPSI (13) use
efficient suffix trees to pre-compute exact matches within in-
clusion targets and an exclusion background. However, de-
pending on the size of the background database, this may re-
main a computationally expensive operation. One interest-
ing novel implementation is CaSSiS (11), which approaches
the problem of signature discovery more thoroughly than
other signature discovery pipelines. The software produces
signatures simultaneously for all locations in a hierarchi-
cally clustered dataset, such as a phylogenetic tree, thereby
producing candidate signatures for all possible subgroups.
However, this process requires the input data to be pro-
vided in a hierarchically clustered format, such as computa-
tionally expensive phylogenies. In addition to the efficiency
versus sensitivity trade off, most of the programs that have
been developed thus far for signature discovery have addi-
tional shortcomings that make them unsuitable for identi-
fying common variation between populations of genomes.
For example, they may restrict the analysis to a single in-
clusion genome (12), they might not permit user-supplied
genomes for target identification (10), or they might not
provide the software to the end user (8).

We designed Neptune as a system for discovering dis-
criminatory bacterial sequence signatures and conducting
comparative analyses of arbitrary groups of genome se-
quences that leverage existing strategies for signature detec-
tion, but in a novel way that is both efficient and accurate.
Neptune identifies genomic loci uniquely shared among
a user-specified interest group but lacking from a back-
ground group. Independent of pre-computation, restriction
on targets and slow clustering approaches, Neptune applies
reference-based, parallelized exact-matching k-mer strategy
for speed, while making allowances for inexact matches to
enhance sensitivity. Neptune’s signature discovery is guided
with probabilistic models that make decisions with a mea-
sure of statistical confidence. Neptune is open-source soft-
ware freely available at github.com/phac-nml/neptune and
is broadly applicable for rapid comparative assessments of
bacterial populations.

MATERIALS AND METHODS

We define a genomic signature as a string of characters (nu-
cleotides) sufficiently unique to a user-specified set of tar-
gets (the ‘inclusion’ group) that discriminates it from a set

http://github.com/phac-nml/neptune


PAGE 3 OF 13 Nucleic Acids Research, 2017, Vol. 45, No. 18 e159

of user-defined background targets (the ‘exclusion’ group).
We define a ‘reference’ sequence as any inclusion target from
which to extract signatures. Targets typically comprise draft
and closed genome assemblies. Signature discovery aims
to locate unique and conserved regions within the inclu-
sion group, but absent or minimally present in the exclusion
group.

Neptune uses the distinct k-mers found in each inclu-
sion and exclusion target to identify sequences that are con-
served within the inclusion group and absent from the ex-
clusion group. Neptune evaluates all sequence, coding and
non-coding, and may therefore produce signatures that cor-
respond to intergenic regions or contain entire operons. The
k-mer generation step produces distinct k-mers from all tar-
gets and aggregates this information, reporting the num-
ber of inclusion and exclusion targets that contain each k-
mer. The signature extraction step identifies candidate sig-
natures from one or more references, which are assumed to
be drawn from inclusion targets. Candidate signatures are
filtered by performing an analysis of signature specificity
using pairwise sequence alignments. The remaining signa-
tures are ranked by their Neptune-defined sensitivity and
specificity scores, representing a measure of signature con-
fidence.

We provide descriptions of the different stages of signa-
ture discovery below and an overview of the signature dis-
covery process is found in Figure 1. The majority of param-
eters within Neptune are automatically calculated for ev-
ery reference. However, the user may specify any of these
parameters. A full description of the mathematics used in
the software is provided in the Supplementary Data. In our
probabilistic model, we assume that the probability of ob-
serving any single nucleotide base in a sequence is equal to
and independent of all other positions and the probability
of all SNV events (e.g. mutations, sequencing errors) occur-
ring is equal to and independent of all other SNV events.

k-mer generation

Neptune produces the distinct set of k-mers for every inclu-
sion and exclusion target and aggregates these k-mers to-
gether before further processing. The software is concerned
only with the existence of a k-mer within each target and
not with the number of times a k-mer is repeated within a
target. Neptune converts all k-mers to the lexicographically
smaller of either the forward k-mer or its reverse comple-
ment. This avoids maintaining both the forward and reverse
complement sequence (14). The number of possible k-mers
is bound by the total length of all targets. The k-mers of
each target are determined independently and, when pos-
sible, in parallel. In order to facilitate parallelizable k-mer
aggregation, the k-mers for each target may be organized
into several output files. The k-mers in each file are unique
to one target (e.g., isolate genome or sequence) and all share
the same initial sequence index. This degree of organization
may be specified by the user.

The k-mer length is automatically calculated unless pro-
vided by the user. A summary of recommended k-mer sizes
for various genomes can be found in Supplementary Table
S1. We suggest a size of k such that we do not expect to see
two arbitrary k-mers within the same target match exactly.

This recommendation is motivated by wanting to generate
distinct k-mer information, thereby having matching k-mers
most often be a consequence of nucleotide homology. Let �
be the most extreme GC-content of all targets and � be the
size of the largest target in bases. The probability of any two
arbitrary k-mers, kX and kY, matching exactly, P(kX = kY)A,
where x �= y, is defined as follows:

P(kX = kY)A =
(

2
(

1 − λ

2

)2

+ 2
(

λ

2

)2
)k

(1)

We use the probability of arbitrary k-mers matching,
P(kX = kY)A, to approximate the probability of k-mers
matching within a target, P(kX = kY). This is an approxima-
tion because the probability of P(kX + 1 = kY + 1) is known
to not be independent of P(kX = kY). However, this ap-
proximation approaches equality as P(kX = kY)A decreases,
which is accomplished by selecting a sufficiently large k such
that we do not expect to see any arbitrary k-mer matches.
We suggest using a large enough k such that the expected
number of intra-target k-mer matches is as follows:∑

x<y

P(kX = kY) ≈
(

ω − k + 1
2

)
·P(kX = kY)A < 0.05

(2)

The distinct sets of k-mers from all targets are aggregated
into a single file, which is used to inform signature extrac-
tion. This process may be performed in parallel by aggre-
gating k-mers sharing the same initial sequence index and
concatenating the aggregated files. Aggregation produces a
list of k-mers and two values (the number of inclusion and
exclusion targets containing the k-mer, respectively). This
information is used in the signature extraction step to cate-
gorize some k-mers as inclusion or exclusion k-mers.

