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Abstract: Nose-to-brain (N2B) drug delivery is a new approach to neurological disorder therapy as
medications can bypass the blood-brain barrier and directly enter the brain. However, the delivery
efficiency to the olfactory region using the conventional delivery method is impractically low because
of the region’s secluded position in a convoluted nasal cavity. In this study, the acoustic radiation
force was explored as an N2B delivery alternative in a wide frequency range of 10–100,000 Hz at
an increment of 50 Hz. Numerical simulations of the particle deposition in the olfactory region of
four nasal configurations were performed using COMSOL. Frequency analysis of the nasal cavities
revealed that eigenfrequencies were often associated with a specific region with narrow passages
and some eigenfrequencies exhibited an amendable pressure field to the olfactory region. Tran-
sient particle tracking was conducted with an acoustic inlet at 1 Pa, and a frequency spectrum of
10–100,000 Hz was imposed on the airflow, which carried the particles with acoustic radiation forces.
It was observed that by increasing the pulsating wave frequency at the nostrils, the olfactory delivery
efficiency reached a maximum in the range 11–15 kHz and decreased after that. The correlation of the
olfactory delivery efficiency and instantaneous values of other parameters such as acoustic velocity
and pressure in the frequency domain was examined.

Keywords: direct nose-to-brain delivery; olfactory deposition; active particle control; acoustic radiation

1. Introduction

There are more than 600 types of neurological disorders (NDs), which afflict more
than 30 million individuals and incur tremendous medical costs [1]. The ND incidence is
expected to continue rising due to a longer life span [2]. NDs are not limited to Alzheimer’s
and Parkinson’s diseases that are more prevalent in senior populations; they also occur
in children, such as attention deficit hyperactivity disorder (ADHD) and autism [3–5]
(Figure 1a). Some NDs are gender-specific; depression, migraine, and anxiety are more
often seen in females, while addictions are more often seen in males. Some NDs can occur at
all ages and for both genders, such as bipolar, insomnia, epilepsy, and multiple sclerosis [6].

Due to the challenges from the blood-brain barrier (BBB), many efforts have been
undertaken to explore the intranasal route to deliver medications directly to the brain,
termed direct nose-to-brain (N2B) drug delivery [7]. Intranasal drug delivery provides a
noninvasive practical method to bypass the BBB and directly deliver the medications to
the brain and spinal cord. This method works because of the unique connection that the
olfactory nerves provide between the brain and the environment. Intranasally adminis-
tered drugs can reach the central nervous system (CNS) via the olfactory and trigeminal
extracellular pathways within minutes, resulting in quick therapeutic onset [8]. A growing
number of recent reports have demonstrated the effectiveness of intranasal administration
of neurotherapeutic agents to the brain [9,10]. Thus, many drugs that have been previously
abandoned due to the BBB may be worthy of being re-examined for intranasal delivery,
thereby expanding the horizon of candidate agents. Currently, some therapeutic agents
are undergoing clinical trials utilizing nose-to-brain delivery, such as neurotrophins for
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Alzheimer’s diseases [11], insulin for diabetic neuropathy [12], antiretrovirals for Neu-
roAIDS [8], and deferoxamine for stroke [13].

Figure 1. Prevalence and treatment of neurological disorders (NDs): (a) various types of NDs
and their prevalence (scale: the green circle representing 3 million patients), and (b) four stages of
nose-to-brain (N2B) drug delivery: (1) intranasal drug delivery to the olfactory mucosa, (2) drug
transport from the olfactory mucosa to the brain (tissue transport), (3) drug action in the brain
(pharmacodynamics), and (4) drug elimination from the brain and body.

