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Abstract

The troglomorphic harvestman Otilioleptes marcelae gen. nov., sp. nov. from the basaltic

cave Doña Otilia, Payunia region, Mendoza Province, Argentina, is described. Its system-

atic affinities were studied through cladistic and Bayesian analyses that included represen-

tatives of Gonyleptoidea; it was determined to represent a new monotypic family,

Otilioleptidae fam. nov., occupying a basal position within the clade Laminata. This species

shows accentuated troglomorphic traits, typical for troglobitic harvestmen: elongated

appendages, depigmentation, reduction of eyes and fading of scutal sulci. Additionally, it

almost lacks sexual dimorphism, the distal portion of coxa IV is not completely fused to the

stigmatic segment, and penis morphology is remarkably divergent with other Laminata;

these features cannot be attributed to cave adaptation and may reflect early lineage diver-

gence. Otilioleptes marcelae is the first troglobitic gonyleptoid known from a lava tube. The

xeric environments around the cave (Patagonian ecoregion) and the paleoenvironmental

history of the area suggest the relictual character of O. marcelae. Scattered evidence sup-

ports a long time evolutionary scenario and a presumable relationship with the Chilean opi-

liofauna (especially with genus Osornogyndes). A comparative overview of all known

troglobitic gonyleptoids is provided. The urgent need to protect this new species and its

unique cave environment is emphasized.

Introduction

Lava tubes, i.e., caves of volcanic origin, are relatively young formations with the same age as

the igneous rock in which they are built [1, 2]. In this feature, they differ from the better-stud-

ied karst caves, which undergo a continuous process of development and growth, through the

dissolution of carbonates (limestone, gypsum) over an extended geological time. In both cases,
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the presence of obligate cave dwellers (troglobites = troglobionts) has always stimulated the

interest of evolutionary researchers. In the Neotropics, several harvestmen are known to be

troglobites, but up to now, all were recorded from karst or sandstone caves. This paper reports

the finding of a highly specialized harvestman in a basaltic cave of western Argentina (Cueva

Doña Otilia), which is described below as Otilioleptes marcelae gen. nov., sp. nov. (Opiliones,

Laniatores, Gonyleptoidea). This hypogean species is the very first gonyleptoid known from

inside a lava tube, and the first true troglobitic gonyleptoid reported from Argentina. Behind

Picunchenops spelaeus Maury, 1988 (Laniatores, Triaenonychoidea, Triaenonychidae) [3], it is

the second troglobitic harvestman known in that country.

Cave harvestmen, especially those placed in the middle of a hostile epigean environment,

might reveal a significant meaning from a biogeographical and evolutionary perspective, as

presumed relics of ancient distributional patterns or lineages [4–6]. Doña Otilia cave is located

in an extensive xeric region, the Andean and sub-Andean domains in central-western Argen-

tina, where the existence of epigean harvestmen is almost inconceivable [5]. The low precipita-

tion rate, below 400 mm/yr, was deemed to be the cause of the presumed complete lack of

harvestmen in that extensive area [7, 8]. Only a few isolated populations were discovered in

some sites, scattered across this vast region, otherwise “negative” for harvestmen [4, 5, 9–12].

Three of them were found in caverns: the mentioned P. spelaeus (Triaenonychidae), from

caves of the Cuchillo Curá system, Neuquén Province, and two unidentified members of

“Parabalta” Roewer, 1913 (Gonyleptidae), from the Caverna de Chorriaca, Neuquén Province

and the renowned Caverna de Las Brujas, Mendoza Province [3, 4]. The unnamed harvestman

from Las Brujas has become a kind of “flagship” among Argentinean speleologists, but so far,

Picunchenops spelaeus was strictly the only true troglobitic member of the order in this coun-

try. Las Brujas is one of many caves occurring in the vicinity of Malargüe in southern Mendoza

Province. They have been actively surveyed since decades ago [13], including several lava tubes

placed in the large basaltic unit known as “Payunia” or “Payenia”–among them, Doña Otilia

cave. This cavity has been reported to harbor an interesting invertebrate fauna, thus revealing

its biospeleological potential [14]. Harvestmen caught in this cave are primarily the result of

the collecting efforts of Marcela Peralta in Doña Otilia, who kindly sent me this odd new gony-

leptoid for study.