Extraction

Signatures are extracted from one or more references, which
are drawn from all inclusion targets, unless specified oth-
erwise. However, our probabilistic model assumes all refer-
ences are included as inclusion targets. In order to identify
candidate signatures, Neptune reduces the effective search
space of signatures by leveraging the spatial sequencing in-
formation inherent within the references. Neptune evalu-
ates all k-mers in each reference, which may be classified
as inclusion or exclusion k-mers. An inclusion k-mer is ob-
served in a sufficient number of inclusion targets and not
observed in a sufficient number of exclusion targets. The
sufficiency requirement is described below. Inclusion and
exclusion k-mers are used to infer inclusion and exclusion
sequence, with signatures containing primarily inclusion se-
quence. An inclusion k-mer may contain both inclusion and
exclusion sequence because, while they may contain exclu-
sion sequence, k-mers that overlap inclusion and exclusion
sequence will often be unique to the inclusion group. An
exclusion k-mer is, by default, any k-mer that has been ob-
served at least once in any exclusion target. However, in
some applications it may be desirable to relax this strin-
gency. For example, leniency may be appropriate when the
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Figure 1. An overview of Neptune’s signature discovery process for a single target reference. The first step involves generating k-mers from all inclusion and
exclusion targets. These k-mers are aggregated and provided as input to signature extraction. Signature extraction produces candidate signatures, which
are filtered using BLAST (9) and then sorted by their sensitivity and specificity scores.

inclusion and exclusion groups are not fully understood.
This may be the case when metadata is incomplete or unreli-
able. An exclusion k-mer should, by design, not contain any
inclusion sequence. Neptune outputs several ‘candidate sig-
natures’, which begin with the last base position of the first
inclusion k-mer, contain an allowable number of k-mer gaps
and no exclusion k-mers, and end with the first base posi-
tion of the last inclusion k-mer (Figure 2). This process is
conceptually similar to taking the intersection of inclusion
k-mers and allowable k-mer gaps. Furthermore, it avoids
generating a candidate containing exclusion sequence found
in inclusion k-mers that overlap inclusion and exclusion se-
quence regions.

An inclusion k-mer is considered sufficiently represented
when it is observed in a number of targets exceeding a
minimum threshold. We assume that if there is a signature
present in all inclusion targets, then the signature will cor-
respond to homologous sequences in all these targets and
these sequences will produce exact matching k-mers with
some probability. We start with the probability that two of
these homologous bases, X and Y, match is:

P(X = Y)H =
(1 − ε)2 + (ε)2 · P(XM = YM)H

(3)

where ε is the probability that two homologous bases do
not match exactly, and P(XM = YM)H is the probability that
two homologous bases both mutate to the same base. The
default probability of ε is 0.01. We assume that when the ho-
mologous bases do not match, the observed base is depen-
dent on the GC-content of the environment. Let � be the
GC-content of the environment. The probability of P(XM

= YM)H is defined as follows:

P(XM = YM)H =(
2
(

λ

λ + 1

)2

+
(

1 − λ

λ + 1

)2
)

(1 − λ)

+
(

2
(

1 − λ

2 − λ

)2

+
(

λ

2 − λ

)2
)

(λ)

(4)

This probability depends significantly on GC-content of
the environment. We assume that the probability of each
base matching is independent. Therefore, the probability
that two homologous k-mers, kX and kY, match is:

P(kX = kY)H = (Pr (X = Y)H)k (5)

We model the process of homologous k-mer matches with
a binomial distribution. If we are observing a true signature
region in a reference, we expect that corresponding homol-
ogous k-mers exist in all inclusion targets and infer this ho-
mology from aggregated k-mer information. An observed
reference k-mer will exactly match a corresponding homol-
ogous k-mer in another inclusion target with a probability
of p = P(kX = kY)H and not match with a probability of
q = 1 − p. The expected number of exact k-mer matches
with a reference k-mer will be � = (n − 1) · p and the vari-
ance will be �2 = (n − 1) · p · q, where n is the number of
inclusion targets. We require n − 1 because the reference is
an inclusion target and its k-mers will exactly match them-
selves. However, we compensate for this match in our expec-
tation calculation. We assume the probability of each k-mer
match is independent and that k-mer matches are a conse-
quence of homology. When the number of inclusion targets
and the probability of homologous k-mers exactly match-
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Figure 2. An overview of Neptune’s signature extraction process. The reference is decomposed into its composite k-mers. These k-mers may be classified
as either inclusion or exclusion and are used to infer inclusion and exclusion sequence in the reference. A signature is constructed from inclusion k-mers
containing sufficiently small k-mer gaps and no exclusion k-mers.

ing are together sufficiently large, the binomial distribution
is approximately normal. Let � be our statistical confidence
and �−1(�) be the probit function. The minimum number
of inclusion targets containing a k-mer, ∧in, required for a
reference k-mer to be considered an inclusion k-mer is de-
fined as follows:

∧in = 1 + μ − �−1(α)σ (6)

The ∧in parameter is automatically calculated unless pro-
vided by the user and will inform candidate signature ex-
traction. However, there may be mismatches in the refer-
ence, which exclude it from the largest homologous k-mer
matching group. We accommodate for this possibility by al-
lowing k-mer gaps in our extraction process. We model the
problem of maximum k-mer gap size between exact match-
ing inclusion k-mers as recurrence times of success runs in
Bernoulli trials. The mean and variance of the distribution
of the recurrence times of k successes in Bernoulli trials is
described in Feller (1960) (15):