A complete N2B delivery involves four stages: (1) intranasal drug delivery to the
olfactory mucosa, (2) drug transport from the olfactory mucosa to the brain (tissue trans-
port), (3) drug action in the brain (pharmacodynamics), and (4) drug elimination from the
brain and body (Figure 1b). One of the first researches on the use of the olfactory path
for neurological disorder treatment was conducted by researchers [14,15], who explored
the intranasal route to send nerve growth factors to the brain (i.e., the second stage in
Figure 1b). Since then, efforts to enhance the transportation of small interfering molecules
to the brain have been actively pursued [16]. The use of nanoparticles for N2B delivery,
such as solid lipid nanoparticles, elastic polymers, emulsions, and liposomes, also gained
popularity in recent years due to their stability, mobility, and modifiability [17]. Studies
of acoustic drug delivery of microcapsules were reviewed by Kooiman et al. [18], which
showed that the resonance frequency of microcapsules intensified the interactions with
the environment and maximized the streaming potential. Ultrasound was also explored to
loosen the olfactory tight junctions to enhance drug delivery efficiency to the brain [19].

However, precise targeting of drugs to the olfactory region (i.e., the first stage in
Figure 1b) has been proven to be highly challenging, as there is no linear pathway from the
nostrils to this region [20,21]. With standard intranasal delivery devices, most medications
targeting the olfactory region will be filtered out in the front nose and turbinates [22,23].
Previous numerical simulations indicated that less than 1% of inhaled aerosol could reach
the olfactory region [24]. The extremely low olfactory dosage emphasizes the need to
develop novel strategies that can deposit drugs in the olfactory region with potent and
repeatable doses.

There are some statistical methods to evaluate the drug delivery from nasal deposition
results [25,26]. In the literature, researchers report the nasal deposition of particles in a
range with the maximum olfactory deposition fraction [27]. As well there are some recent
published papers for enhancing in vitro drug delivery in a model of the nasal cavity by
radiating force [28–31]. However, the effect of excitation frequency in a large extent is not
examined yet.

An improved way of targeting medications to the olfactory region is desired so that
optimal therapeutic outcomes can be achieved, and adverse side effects can be minimized.
The objective of this study is to numerically quantify the olfactory deposition fractions with
acoustic streaming in various nasal model geometries. In this study, instead of design of a
penetrating BBB model or CNS penetration, the focus is on the fact that the drugs for nasal
cavity delivery are intended to rapidly enter the blood circulation. Specific aims include:
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(1) to develop a computational model of olfactory drug delivery with acoustic radiation
forces in four nasal geometries.

(2) to understand the acoustic responses of varying nasal geometries to pulsating waves
from the nostrils.

(3) to predict the olfactory deposition fraction in the four nasal geometries under varying
pulsating frequencies ranging from 10 Hz to 100,000 Hz.

The results of this study will provide insights into the dose enhancement that can be
expected from acoustic-aided strategies for olfactory drug delivery.

2. Materials and Methods
2.1. Nasal Airway Models

In this section, mathematical modeling of olfactory drug delivery in varying nasal
geometries was thoroughly investigated. A schematic of a nasal cavity is depicted in
Figure 2, which consists of different sections, such as the nostril, vestibule, nasal valve,
turbinate, olfactory region, and nasopharynx (NP). The nasal model can be used for both
numerical simulations and in vitro deposition experiments. This model (Case 2, or baseline)
was subsequently modified in SolidWorks by either decreasing the dimension of the inferior
meatus to generate Case 1, or increasing the inferior meatus dimension to generate Case 3
and Case 4 (Figure 2b).

Figure 2. Computational models: (a) nose model geometry consisting of the nostril, vestibule, nasal
valve, turbinate, nasopharynx, and the olfactory region, (b) four models with varying obstructions:
Cases 1–4 with a progressively shrunk inferior turbinate, (c) cross-sections of Cases 1–4.