The morphology of Otilioleptes marcelae revealed well-defined troglomorphic traits: depig-

mentation, weak tegumentary sclerotization, extreme reduction of eyes, elongation of append-

ages, fading of scutal grooves, and enlargement of pedipalp spines (Fig 1). All those features

are typical for cave-adapted harvestmen [3, 4, 15–21] and strongly suggest its condition as a

true troglobite, i.e., a species confined into the cave through its entire life cycle [2, 22]. Aside

from the extreme simplification of external traits shown by O. marcelae, this species bears sev-

eral unique puzzling features not referable to hypogean life (especially the genital morphology)

that hindered any straightforward assessment of its systematic affinities, even at a coarse famil-

ial level. The only few presumed similarities (though intriguing) were preliminarily found by

comparison with Gonyleptidae Tricommatinae (as restricted by [23]), and with the monotypic

genus Osornogyndes Maury, 1993, an alleged “Gonyleptidae Pachylinae” from Valdivian for-

ests in southern Chile [24], ca. 600 km from Doña Otilia cave. The mentioned difficulties are

magnified by the current systematic framework of Laniatores (and Gonyleptoidea), not stable

as yet, but under active revision and thereby subject to frequent changes. In recent years,

advances in Gonyleptoidea, based on either morphological or molecular data [23, 25–28],

derived in a better understanding of internal lineages, as well as in the recognition of new or

re-ranked families (e.g., Cryptogeobiidae, Gerdesiidae, Nomoclastidae, Metasarcidae) and

some major, well-supported clades (e.g., Laminata, an unranked clade of Gonyleptoidea [25]).

Noteworthily, further novelties are to be expected (A. Kury, in litt.). The challenging
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systematic assignment of Otilioleptes was then approached through cladistic and Bayesian phy-

logenetic analyses, to allow a closer comparison with relevant lineages of Gonyleptoidea.

Results led to the conclusion that the new genus likely represents an early diverging lineage

within Laminata, and that a new family, Otilioleptidae fam. nov., has to be established to

account for this taxonomic singularity. Some evolutionary and paleoenvironmental scenarios

are discussed, to speculate about the origins and survival of this awesome troglobite in such an

inhospitable area.

Material and methods

Abbreviations

Morphology. Pp: pedipalp; Cx: coxa; VP: ventral plate of penis; VPS: ventral process of sty-

lus; DPG: dorsal process of glans.

Cladistic terminology. EW: equal weights; IW: implied weighting; k: concavity value for

IW; Ci: consistency index; Ri: retention index, BS: Bremer support or decay index.

Bayesian terminology. Mk: Markov K-States model; Mkv: Mk version that conditions on

variable characters; PSRF: Potential Scale Reduction Factor.

Family-group taxa. Go(-): Gonyleptoidea, narrow sense (excluding Stygnopsidae);

TRIAE: Triaenonychidae; STGNOM: Stygnommatidae; POD: Podoctidae; ASS: Assamidae;

EPE: Epedanidae; PYR: Pyramidopidae; STOPS: Stygnopsidae; AGO: Agoristenidae; STY:

Stygnidae; CRYP: Cryptogeobiidae; GER: Gerdesiidae; NOM: Nomoclastidae; MET: Metasar-

cidae; COS: Cosmetidae; MAN: Manaosbiidae; CRA: Cranaidae; AMP: Ampycinae; GON:

Gonyleptidae s.s. (in this study represented by Pachylinae, Gonyleptinae, Goniosomatinae);

TRIC: Tricommatinae.

Fig 1. Otilioleptes marcelae gen. nov., sp. nov. Paratype male (FML-OPIL 00218), dorsal view. Photo: Abel Pérez-

González.

https://doi.org/10.1371/journal.pone.0223828.g001
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Table 1. List of terminals in the cladistic and Bayesian analyses, with literature sources or voucher specimens

used to complete the scoring of taxa and characters.