μ = 1 − pk

q · pk
(7)

σ 2 = 1
(q · pk)2

− 2k + 1
q · pk

− p
q2

(8)

This distribution captures how many bases we expect to ob-
serve before we see another homologous k-mer match. The
probability of a success is defined at the base level as p =
P(X = Y)H and the probability of failure as q = (1 − p).
This distribution may not be normal for a small number of
observations. However, we can use Chebyshev’s Inequality

to make lower-bound claims about the distribution:

P(|X − μ| ≥ δσ ) ≤ 1
δ2

(9)

where � is the number of standard deviations, �, from the
mean, �. Let P(|X − �| ≥ ��) be our statistical confidence,
�. The maximum allowable k-mer gap size, ∨gap, is calcu-
lated as follows:

∨gap = μ +
√

1
1 − α

· σ (10)

The ∨gap parameter is automatically calculated unless
specified. Candidate signatures are terminated when either
no additional inclusion k-mers are located within the max-
imum gap size, ∨gap, or an exclusion k-mer is identified. In
both cases, the candidate signature ends with the last inclu-
sion k-mer match. The consequence of terminating a signa-
ture early is that a large, contiguous signature may be re-
ported as multiple smaller signatures. We require the mini-
mum signature size, by default, to be four times the size of k.
However, for some applications, such as designing assay tar-
gets, it may be desirable to use a smaller or larger minimum
signature size. Signatures cannot be shorter than k bases.
We found that smaller signatures were more sensitive to the
seed size used in filtering alignments. There is no maximum
signature size. As a consequence of Neptune’s signature ex-
traction process, signatures extracted from the same target
may never overlap each other.
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Filtering

The candidate signatures produced will be relatively sensi-
tive, but not necessarily specific, because signature extrac-
tion is done using exact k-mer matches. The candidate sig-
natures are guaranteed to contain no more exact matches
with any exclusion k-mer than was specified in advance by
the user. However, there may exist inexact matches within
exclusion targets. Neptune uses BLAST (9) to locate signa-
tures that align with any exclusion target and, by default,
removes any signature that shares 50% identity with any
exclusion target aligning to at least 50% of the signature,
anywhere along the signature. This process is done to avoid
investigating signatures that are not highly discriminatory.
The remaining signatures are considered filtered signatures
and are believed to be sensitive and specific, within the con-
text of the relative uniqueness of the input inclusion and ex-
clusion groups, and the parameters supplied for target iden-
tification.

Scoring

Signatures are assigned an overall score corresponding to
their highest-scoring BLAST (9) alignments with all inclu-
sion and exclusion targets. This score is the sum of a positive
inclusion component and a negative exclusion component,
which are analogous to sensitivity and specificity, respec-
tively, with respect to the input data. Let |A(S, Ii)| be the
length of the highest-scoring aligned region between a sig-
nature, S, and an inclusion target, Ii. Let |S| be the length of
signature S, PI(S, Ii) the percent identity (identities divided
by the alignment length) between the aligned region of S
and Ii, and |I| be the number inclusion targets. The nega-
tive exclusion component is similarly defined. The signature
score, score(S), is calculated as follows:

score(S) =
|I|∑

i=0

|A(S, Ii )| · PI(S, Ii )
|S||I|

−
|E|∑
i=0

|A(S, Ei )| · PI(S, Ei )
|S||E|

(11)

This score is maximized when all inclusion targets contain a
region exactly matching the entire signature and there exists
no exclusion targets that match the signature. Signatures are
sorted based on their scores with highest-ranking signatures
appearing first in the output.

Output

Neptune produces a list of candidate, filtered and sorted sig-
natures for all references. The candidate signatures are guar-
anteed to contain, by default, no exact matches with any
exclusion k-mer. However, there may still remain potential
inexact matches within exclusion targets. The filtered signa-
tures contain no signatures with significant sequence simi-
larity to any exclusion target. Sorted signatures are filtered
signatures appearing in descending order of their signature
scores. A consolidated signature file is additionally provided
as part of Neptune’s output. This file contains a consoli-
dated list of the top-scoring signatures produced from all

Table 1. Genomic islands naturally found within Vibrio cholerae
(NC 012578.1) chromosome I. These islands were used as in silico signa-
tures and artificially inserted within a Bacillus anthracis genome. These is-
lands were identified with IslandViewer 3 (16)

ID Length (bp) Summary

1 23 338 O-antigen transport
2 50 038 Toxin pilus
3 12 259 Phage replication
4 9652 Phage integrase
5 9652 N-acetylneuraminate lyase
6 10 155 Neuraminidase

reference targets such that homologous signatures are re-
ported only once. However, because this file is constructed
in a greedy manner, it is possible for signatures within this
file to overlap each other. To identify redundancy across the
reference targets, we recommend evaluating the signatures
identified from each individual reference target in combina-
tion with this consolidated file when evaluating signatures.

RESULTS

Validation

We applied Neptune to identify differentially abundant
genomic loci (genomic signatures) for distinct bacterial
datasets from broad phyla. In order to validate methodol-
ogy and highlight mathematical considerations, we first ap-
plied Neptune to a simulated Bacillus anthracis dataset. To
demonstrate behavior in populations with genomic varia-
tion dominated by gene gain and loss, we applied Neptune
to identify signatures within a clinically relevant Listeria
monocytogenes dataset. Lastly, we demonstrated Neptune’s
capacity to locate genome signatures in a more structurally
and compositionally diverse Escherichia coli dataset.