In the baseline case (Case 2), the left and right turbinate sections were approximately
symmetrical. However, symmetry is not the common phenomenon observed with typical
in vivo conditions, considering the nasal cycle causes one turbinate to be consistently larger
than its counterpart. The turbinate undergoes periodic swelling/deswelling that reduces or
increases the flow area in the nasal passage. Therefore, various sizes of the turbinate can be
observed throughout the day and must be incorporated into the model to provide proper
airway dynamics that predict drug deposition. A cross-section through the turbinate of the
four nasal geometries is compared in Figure 2c, which clearly exhibits a constricted meatus
in Case 1 due to a swollen inferior turbinate, and a progressively enlarged meatus in Case
3 and Case 4 due to a shrunk turbinate.
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2.2. Numerical Models

The governing equation for acoustic pressure in the nasal airway is shown below,

∇ ·
(
− 1

ρc
(∇pt − qd)

)
−

k2
eq pt

ρc
= Qm, (1)

where pt = p + pb is the total pressure and k2
eq =

(
ω
cc

)2
. Monodisperse aerosols of 1-µm

were tracked using the Lagrangian method as

d
(
mpv

)
dt

= Fg + Faco, (2)

The acoustic force was calculated from the acoustic field

Faco = −∇Urad, (3)

where the radiation field is

Urad = vp

[
f1

1
2ρc2 〈p

2〉 − f2
3
4

ρ〈v2
in 〉

]
. (4)

Here f1 = 1− K0
Kp

and f2 =
2(ρp−ρ)

2ρp+ρ . The constant values of Equation (1) are presented
in Table 1. Although the conditions, such as flow inlet temperature, and wall material, are
not biologically relevant, the overall relationships may still be valuable to this research.
Multiphysics COMSOL was applied to solve the flow governing. Physics-controlled mesh
with fine size was utilized to generate the computational mesh.

Table 1. Geometrical and physical constant values of parameters used in Equations (1)–(4).

Value

cc 343 [m/s]
T 293.15 [K]

pA 1 [atm]
ρc 1.24 [kg/m3]
ρp 1000 [kg/m3]
dp 1 [µm]
Kp 2.2 [GPa]

In this study, the deposition is calculated as deposition fraction, which is defined as
the percentage of the particles deposited in the olfactory region to the particles released
into the nose. Here, if the particle moves back to the inlet it will disappear, if it reaches the
olfactory region it will accumulate, and if it sticks to the other wall it will settle and freeze.
In COMSOL, the particle deposition tracking simulation was based on the accumulator
tool at the wall. In the accumulator, when a particle reached the target surface it was 100%
absorbed and counted. The geometrical and physical properties of the aerosol particles are
given in Table 1.

2.3. Correlation Analysis

It is of interest to identify the key acoustic parameters influencing the olfactory delivery
efficiency. With this aim, cross correlation analyses of some acoustic parameter and olfactory
deposition versus frequency domain were conducted [25]. In the statistical sciences, cross-
correlation is a measure of the resemblance between two time series as a function of the
displacement of one relative to the other. The cross-correlation is similar in nature to the
convolution of two functions. In an autocorrelation, which is the cross-correlation of a
signal with itself, there will always be a peak at a lag of zero, and its size will be the
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signal energy. Another measure used is dynamic time warping (DTW), an algorithm for
measuring similarity between two temporal sequences, which may vary in speed [26]. In
addition to a similarity measure between the two sequences, a so called “warping path”
is produced, and by warping according to this path the two signals may be aligned in
time. The signal with an original set of points X(original), Y(original) is transformed to
X(warped), Y(warped).

3. Results
3.1. Grid Independence Study

Mesh sensitivity analysis was conducted by comparing the eigenfrequency among
four mesh sizes, where the grid-independent result was attained as shown in Table 2. The
percentage of relative error from the fine mesh value of final captured particles in the
olfactory region of case 1 in the frequency of 545 (19.4) is reported in Table 2.

Table 2. Grid independent study: comparison between various numerical solutions.

Fine Normal Coarse Coarser

Number of edge elements 5930 4254 2855 3397
Number of boundary elements 18,888 10,396 4484 6370
Number of elements 40,743 19,631 3652 11,343
Minimum element quality 0.01095 0.03195 0.01201 0.009745
Number of vertex elements 1057 1057 1057 1057
Error (%) 0 1.66 5.09 26.30

3.2. Acoustic Eigenfrequency Analysis

Figure 3 shows the first one hundred eigenfrequencies of the four nasal airway config-
urations. The collection is made of four groups of the first 25 eigenfrequencies of each case.
In the lower end, the eigenfrequency magnitudes are close to each other among the four ge-
ometries; the differences among geometries increase at higher eigenfrequency numbers (N).
After the first two frequencies, which are around 668 and 2156 with less than 4% difference,
the remaining frequencies could be fitted with a polynomial (−0.5 N2 + 153.9 N + 2621.7),
with less than 7% relative error. The eigenfrequencies in Figure 3 are potential candidates
for higher drug delivery to the olfactory region or other critical regions in the nose.