FAMILY: Species—Voucher—Literature source K&V 2015
�

1. TRIAE: Acumontia succinea Mendes & Kury, 2012—[29] =

2. STGNOM: Stygnomma fuhrmanni Roewer, 1914—[30] =

3. POD: gen. sp.—Thailand: Naratiwal Prov., Waeng District, Hala Bala W.S., Research Station, N 5˚

47’44.8” E 101˚50’4.2”, 190–200 m, 13-14.x.2003, ATOL Expedition 2003, 1 ♂, 1 ♀ (MACN)

Repl

4. ASS: Maracandellus sp.—Thailand: Chiang Mai Prov., Doi Inthanon N.P., nr. intersect. rd. to Mae

Chaem and checkpoint, wet primary forest, N 18˚31’33.2”; E 98˚29’57.7”, ca. 1800 m, 3.x.2003, ATOL

Expedition 2003, 1 ♂, 1 ♀ (MACN)

Repl

5. ASS: Ayenea trimaculata Santos & Prieto, 2010—Gabon: Ogoové-Ivindo, near Ntenkelé (0˚31.4’N,

12˚31.5’E), 550 m a.s.l.. 12-viii-2011 (B.A. & S.R. Huber), 2 ♂♂, 1 ♀ (ZFMK)

Add

6. EPE: Metepedanulus cf. flaveolus—Malaysia-Borneo: Niah Cave N.P., forest near cave (3.814˚N,

113.771˚E), 40 m a.s.l., 28.vii.2014 (B. A. Huber), 1 ♂ (ZFMK Op.00387)—Malaysia-Borneo: Sabah:

Mt. Kinabalu, Poring hot springs, forest near the beginning of Kipungit Trail (6.048˚N, 116.706˚E),

450 m a.s.l., 7.viii.2014 (B.A. Huber, S.B. Huber), 1 ♀ (ZFMK Op.00384)

Repl

7. PYR: Pyramidops pygmaeus Loman, 1902—Sharma, P., unpubl. photos =

8. STOPS: Paramitraceras granulatum Pickard-Cambridge, 1905—Cruz-López, J.A., unpubl. photos—

[31]

=

9. AGO: Globibunus rubrofemoratus Roewer, 1912—[32] =

10. STY: Ricstygnus quineti Kury, 2009—[33] =

11. STY: Stygnus mediocris (Roewer, 1931)—Ecuador: Napo: Limoncocha, 7.iv.1984 (A. Roig), 1 ♂, 1 ♀
(MACN)—[33]

Repl

12. CRYP: Zalanodius convexus (Mello-Leitão, 1940)—[23] Repl

13. CRYP: Spinopilar moria Kury & Pérez-González, 2008—[19] Add

14. CRYP: Cryptogeobius crassipes Mello-Leitão, 1935—Brasil: Rio de Janeiro, Praia Vermelha, 20-xi-

1990 (A. Kury), 1 ♂, 1 ♀ (LEA 000.294)

Add

15. GER: Gerdesius mapinguari Bragagnolo, Hara & Pinto-da-Rocha, 2015—Pinto-da-Rocha, R

(unpubl. photos)—[28]

=

16. NOM: Quindina albomarginis (Chamberlin, 1925)—Panamá: Barro Colorado island, viii-1985 (G.

Mora), 1 ♂, 1 ♀ (LEA 000.419)

=

17. NOM: Nomoclastes quasimodo Pinto-da-Rocha, 1997—Pérez González, A (unpubl. photos)—[33] =

18. NOM: Zamora sp.—Ecuador: Prov. Napo: Cantón Quijos: Yanayacu Biological Station. Night

collecting along trail. Nov. 26, 2009 (E. Tapia coll, Niarchos Expedition), 1 ♂, 1 ♀ (MACN)

Repl

19. MET: Incasarcus dianae Kury & Maury, 1998—[34] =

20. MET: Metasarcus sp.—Argentina: Salta, Aguas Blancas, ii-1997 (J.L. Farina, M.D. Romero & P.

Romero), 1 ♂ (LEA 000.420)—Argentina: Salta, Aguas Blancas (R.P. 19, km 7), 29-i- al 13-ii-2001 (J.L.