Simulated dataset

In order to show that Neptune identifies signatures
as expected, the software was run with an artifi-
cially created dataset. We created an initial inclusion
genome by interspersing non-overlapping, virulence-
and pathogen-associated genes from Vibrio cholerae
M66-2 (NC 012578.1) throughout a B. anthracis genome
(NC 007530) (Table 1). We selected six signature regions
identified with IslandViewer 3 (16), varying from 4 to 50
kb in size, and spaced these signatures evenly throughout
the B. anthracis genome with each signature represented
only once. The initial exclusion genome consisted of the
wild-type B. anthracis genome lacking modification. Lastly,
we broadened both the inclusion and exclusion groups to 20
genomes each, by generating copies of the corresponding
original inclusion or exclusion genome and incorporating
a 1% random nucleotide mutation rate, with all possible
mutations being equally probable.

Neptune was used to identify the inserted pathogenic and
virulence regions in our simulated B. anthracis dataset. We
specified a k-mer size of 27, derived from Equation (2), and
used Neptune’s default SNV rate of 1%. Neptune produced
signatures from all 20 inclusion targets and these signatures
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Table 2. A summary of top-scoring (≥ 0.95) Listeria monocytogenes serotype 1/2a signatures generated by Neptune relative to a serotype 4b background.
These signatures were mapped against L. monocytogenes 1/2a EGD-e (NC 003210) and 08-5578 (NC 013766) to infer annotations

Rank Score Length Locus Information L. monocytogenes
(bp) Serotype 1/2a str.

EGD-e coordinates

1 0.99 4830 Peptidoglycan-bound protein colossin A 2 653 185–2 658 013
2 0.99 5336 Phosphotransferase system (PTS), L-ascorbate (L-Asc) family 2 042 111–2 047 447
3 0.99 4059 bvrABC locus, �-glucoside-specific sensory system 2 872 894–2 876 952
4 0.99 5454 PTS, glucose–glucoside (Glc) family 764 364–769 817
5 0.98 1938 Hypothetical 776 415–778 355
6 0.98 4514 Two-component response regulator and ATP-binding cassette (ABC)

transport systems
1 086 579–1 091 092

7 0.98 2839 Internalin 169 228–172 066
8 0.98 1673 Glycosyl-transferase 532 558–534 230
9 0.97 967 Hypothetical 2 717 382–2 718 348
10 0.96 169 Hypothetical, partial 270 157–270 325
11 0.96 2591 Lineage II-specific heat shock system 441 513–444 103
12 0.95 548 Hypothetical 804 275–804 822

were consolidated into a single file. We aligned these sig-
natures to the initial inclusion genome and used GView
Server (17) to visualize the identified signatures from all ref-
erences. Neptune identified seven consolidated signatures,
corresponding to the six expected V. cholerae regions, with
the largest signature region (50 kbp) misreported as two ad-
jacent signatures (10 136 and 39 763 bp) with a gap of 143
bp between them. However, by Equation (9), we expect to
see erroneous signature breaks with a frequency inversely
proportional to our confidence level (95%) when extend-
ing signatures over k-mer gaps. Indeed, upon investigation,
the break location contained six mutations almost evenly
spaced within the 143 bp region. Importantly, we observed
that all Neptune-identified signatures corresponded to the
artificially inserted V. cholerae regions and were consistently
detected for all references. Neptune reported all of the in
silico signatures and reported no false positives. Hence, we
conclude that Neptune is able to locate all in silico signa-
tures; although some regions identified are reported as two
adjacent signatures.

Listeria monocytogenes

Neptune was used to locate signature regions within two
distinct serotypes of Listeria monocytogenes. Listeria mono-
cytogenes is an opportunistic environmental pathogen that
causes listeriosis, a serious and life-threatening bacterial
disease in humans and animals (18). Listeria monocyto-
genes is comprised of a group of genetically heterogeneous
strains consisting of clonal isolates with very low recombi-
nation rates. However, recent L. monocytogenes evolution
has been characterized by gene deletion events resulting
from horizontally acquired bacteriophage and genomic is-
lands. Hence, we anticipated finding signatures correspond-
ing to these events.

Listeria isolates were serotyped using standard labora-
tory serotyping procedures (19). Serotypes 1/2a and 4b were
selected for evaluation as they represent distinct evolution-
ary lineages and are clinically relevant (18). Of the 13 L.
monocytogenes serotypes, serotype 1/2b and 4b (lineage I)
and serotype 1/2a (lineage II) are most commonly associ-
ated with human illness globally (18). Listeria monocyto-
genes lineage I is characterized by low diversity and low

recombination rates and strains from this lineage are over-
represented among human isolates, as compared to lineage
II strains, which exhibit increased levels of genomic diver-
sity, owing to recombination and horizontal gene transfer
and have an over representation among food, food-related
and natural environments (18). In total, 112 serotype 1/2a
and 39 serotype 4b targets were available to be used as in-
clusion and exclusion groups. These were independently as-
sessed to identify 1/2a signatures as well as the reciprocal 4b
signatures, by reversing the inclusion and exclusion group-
ings. These groups were evenly and randomly subdivided
into an experiment set and a validation set.

Neptune was executed on the L. monocytogenes experi-
ment data in order to produce both 1/2a and 4b signatures
for validation. Neptune produced 105 1/2a signatures and
75 4b signatures from their respective inclusion targets. We
further evaluated the top-scoring (≥ 0.95) 1/2a and 4b sig-
natures. The top-scoring signatures identified for L. mono-
cytogenes serotype 1/2a are listed in Table 2. These sig-
natures included phosphotransferase systems, proteins in-
volved in regulating virulence genes in response to envi-
ronmental cues and a surface-exposed internalin protein
gene, many of which are known to be critical factors for hu-
man pathogenesis (20). Furthermore, a lineage II-specific
heat shock system (21), constituting an operon with three
genes, was present among high scoring signatures. Likewise,
the top-scoring signatures identified for L. monocytogenes
serotype 4b (Table 3) included proteins related to the cell
wall, such as teichoic acid biosynthesis and a cell wall an-
chor protein, and a variety of other signatures encoding
broad functional diversity.