Figure 3. Eigenfrequency analysis.

3.3. Olfactory Deposition with Acoustic Radiation Force

Figure 4 shows the deposition fraction in the olfactory region under three pulsating
frequencies in Case 2 (baseline, with normal meatus dimensions). Increasing the pulsating
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frequency decreased the particle settling (i.e., the time to reach the steady-state deposition
condition. The settling time for the frequency of 10 Hz, 110 Hz, and 610 Hz was 11.61 s,
1.07 s, and 0.28 s, respectively (Figure 4).

Figure 4. Predicted olfactory deposition at varying frequencies.

The olfactory deposition fraction vs. frequency in the range of 10–100,000 Hz is shown
in Figure 5a–d for Cases 1, 2, 3, and 4, respectively, with a frequency increment of 50 Hz.
Thus, the deposition profile in each figure was compiled from 2000 COMSOL files of
numerical deposition simulations, whose size were around two terabytes. Despite the
differences in peak values, a similar trend was observed among the four nasal geometries
considered. In addition, turbinate shrinking/swelling did not have a significant effect
on the magnitude of the olfactory delivery efficiency, while the optimal olfactory dose
occurred at different frequencies for different nasal configurations.

To visualize the deposition trend more clearly, the four cases are plotted in Figure 5e
together with an average line that describes the general trend of all cases. In most frequency
ranges (i.e., 40–100 kHz), the averaged olfactory delivery efficiency did not change much
with frequency. The optimal olfactory delivery was obtained within a limited range of
11–15 kHz.

Figure 6 shows the effect of the Brownian force on the olfactory deposition in com-
parison to that of the acoustic radiation force in Case 2 for 1 µm particles. As expected, a
constant olfactory deposition fraction was predicted when only the random Brownian force
was considered (blue line, Figure 6), which contrasted with the undulating profile under
the acoustic radiation force. It was also observed that the Brownian force had a noticeable
effect only in the low-frequency range (<5 kHz); for f > 5 Hz with the acoustic radiation
force, there were negligible differences in the olfactory deposition with and without the
Brownian force (red vs. black lines). Similar to Figure 5e, the optimal olfactory deposition
with both the acoustic and Brownian forces was achieved around 10 kHz. Interestingly, the
acoustic radiation force alone generated lower olfactory deposition than just the Brownian
force when f < 5 Hz. However, when f > 40 Hz, the acoustic and Brownian forces alone
led to equivalent olfactory deposition fractions (red vs. blue lines, Figure 6), indicating an
increasing irregularity of the acoustic radiation force effects with increasing frequencies.
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Figure 5. Comparison between obtained results of frequency analysis of (a) Case 1, (b) Case 2,
(c) Case 3, (d) Case 4, and (e) all cases with an average line.

Figure 6. Effect of Brownian motion on olfactory deposition in the baseline case (Case 2).

Figure 7 compares the frequency response of the acoustic pressure in the four nasal ge-
ometries at two frequency ranges. In each geometry, the acoustic pressure at two sampling
points was recorded, with one at the bottom of the olfactory region (dotted line) and the
other at the top of the olfactory region (solid line). By choosing two points in the olfactory
region, we seek to evaluate the change of the differential pressure vs. frequency.