Farina, M.D. Romero), 1 ♂, 2 ♀♀ (LEA 000.421)

Repl

21. MET: gen. sp.—Argentina: Tucumán: Apeadero Militar General Muñoz (subida a Tafı́ del Valle),

1620 m, 12-ii-1995 (L. Acosta, A. Peretti, M. Acosta), 1 ♂, 2 ♀♀ (LEA 000.117)

Repl

22. COS: Cynorta conspersa (Perty 1833)—[35] =

23. COS: Gryne orensis (Sørensen, 1879)—Argentina: Formosa, Herradura, Camping La Florencia,

3-xii-2011 (J. Vergara, R. González-Ittig. L. Vaschetto), 5 ♂♂, 4 ♀♀, 2 juv. (CDA 000.879)

Repl

24. COS: Gnidia holmbergii (Sørensen, 1884)—Argentina: Salta: Termas, 4 km E Rosario de la

Frontera, 19.ii.1995 (L. Acosta), 3 ♂♂, 3 ♀♀ (LEA 000.206)

Repl

25. MAN: Syncranaus cribrum Roewer, 1913—Pinto-da-Rocha, R (unpubl. photos)—[36] =

26. MAN: Saramacia lucasae (Jim & Soares, 1991)—Pinto-da-Rocha, R (unpubl. photos)—[36] =

27. CRA: Chiriboga albituber Roewer, 1959—Ecuador: Pcia. Pichincha, 10 km Oeste Nono, 4.v.1982

(A. Roig), 2 ♂♂, 2 ♀♀ (MACN)

=

28. CRA: Zannicranaus monoclonius Kury, 2012—[37] =

29. CRA: Phalangodus sp.—[38] =

30. AMP: Licornus tama Villarreal & Kury, 2012—[39] =

31. AMP: Hutamaia caramaschii Soares & Soares, 1977 =

(Continued)
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Unranked clades. L: Laminata; Mic: Microsetata; GG: Greater Gonyleptidae (= G-SL +

MAN); G-SL: Gonyleptidae sensu lato (TRIC+CRA+AMP+GON); G-SS: Gonyleptidae sensu
stricto (TRIC+AMP+GON); O+O: Otilioleptes + Osornogyndes; C+M: Cosmetidae + Metasar-

cidae; T+C: Tricommatinae + Cranaidae.

Repositories of material examined. CDA: Colección de Arácnidos, Cátedra de Diversi-

dad Biológica II, FCEFyN, Universidad Nacional de Córdoba; FML: Fundación Miguel Lillo,

San Miguel de Tucumán; LEA: Collection Luis E. Acosta, Córdoba (housed in CDA); MACN:

Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires; ZFMK: Zoolo-

gisches Forschungsmuseum Alexander Koenig, Bonn (material studied at MACN).

Phylogenetic analysis

The systematic relationships of Otilioleptes gen. nov. were tackled through the incorporation

of the new species in the phylogenetic hypothesis proposed by Kury & Villarreal [25] for Gony-

leptoidea, henceforth referred to as ‘K&V’. This hypothesis is well-suited to this purpose since

it includes adequate representation of major lineages in the superfamily and appropriate out-

groups, it has many points of agreement with published molecular phylogenies [26, 27], and

the character set is almost entirely applicable to scrutinize the new taxon. Moreover, 35 out of

77 characters (46%) used in K&V [25] refer to the penis morphology, what represents an extra

bonus, given the peculiar genital morphology and the somatic simplicity of Otilioleptes. The

original K&V matrix was enhanced with the addition of 12 terminals, aside from the new

genus. Osornogyndes tumifrons (“Gonyleptidae”), Tricommatus brasiliensis, Tricommatus

Table 1. (Continued)

FAMILY: Species—Voucher—Literature source K&V 2015
�

32. AMP: Ampycus telifer (Butler, 1873)—[40] =

33. GON: Discocyrtus testudineus (Holmberg, 1876)—Argentina: Entre Rı́os, Strobel, 24-iii-2006 (L.

Acosta, M. Garcı́a), 8 ♂♂, 19 ♀♀ (LEA 000.358)