These experiment-generated signatures were then com-
pared against the wet-lab verified validation datasets to
evaluate their in silico sensitivity and specificity. We used
BLASTN (9) to independently align the top-scoring signa-
tures against our validation datasets. With a percent identity
threshold of 95% and a minimum alignment length of 95%,
the size of the signature length, 670 out of 672 (99.7%) 1/2a
signature alignments against the 1/2a validation targets met
our sensitivity criteria. Likewise, 199 out of 200 (99.5%)
4b signature alignments against 4b validation targets met
this strictness. Similarly, when relaxing the percent identity
threshold to 50% and the minimum alignment length to
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Table 3. A summary of top-scoring (≥ 0.95) Listeria monocytogenes serotype 4b signatures generated by Neptune relative to a serotype 1/2a background.
The signatures were mapped to L. monocytogenes strain 4b F2365 (NC 002973) to infer annotations

Rank Score Length Locus Information L. monocytogenes
(bp) Serotype 4b str.

F2365 coordinates

1 0.99 223 Hypothetical 478 246–478 468
2 0.99 3081 gltA–gltB operon 2 787 943–2 791 023
3 0.99 4004 N-acetylmuramic acid metabolism 1 685 737–1 689 738
4 0.98 1709 Cell wall anchor 2 684 246–2 685 954
5 0.97 1786 RHS repeat-containing protein (partial) 471 882–473 667
6 0.97 4912 RHS repeat-containing protein (partial) 466 603–471 499
7 0.97 5917 Multiple, including: hypothetical, cell surface membrane anchor,

multidrug efflux transporter-like
428 382–434 298

8 0.97 1785 Pyruvyl-transferase 117 970–199 754
9 0.95 1654 Teichoic acid biosynthesis 2 190 231–2 191 883
10 0.95 1741 Serine protease 1 924 193–1 925 933

Table 4. A summary of Stx1-containing Escherichia coli signatures generated by Neptune relative to a background of non-toxigenic Escherichia coli. The
signatures were mapped to E. coli O157:H7 str. Sakai reference (NC 002695.1, NC 002127.1, NC 002128.1) to infer annotations

Rank Score Length Locus Information E. coli O157:H7
(bp) Sakai coordinates

1 1.00 1375 Shiga toxin (A and B subunit) 2 924 383–2 925 757
2 0.99 5433 Urease gene cluster: ureA-G 1 390 114–1 395 545
3 0.98 3291 Bacteriophage related, integrase and other 2 593 022–2 596 313
4 0.98 438 perC, transcriptional activator of EaeA/BfpA, partial 1 183 201–1 183 639
5 0.98 1223 Phage tail length tape measure protein, partial 2 170 250–2 171 473
6 0.97 7697 Hemolysin gene cluster: hylC, hylA, hylB, hylD 15 716–23 412 (pO157)
7 0.96 1260 Colonization factor 1 767 898–1 769 157
8 0.96 962 Hypothetical 2 200 204–2 201 165
9 0.96 495 Hypothetical 2 186 120–2 186 614
10 0.96 796 Phage origin, serine/threonine protein phosphatase 3 488 405–3 489 201
11 0.96 1364 Hypothetical, colicin-like and small toxic polypeptide 1 397 029–1 398 393
12 0.96 987 Hypothetical, putative membrane protein 3 486 570–3 487 557
13 0.95 916 Putative serine acetlyltransferase of prophage 2 605 160–2 606 076
14 0.95 300 Hypothetical, potential T3SS effector 2 209 466–2 209 765
15 0.95 1136 T3SS effector protein NleH 1 804 974–1 806 122

50% the size of the signature length, we found no 1/2a hits
against 4b validation targets and no 4b hits against 1/2a val-
idation targets, indicating that the signatures were specific
to the inclusion group. These results suggest that our top-
scoring Neptune-identified L. monocytogenes serotype 1/2a
and 4b signatures have high in silico sensitivity and speci-
ficity to their respective serotypes against the other serotype
background.

Escherichia coli

We then applied Neptune to locate signatures correspond-
ing to Shiga-toxin producing E. coli (STEC). Specifically,
we chose to interrogate E. coli genomes that produce the
Stx1 toxin. This toxin requires the expression of both the
Stx1a and Stx1b subunits to be functional. Therefore, we
expected to locate the genes encoding for these subunits us-
ing Neptune. As E. coli exhibits significantly increased ge-
nomic diversity over L. monocytogenes, we expect it makes
identifying related signatures a more computationally chal-
lenging problem.

The inclusion and exclusion datasets were comprised of
six STEC (Stx1) and eleven non-STEC draft assemblies, re-
spectively. Neptune identified 371 signatures correspond-
ing to the STEC inclusion group. The top-scoring signa-
ture had nearly 100% in silico sensitivity and specificity with

respect to the inclusion and exclusion groups. We further
investigated the top-scoring (≥ 0.95) consolidated signa-
tures (Table 4) by aligning these signatures against an E. coli
O157:H7 str. Sakai reference (NC 002695.1, NC 002127.1,
NC 002128.1) to infer sequence annotations. This align-
ment included the chromosome and both plasmids, pO157
and pSKA1. The Sakai reference was selected because it
contains a copy of the Stx1 toxin and is well characterized.