As shown in Figure 7a, the differential pressure between these two probes pointed
to the olfactory region and, therefore, would act favorably in dispensing particles to this
region. As also noted in Figure 3, the eigenfrequencies in the range 5–6 kHz were found to
be 5461, 5522, 5597, and 5667 Hz, respectively. Differing from Figure 3, the eigenfrequency
analysis in Figure 7 was conducted with a refined frequency resolution (i.e., 1 Hz vs. 50 Hz
in Figure 3). Considering the geometrical effects, increasing the turbinate cross-section
decreased the magnitude of the acoustic pressure, indicating a weaker resonance in the
nose with a larger turbinate. Moreover, increasing the turbinate cross-section decreased
the differential pressure pointing to the olfactory region, thereby lowering the potential
benefit to olfactory targeting. Figure 7b shows the frequency responses in the range of
14.25–14.75 kHz. In this case, the sequence of the pressure peaks had less correlation
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with the nasal geometry, while the magnitude of the differential pressure was relatively
independent of the nasal geometry. The magnitudes of the differential pressure were much
larger in the higher frequency range (~80 Pa) than in the low-frequency range (~10 Pa), and
thus would lead to more improvements in the olfactory targeting.

Figure 7. Comparison of acoustic pressure at some point at the top of olfactory volume and bottom
of that region within the frequency range of (a) 5–6 kHz, and (b) 14,250 to 14,750 Hz.

To better understand the acoustic characteristics at varying eigenfrequencies, the
pressure distributions inside the nasal cavity are plotted as iso-surfaces in Figure 8 for two
frequency ranges considered (i.e., 5–6 kHz and 14.25–14.75 kHz). In the low-frequency
range (Figure 8a), the iso-surfaces were more stratified, where the direction of the pressure
gradient was more directed to the top of the nasal cavity than those in the high-frequency
range (Figure 8b). Only one apparent pressure valley and one pressure peak were observed
inside the nasal cavity for f = 5–6 kHz (Figure 8a). By contrast, there were multiple pressure
valleys and peaks for f = 14.25–14.75 kHz (Figure 8b).

Figure 8. Comparison of acoustic pressure isosurfaces among four nasal geometries: (a) low-
frequency range (5–6 kHz), and (b) high-frequency range (14.25–14.75 kHz).

Figure 9 depicts the particle deposition distributions at low and high eigenfrequencies
in the four nasal geometries. Highly heterogeneous deposition patterns were observed
for both frequency ranges. When f = 5–6 kHz (Figure 9a), stripes of particle accumula-
tions occurred in the nasal valve (red arrow), the inferior turbinate (black arrow), the
nasopharynx (hollow arrow), and the upper turbinate (yellow hollow arrow), regardless
of the nasal geometries. More concentrated particle accumulations occurred at the high
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eigenfrequency range 14.25–14.75 kHz, where high-dose patches were scattered throughout
the nasal airway surface (Figure 9b).

Figure 9. Comparison of particle surface deposition distribution among four nasal geometries:
(a) low-frequency range (5–6 kHz), and (b) high-frequency range (14.25–14.75 kHz).

To identify the critical factors on olfactory drug delivery, various parameters were
examined in terms of their cross-correlation with the olfactory deposition. Figure 10 shows
the correlations of the olfactory deposition in the baseline case (Case 2) with the local
acceleration in the y-direction (Figure 10a) and with the acoustic pressure (Figure 10b),
respectively. In Figure 10a, the acceleration y component oscillates near a constant value;
there were also several peaks, and one peak was coincident with the maximal olfactory
deposition (f = 9750). Such behavior was expected because the olfactory mucosa was
located in the maximum y location of the nose and the y-acceleration component helped
transport particles to the olfactory region.

Figure 10. A general correlation between (a) acceleration in the y-direction, (b) acoustic pressure, and
the olfactory deposition.

Figure 10b presents the correlation between the olfactory deposition and the acoustic
pressure, which oscillated near a constant value. No significant correlation was observed
between the peak of the acoustic pressure and the maximal olfactory deposition, indicating
that the acoustic pressure was a weaker measure than the y-component of acceleration in
determining the optimal olfactory delivery.