Repl

34. GON: Gonyleptes horridus Kirby, 1818 =

35. GON: Acanthopachylus aculeatus (Kirby, 1818)—Uruguay: Cerro Arequita, 3-xii-1997 (L. Acosta),

3 ♂♂, 4 ♀♀ (LEA 000.150)

=

36. GON: Pachyloides hades Acosta, 1989—Argentina: Tucumán, El Infiernillo, 5-iv-1986 (L. Acosta),

1 ♂, 1 ♀ paratypes (CDA 000.014)—[41]

Add

37. GON: Eusarcus hastatus Sørensen, 1884—Argentina: Misiones, Comandante Andresito, 13-xii-

2012 (L. Vaschetto, R. González Ittig, S. Poljak), 5 ♂♂, 1 ♀ (CDA 000.877)

Add

38. GON: Eubalta meridionalis (Sørensen, 1902)—Chile: Magallanes, Reserva Forestal Laguna

Parrillar, 50 km SO de Punta Arenas, 28-29-i-1988 (E. Maury), 6 ♂♂, 6 ♀♀ (LEA 000.413)

Add

39. GON: Acrographinotus sp.—Perú: Ancash, Quebrada Ishinca, 18-vi-1998 (J.A. Ochoa C.), 5 ♂♂, 16

♀♀, 2 juv. (LEA 000.025)

Add

40. GON: Acutisoma longipes Roewer, 1913—Brasil: São Paulo, São José dos Barreiros, Parque

Nacional Serra da Bocaina, rio Mambucaba (1400 m), 21-24-iii-1997 (Pinto-da-Rocha, Campaner &

Vanin col.), 3 spec. (LEA 000.292)—[42]

Add

41. TRIC: Tricommatus brasiliensis Roewer, 1912—[23, 43] Add

42. TRIC: Tricommatus giuponii (Kury, 2003)—[44] Add

43. TRIC: Caramaschia singularis Kury, 2002—[45] Add

44. Otilioleptes marcelae gen. nov., sp. nov.—This paper Add

45. Osornogyndes tumifrons Maury, 1993—Chile: Osorno, 3 km S of Maicolpué, Bahı́a Mansa, 21-xii-

84–3-ii-85 (S. & J. Peck), 1 ♂ paratype (MACN 9117), 1 ♀ paratype (MACN 9118)—[24]

Add

� References for ‘K&V 2015’ column: ‘ = ‘, a species included in the matrix of Kury & Villarreal [25]; ‘Repl’, a

replacement terminal; ‘Add’, a new terminal, added to K&V [25] matrix.

https://doi.org/10.1371/journal.pone.0223828.t001
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giuponii and Caramaschia singularis (Tricommatinae) were included to test their presumed

affinities with Otilioleptes (see comments in the taxonomic section below). Eusarcus hastatus,
Eubalta meridionalis, Pachyloides hades, Acrographinotus sp., Acutisoma longipes (Gonylepti-

dae), Zalanodius convexus, Spinopilar moria (Cryptogeobiidae), and Maracandellus sp. (Assa-

midae) were added to reinforce the representation of these families in the dataset. Because

published data were not enough to complete the scoring for the new characters of eleven ter-

minals, these were replaced by confamiliar substitute species, for which samples were available

for observation. Conversely, the taxon list was simplified by the removal of one nomoclastid,

two cranaids and three ampycines from the original matrix. The final list of 45 terminals is

given in Table 1, along with a detail of sources used for scoring the character states.

Fifteen extra characters were incorporated. For characters 8, 40, 52, 53, 66 and 67, defini-

tions were slightly modified, or additional states were added, to describe more accurately the

new terminals, especially Otilioleptes. Seven characters of the original matrix were set aside,

either because of difficulties in their scoring (23. Pedipalpal femur, ventrobasal cluster of seti-

ferous tubercles; 48. Lateral borders of pars distalis; 62. Median field of scale-bristles, shape;

63. Median field of scale-bristles, structure; 64. Lateral fields of scale-bristles, shape, and 77.

Tarsal aggregate pores) or because of redundancy with character 39 (76. Tarsal claws of legs

III-IV, structure). To make comparisons easier, characters numbering of K&V [25] was main-

tained; columns for the unused characters 23, 48, 62, 63 and 64 are left blank in the matrix (S1

Table), but 76 and 77 were simply suppressed: the 15 new characters were then appended to

the matrix, as characters 76–90. The matrix was edited using Mesquite version 2.75 (freely

available at http://mesquiteproject.org), then exported as Nona file (.ss) for cladistic analysis

and to Nexus format (.nex) for the Bayesian approach. The final list of characters and states

(all non-additive) is detailed in S1 Text; the matrix of 45 terminals x 85 active characters is

given in S1 Table.