As expected, Neptune identified the Stx1-encoding re-
gion as the highest scoring signature and identified asso-
ciated phage genes (Table 4). However, due to the poly-
morphic nature of the stx-associated phage, Neptune’s sig-
nature sequence lengths for the stx phage were restricted
to the gene level. Interestingly, Neptune identified a 7697
bp hemolysin cluster (Figure 3) that, although not geneti-
cally or biologically linked to stx, did segregate with STEC
E. coli genomes. This observation underscores Neptune’s
strength in identifying large-scale (multigene) features, such
as operons, in organisms possessing complex genomic orga-
nizations with horizontal gene transfer. In addition, it also
serves to demonstrate the value of this type of analysis in
identifying unexpected signatures that may provide new in-
sights into the genomic underpinnings of biological traits.
Likewise, other salient signatures identified by Neptune in-
cluded several virulence regions such as the urease gene
cluster, intimin transcription regulator (perC) sequences
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Figure 3. Genomic synteny for the Neptune signature encoding the hemolysin gene cluster (top) versus the corresponding hlyCABD region of reference
plasmid pO157 for Escherichia coli O157:H7 str. Sakai (bottom). GView (17) was used to visualize this 7697 bp signature; gene names and plasmid pO157
coordinates noted according to NC 002128.1.

and type 3 secretion system (T3SS)-related regions (Table
4). In the plasmid alignments, the hemolysin-predicted sig-
nature was the only top-scoring signature (sixth rank; 0.97
score) located on the pO157 plasmid. Furthermore, using
BLASTN (9), we found that many of the Neptune top-
scoring signatures aligned to characterized E. coli O157:H7
O-Islands (a set of mobile genetic islands characterized to
carry virulence factors). This included signatures 1–3, 5, 7–
15; notably Shiga toxin I (as predicted), a urease gene cluster
and several phage elements. We conclude that Neptune is ef-
fective at locating known pathogenicity-associated regions
and horizontally acquired regions within STEC, which have
a high in silico sensitivity and specificity with respect to the
input genomes for the analysis.

Comparison

Neptune’s principal distinguishing feature relative to other
signature detection software is its ability to accommodate
partial representation of the signature sequences in both the
inclusion and exclusion groups, and its ability to accommo-
date variation in the identified signatures. To demonstrate
its value, we compared Neptune to mGenomeSubtractor
(22) and panSeq (23). mGenomeSubtractor is a web-based
tool designed to perform in silico subtractive hybridization.
The program accepts as input a single query genome and a
set of subtraction genomes, and it reports the regions that
are unique to the query genome. panSeq constitutes a suite
of genome analysis utilities and is available as a web-based
tool or a downloadable application. The novel region finder
of panSeq accepts a set of query genomes and a set of refer-
ence genomes. The program considers each query genome
independently of the others and, like mGenomeSubtrac-
tor, reports the sequences that are contained in that query
but absent from the reference sequence collection. A cru-
cial difference between Neptune and both mGenomeSub-
tractor and panSeq is that Neptune simultaneously con-
siders both the entire inclusion and exclusion groups, and
reports sequences that differentiate these groups, whereas
mGenomeSubtractor and panSeq analyze only a single in-
clusion genome at a time. This difference is important, since
a signature for an individual genome may not be a signature
for the group.

We chose to highlight the effect of this difference by com-
paring these applications’ abilities to detect signatures for 20
Enterococcus hirae isolates against a background of 20 Ente-
rococcus faecium isolates. These genomes were already avail-
able on NCBI. This dataset is illustrative due to inter-species
variations as well as intra-species diversity attributed to
their accessory genomes. In contrast to more clonal organ-
isms, such as L. monocytogenes, the consequence of ignor-
ing signature sequence representation across an entire set of

inclusion genomes should become more pronounced for or-
ganisms harboring large accessory genomes. An individual
genome or a minority population may harbor genomic re-
gions that are specific only to themselves, and thus will not
be representative genomic signatures for the broader bacte-
rial population.

We ran all software with default parameters using E. hi-
rae as the inclusion dataset and E. faecium as the exclu-
sion dataset (Supplementary Data). As mGenomeSubtrac-
tor analyzes only one inclusion genome, we specified E. hi-
rae ATCC 9790 (NC 018081) from its list of NCBI bacterial
genomes as the query genome. Furthermore, mGenome-
Subtractor partitions the query genome, either by coding
sequence (CDS) or overlapping genome fragments of equal
lengths. We chose to have mGenomeSubtractor analyze
CDS regions as they generally must remain intact and con-
served to perform their biological role, are consequently
more likely to harbor stable signature sequences, and offer a
more suitable analytical choice for partitioning the genome
relative to an arbitrary fixed sequence length. However, we
highlight that Neptune and panSeq do not themselves in-
corporate any information about coding regions for their
analysis of signature sequence content. Additionally, these
software vary considerably in output, such as the number
of signatures reported, the signature sequence length and
whether partial or complete CDSs or multi-gene operons
are identified as signatures. Importantly, these software dif-
fer in the specific analytical application that they were devel-
oped to address, which accounted for a large proportion of
the observed variation in our parallel analysis. These intrin-
sic differences impose considerable difficulty for conducting
a quantitative side-by-side evaluation; thus, we restricted
our comparison to assessing the ability of each respective
software to find in silico genome signatures that could dif-
ferentiate (or represent) a larger bacterial population, while
acknowledging that neither panSeq nor mGenomeSubtrac-
tor were specifically designed to perform such analyses.

We used BLAST (9) to identify matching signature re-
gions in the input genomes and scored each signature se-
quence generated by Neptune, mGenomeSubtractor and
panSeq, using Equation (11), which assigns a score between
−1.0 and +1.0 as a combined measure of signature sensitiv-
ity and specificity. These scores represent the in silico dis-
criminatory power of the reported sequences, with positive
scores closer to 1.0 being highly discriminatory and scores
close to 0.0 being indiscriminate and likely undesirable. A
high-valued negative score is a measure of discrimination
in the inverse direction (i.e. it indicates that the reported se-
quence is a strong signature for the exclusion group rather
than for the inclusion group). Surprisingly, panSeq and
mGenomeSubtractor reported negative scores for some se-
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Figure 4. A comparison of the the population-level discriminatory power, as determined by signature score (Equation 11), for sequences identified by
mGenomeSubtractor (pink), panSeq (blue) and Neptune (orange) when operating on a dataset comprised of 20 Enterococcus hirae and 20 Enterococcus
faecium genomes. The histogram depicts total signature sequence (y-axis; measured in base pairs) with a combined discrimination score falling within
given scoring intervals (x-axis). Each score interval may contain more than one identified signature. Sequences with calculated scores closer to 1 are highly
discriminatory, whereas those nearing 0 have no discriminatory power to distinguish between inclusion and exclusion genome groups.

quences (panSeq: 292 sequences, 61 801 bases, 2.5% of total
bases; mGenomeSubtractor: 3 sequences, 515 bases, 0.02%
of total bases), implying that they were weakly discrimina-
tory for E. faecium, rather than for E. hirae. As the num-
ber and lengths of reported signatures vary considerably
between software, as well as the signatures themselves, we
constructed a histogram charting the total amount of iden-
tified signature sequence (in base pairs) with corresponding
combined discriminatory scores falling within a particular
interval (Figure 4). Summary statistics of the results are pro-
vided in Table 5.