Other parameters were also evaluated to identify the key factors in olfactory drug de-
livery, which included the total acoustic pressure field, local velocity (RMS), instantaneous
local acceleration, pressure, pressure times velocity, pressure times pressure gradient, and
x, z components of the local acceleration. For the sake of conciseness, only the results of



Biomedicines 2022, 10, 1347 10 of 13

cross-correlation are presented in Table 3. The place of evaluation for each parameter is
different. Some parameters were evaluated in the olfactory region (i.e., OL), and some were
evaluated in the entire nasal cavity (i.e., by N). Surprisingly, the parameters evaluated in
the entire nasal cavity had higher values of cross-correlation with the olfactory deposition,
while parameters evaluated in the olfactory region had lower cross-correlation values
(Table 3).

Table 3. Cross-correlation between various parameters and the olfactory deposition.

Parameter Place MCC PD DTWA

Total acoustic pressure field OL * 358.3626 2850 0.0330

Local velocity (RMS) OL 76.6382 6650 0.0484

Instantaneous local acceleration OL 111.6919 65,500 0.0694

Pressure OL 370.0679 4150 0.0334

Pressure × velocity OL 13.1760 6650 0.0688

Local acceleration, y
component OL 307.4364 1600 0.0700

Pressure × pressure gradient OL 329.0383 14,400 0.0694

Total acoustic pressure field N ** 539.3815 14,400 0.0694

Local acceleration, x component N 238.5432 9700 0.5424

Local acceleration, y component N 306.3583 14,400 0.0695

Local acceleration, z component N 399.8635 72,100 0.0696
* Zone of averaging is the olfactory region. ** Zone of averaging is all domains of the nasal geometry.

Various statistical measures were calculated for the parameters. Cross-correlation is
generally used to measure the association between two different series. A higher cross-
correlation value shows that the two sets are more likely identical. The first measure of
the correlation used here is maximal cross-correlation (MCC). As shown in Table 3, the
minimum cross-correlation was associated with the product of pressure and velocity, while
the maximum cross-correlation was associated with the product of pressure and pressure
gradient, which was the first term in acoustic radiation force (see Equations (3) and (4)).
Another index that was used to evaluate the parameter was the peak difference (PD).
PD measures the frequency distance between the maximum frequency of the parameter
and those of olfactory deposition. This feature can use to estimate the saturation value
of the olfactory absorption graph (see Figure 5e). The nearest peaks occurred at the y
component of local acceleration, which was the direction pointing to the olfactory region.
The comparison of these two signals is illustrated in Figure 10a. In the Cartesian coordinate
system used here, z was the general direction of flow in longitudinal direction of the nasal
pathway, y was the normal direction, and x is in the lateral direction of nose pathway. The
last index used here was the unnormalized distance based on the Dynamic Time Warping
Algorithm (DTWA), which is an algorithm for measuring the similarity between two time
series. The minimum distance was found for the total acoustic pressure field while the
maximum distance was for the x component of local acceleration. It means that regardless
of peaks on the Figure or delay between signals the acoustic pressure has the same general
manner of particle deposition.

4. Discussion

The results of this study suggested that the optimal frequency of sound waves emitted
at the nostril for olfactory drug delivery was in the range 11–15 kHz. This result was
compiled from more than 8000 numerical deposition test cases of 8 terabytes in COMSOL.
Four nasal geometries were evaluated in a wide frequency spectrum of 10–100,000 Hz. The
reasons for the optimal frequency being 11–15 kHz in olfactory targeting may be explained
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as follows. As illustrated in Figure 7a,b, valleys and peaks of the acoustic pressure exist
inside the nasal cavity, which can act as a stabilizing or destabilizing force to collect or repel
particles. In other words, the interactions between the nasal airway and input sound waves
lead to either “friendly” zones, where the acoustic pressure gradients point to the olfactory
region and help drive particles toward it, or “unfriendly” zones where the acoustic pressure
gradients push particles away from the olfactory region. In Figure 7a (f = 5–6 kHz), a
pressure valley (i.e., friendly zone) was observed that covered the upper-front nose and
part of the olfactory region, with particles in the covered regions being more likely to
deposit in the olfactory region. At higher frequencies (14.25–14.75 kHz, Figure 7b), the
acoustic pressure valleys/peaks are smaller and distributed in an alternating manner. An
“unfriendly“ zone in the proximity of the olfactory region can effectively block particles
from reaching it. As a result, the total area of the “friendly” zones to the olfactory region
did not constantly increase with the frequency but rather reached a peak around 11–15 kHz
and decreased slightly at higher frequencies.