DISCUSSION

Parameters

While many of Neptune’s parameters are automatically cal-
culated, there are a few parameters that deserve special men-
tion. The minimum number of inclusion hits and maximum
gap size are sensitive to the SNV rate and the size of k. When
estimating these parameters, a slightly higher than expected
SNV rate is recommended. This conservative approach will
avoid false negatives at the expense of false positives. How-
ever, many of these false positives will be removed during
the filtering stage at the expense of increased computational
time.

Computation time

Neptune is parallelizable and performs well on high-
performance computing clusters. In order to show the scal-

ability of Neptune, we created a simulated dataset by gen-
erating 100 copies of a L. monocytogenes serotype 1/2a iso-
late, 100 copies of a serotype 4b isolate and incorporating
a 1% random nucleotide mutation rate in each generated
copy, with all possible mutations being equally probable. We
ran Neptune on a homogeneous computing cluster where
there were always more resources available than required
by the software. This demonstrates the scalability of Nep-
tune when computing resources are not a limitation (addi-
tional information appears in the Supplementary Data). We
ran Neptune on 50, 100, 150 and 200 total genomes, with
even numbers of inclusion and exclusion genomes, and ob-
served a linear relationship between running time and num-
ber of genomes (Supplementary Data). We observed a rela-
tionship suggesting each additional genome added as input
would require an additional 10.2 s to complete and, more
generally, a 53% increase in running time for each additional
fold increase in input size.

Neptune may also be run as a parallel process within
a single-machine environment. When performing a simi-
lar scalability experiment on a smaller real dataset com-
prised of 112 L. monocytogenes serotype 1/2a isolates and
38 serotype 4b isolates, run on a single compute node with
48 cores and 80 GB of memory, we observed a linear rela-
tionship between the number of genomes and completion
time (Supplementary Data). We varied the size of the in-
put data such that runs maintained an approximate propor-
tion of 70–75% inclusion genomes and 25–30% exclusion
genomes. We observed a relationship suggesting each addi-
tional genome added as input would require an additional
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Table 5. Summary statistics of the population-level discriminatory power, as determined by calculated signature score (Equation 11), for sequences iden-
tified by Neptune, mGenomeSubtractor and panSeq, and Neptune when operating on a dataset comprised of 20 Enterococcus hirae and 20 Enterococcus
faecium genomes

Median Interquartile range Minimum Maximum Average base

Neptune 0.79 0.68–0.88 0.10 1.00 0.74
mGenomeSubtractor 0.71 0.35–0.88 − 0.01 1.00 0.65
panSeq 0.44 0.19–0.72 − 0.73 1.00 0.43

7.9 s to complete and, more generally, a 36% increase in run-
ning time for each additional fold increase in input size. The
observed difference between this experiment and the previ-
ous can be partially attributed to the proportionally smaller
exclusion group, from which mutations create more work
for the algorithm than from within the inclusion group.

Revealing biology

This study demonstrates that Neptune is a very useful
tool for the rapid characterization and classification of
pathogenic bacteria of public health significance, as it
can efficiently discover differential genomic signatures. Al-
though both L. monocytogenes 4b and 1/2a serotypes, be-
longing to lineages I and II respectively, are associated with
human illness, lineage I strains are overrepresented among
human cases whereas lineage II isolates are widespread in
food-related, natural and farm environments. Among the
L. monocytogenes isolates used in our study, 46% of 4b and
17% of 1/2a serotype isolates had a clinical human host
origin. Among the signatures for serotype 1/2a, multiple
PTS and ABC transport systems were found (Table 2 and
Supplementary Data), which may be correlated to the fact
that the presence of a variety of transport systems provides
L. monocytogenes serotype 1/2a with a competitive advan-
tage to survive under broad environmental conditions due
to its ability to utilize a variety of carbon sources. Among
the L. monocytogenes 4b serotype signatures found were
genes coding for cell wall anchor proteins, rearrangement
hotspot (RHS) repeat-containing protein known to be as-
sociated with mediating intercellular competition and im-
munity (24), and cell wall polysaccharides and teichoic acid
decoration enzymes (Table 3 and Supplementary Data).
In keeping with predilection of lineage I for human clin-
ical disease, such cell surface components play a role in
bacterial–host interactions (25). The potential involvement
of these genes in the virulence and pathogenesis of serotype
4b should be an interesting area of future inquiry.

Interestingly, two very large, but divergent signature se-
quences corresponding to the 4b (rank 16; score 0.93; length
12685 nt) and 1/2a (rank 14; score 0.94; length 22937) inclu-
sion groups were found by Neptune (Supplementary Data).
These serotype-specific signature regions contained non-
homologous teichoic acid biosynthesis and transport sys-
tem genes at equivalent chromosomal locations in the two
serotype subgroupings. In addition, another signature (rank
26; score 0.84; length 6348 nt; Supplementary Data) span-
ning seven genes corresponding to Listeria pathogenicity
island-3 (LIPI-3), or the listeriolysin S cluster (26) was only
identified in 4b isolates.

In a recent study by Maury et al., a pattern corre-
lation of gene families with the infection/food ratio of

isolates in the Listeria pangenome successfully identified
virulence-associated genes such as LIPI-3 and teichoic acid
biosynthesis-related gene clusters in serotype 4b strains to
be strongly associated with infectious potential at the popu-
lation level (27). We employed Neptune to analyze the same
sequence data for serotypes 1/2a and 4b as was used in
Maury et al., and identified signatures that overlapped with
our prior, independently generated and distinct genomes for
serotype 1/2a and 4b isolates (Supplementary Data).

With the advent of GWAS and their applications in bac-
teria to rapidly scan genetic markers as the basis of bacterial
phenotypes such as host preference, antibiotic resistance
and virulence across the complete sets of genomes, Neptune
offers to be a promising tool to reveal discriminatory genetic
markers and associations with particular phenotypic traits.
Hence, by generating such a catalogue of differential loci,
Neptune is useful in identifying candidate regions for fur-
ther investigating the association of identified regions with
categorical phenotypes, biological traits or metadata, such
as pathogen virulence or persistence in niche environments.

Advancing signature discovery

We compared Neptune against two other genome signa-
ture finding programs, mGenomeSubtractor and panSeq,
for the ability to identify population level signatures (Fig-
ure 4). We observed that all three applications were capa-
ble of identifying highly discriminatory sequences (score ≥
0.95). This result is expected, given that highly discrimi-
natory sequences will be present in virtually all inclusion
genomes and thus can be identified by analyzing essentially
any arbitrarily selected single genome from the inclusion
group. In contrast, we observed significant differences in
each software’s ability to report sequences that are present
in many, but not necessarily all, inclusion set genomes. This
is important in circumstances where no individual locus can
serve as a ‘true’ signature for the inclusion group, but there
may exist multiple loci that in combination can serve as
true signatures. Neptune found many sequences with scores
0.65–0.90 that were present in a majority, but not all, in-
clusion group genomes, whereas mGenomeSubtractor and
panSeq did not identify a comparable amount of sequence
with similar scores. While all three applications reported
low-scoring sequences indicative of less discriminatory sig-
natures, mGenomeSubtractor reported substantially more
low-scoring signatures relative to Neptune, and panSeq’s
output was predominantly low-scoring sequences. Over-
all, Neptune showed the narrowest range of discrimina-
tory scores, followed by mGenomeSubtractor and panSeq
(Table 5). Furthermore, Neptune showed the highest aver-
age per-base score, followed by mGenomeSubtractor, and
panSeq.
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Limitations

Neptune’s signature extraction step avoids false negatives
at the expense of false positives. The software attempts to
locate signatures that may not contain an abundance of ex-
act matches. This approach produces some false positives.
However, false positives are removed during signature fil-
tering and requires increased computational time. As signa-
tures are extracted from a reference, repeated regions do not
confound signature discovery. However, if a repeated region
is a true signature, then Neptune will report each region as a
separate signature. In this circumstance, user curation may
be required.

Neptune cannot locate isolated SNVs and other small
mutations. Any region with a high degree of similarity to the
exclusion group will either not produce candidate signatures
or be removed during filtering. Neptune is designed to lo-
cate general-purpose signatures of arbitrary size (above the
k-mer size) and does not consider application-specific phys-
ical and chemical properties of signatures. While Neptune is
capable of producing signatures as small as the k-mer size,
we observed that very short signatures (<100 bases) may
not contain any seed matches with targets when perform-
ing alignments during the filtering process, thereby prevent-
ing the signature from being evaluated correctly. We recom-
mend either using smaller seed sizes during pairwise align-
ments, at the expense of significantly increased computa-
tion time, or discretion when evaluating very short signa-
tures. The largest signatures identified by Neptune in our
data were (in bases) 22 937 for L. monocytogenes serotype
1/2a, 12 683 for L. monocytogenes serotype 4b and 14 650
for E. coli. Signature length will be limited by the actual size
of the discriminatory sequence and the amount of sequence
variation present.

Finally, Neptune makes assumptions about the proba-
bilistic independence of bases and SNV events; while these
events do not occur independently in nature, they allow for
significant mathematical simplification. Nonetheless, Nep-
tune is capable of producing highly sensitive and specific sig-
natures using these assumptions.

CONCLUSION

Neptune allows one to efficiently and rapidly identify ge-
nomic loci that are common to one population and dis-
tinguishing them from other populations. When applied to
pathogens, top-scoring signatures were specific to known
regions encoding mobile islands containing pathogenicity-
associated CDSs. By simultaneously considering all of the
input data, Neptune is capable of identifying sequences that
are representative signatures for bacterial organisms with
diverse genome content. While some signatures are reported
as smaller, adjacent signatures with intervening gaps, we
demonstrated that Neptune can locate signatures in both
simulated and biological datasets with high sensitivity and
specificity. Neptune provides an array of gene candidates to
investigate for their possible role in pathogenesis and func-
tional genomics.

Although Neptune will be useful in broad comparative
applications, we anticipate it will be particularly helpful
in public health scenarios, where rapid infectious agent
screening and characterization is crucial. Neptune may be

leveraged to reveal discriminatory signature sequences to
uniquely delineate one group of organisms, such as isolates
associated with a disease cluster or event, from unrelated
sporadic or environmental microbes. Neptune’s computa-
tions approach is well suited to comprehensive, ad hoc com-
parisons. We conclude that Neptune is a powerful and flex-
ible tool for locating signature regions with minimal prior
knowledge for wide-ranging applications of bacterial char-
acterization.

AVAILABILITY

Listeria monocytogenes and E. coli data used
in the manuscript are stored under NCBI Bio-
Project PRJNA301341. Neptune is developed in
Python and the software requires a standard 64-
bit Linux environment. The software is available at
http://github.com/phac-nml/neptune. Signatures identified
in our experiments and additional data files are available at
http://github.com/phac-nml/neptune-manuscript.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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