The predicted olfactory deposition fractions in this study (i.e., 0.6%) were lower than
those in many previous studies. For instance, Schroeter et al. [27] measured the nasal
deposition of 10.3 µm particles and reported a maximum olfactory deposition fraction
of 5%. However, it is noted that the olfactory dosing depends on the defined region
that was designated as “olfactory region”. In Schroeter et al. [27], the olfactory region
included both the superior turbinate and the olfactory region. More importantly, local
particle deposition in the nasal cavity is highly sensitive to the location of the nose due to
its convoluted structure. Only a small fraction of drug particles can escape the filtration
by the nasal valve and reach the turbinate; among them, even a much smaller fraction
can change direction from the axial direction to move upward and reach the increasingly
narrowed olfactory region. Xi et al. [22] compared the olfactory delivery efficiencies based
on different definitions of the olfactory region and noted that the difference could be as
large as one order of magnitude. As a result, a comparison of the olfactory deposition
fractions among different studies should include how the targeted olfactory region was
defined. Furthermore, the low olfactory deposition rates predicted in this study highlight
the challenges of N2B drug delivery and call for more studies to investigate new delivery
strategies to dispense drugs to this region.

There are several assumptions that may limit the applicability of the results of this
study. First, the inhalation flow was not considered, and the results of this study can
only represent the scenarios of breath-holding or very slow breathing conditions. Second,
only four nasal geometries were considered, which cannot represent the intra-subject or
inter-subject variability. Moreover, three nasal geometries were generated by modifying
a patient-specific nose model. More patient-specific models are needed to verify the
generality of the results in this study. Third, fluid-structure interactions, as well as the
nasal wall compliance, were neglected. Moreover, there were no benchmark experiments
yet to validate the olfactory deposition under radiation forces. Future in vitro studies
using 3D printed nasal casts can provide valuable data to improve the accuracy of the
numerical model developed in this study. After saying this, the predominant physics
(i.e., acoustic-particle-wall interactions) were considered here in anatomically accurate
nasal geometries under acoustic radiation forces of a wide spectrum (f = 10–100,000 Hz).
In doing so, extensive computing was conducted, and deposition test cases with eight
terabytes in size were compiled to identify the optimal frequency range for olfactory drug
delivery. The results of this study can provide guidance to future studies of acoustic-aided
intranasal drug delivery to the olfactory region.

5. Conclusions

A COMSOL-based computational model for acoustic-aided olfactory drug delivery
was developed in four nasal geometries. A systemic parametric study of the acoustophoretic
guidance to the olfactory region was performed for frequencies of 10–100,000 Hz at a
resolution of 50 Hz. Findings were extracted from multi-terabyte computational results
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that could be used as guidelines for future acoustic-aided intranasal olfactory drug delivery.
The major findings are:

(1) Frequency analyses of the nasal cavity revealed that certain eigenfrequencies were
particularly associated with the olfactory region and had the potential to deliver more
drugs to the olfactory region.

(2) At high frequencies, the acoustic pressure peaks/valleys were smaller in size and
distributed in an alternating manner.

(3) Turbinate shrinking/swelling did not have a significant impact on the magnitude of
the olfactory delivery efficiency but would alter the frequency for optimal olfactory
delivery.

(4) The olfactory deposition was maximal at 11–15 kHz and decreased at higher frequen-
cies. The olfactory deposition was almost constant for f > 40 kHz.

(5) A higher cross-correlation between the product of pressure and pressure gradient and
the olfactory deposition delivery efficiency was found than other acoustic parameters.
The nearest peaks belong to the y component of local acceleration, and the minimum
unnormalized distance based on dynamic time warping algorithm belongs to the total
acoustic pressure field.

(6) Frequency analysis near the olfactory region showed a negative correlation between
acoustic pressure and turbinate cross-section.
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