Cladistic analysis

Tree search under parsimony was executed in the free software TNT version 1.1 (http://www.

lillo.org.ar/phylogeny/) [46], with the “traditional search” strategy (1000 replicates, 5 random

seed, branch swapping with SPR). Memory setting was raised to 10000 trees. Because of the

high degree of homoplasy and to replicate methods used by K&V [25] as closely as possible,

the parsimony analysis was made under implied weights (IW [47]), a method that assigns a

higher weight to the characters having less homoplasy. IW analyses were performed using

seven different concavity (k) values (1, 3, 6, 9, 12, 15, 18), together with a run based on equal

weights (EW, non-weighted) for comparison. Lower values of k penalize more strictly the

homoplastic characters; when values of k increase, the function becomes similar to the linear

function of EW. Trees obtained with TNT were opened in Winclada 1.00.08 [48] to trace char-

acter changes (unambiguous optimization) and to obtain Ci and Ri. Branch support was

assessed with TNT, by calculating three resampling-based measures: standard Bootstrap (sam-

ple with replacement), jackknifing (independent character removal, 36% removal probability)

and symmetric resample (33% change probability). In all cases, resampling was applied to each

concavity value, upon 500 replicates using traditional search, with frequency difference (GC)

as output, and a cut-off = 1 (branches below this value are collapsed). Besides, Bremer support

or “decay index”, i.e., the number of extra steps needed to collapse a given branch of a most

parsimonious tree [49], was estimated with a script running in TNT. The search started with a

50-replicates parsimony ratchet, followed by 10 random addition sequences (TBR branch

swapping) and saving up to 10 trees per replication. After that, 15 search cycles for suboptimal

trees were performed, applying a stepwise increase of the suboptimal threshold and the tree
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buffer in each run (from “sub 5; hold 10000; sub 10; hold 20000; sub 20; hold 30000;. . .” up to

“sub 90; hold 150000;”). In all command lines, swap was done until the tree-buffer was filled.

Bayesian methods. The matrix was also analyzed using an alternative phylogenetic

approach, likelihood-based, the Bayesian inference, which has become widely accepted in

molecular systematics [50, 51]. Most Bayesian methods for phylogenetic reconstruction

were specifically designed to handle molecular data and can be adjusted to a wide range of

evolutionary models. In contrast, a straightforward model, the so-called ‘Mk model’ (=

Markov k-states model), as proposed by Lewis [50], is considered suited for analyzing dis-

crete morphological data, which have very different properties to the molecular ones [51].

The suitability of Bayesian methods to analyze morphological data is currently on debate:

some researchers asseverate that results obtained under the Mk model outperform those of

parsimony [52, 53], while others advocate for exactly the opposite, considering the Mk

model too unrealistic and inadequate for morphological data sets [54–56]. Without aiming

to take part in the controversy, in this paper a Bayesian model was performed to compare

with topologies obtained under parsimony. The Mk model was run using the free software

MrBayes 3.2.7 (available at https://nbisweden.github.io/MrBayes/) [57], by executing a

nexus (.nex) file that contains both the matrix (S1 Table) and the prompts to define parame-

ters and perform the analysis. Following the Mk model postulates [50], rates of evolution

were allowed to vary across sites by assuming a discrete gamma distribution, and the char-

acter acquisition bias was solved by excluding constant characters, allowing only variable

characters in the data (parameters rates = gamma and coding = variable; this model fre-

quently referred to as ‘Mkv’). Acumontia succinea was selected as the outgroup. Six inde-

pendent MCMC (Markov chain Monte Carlo) were run simultaneously, each run

consisting of six separate chains; searches were performed for 2x106 generations (number of

cycles for the MCMC algorithm), and sampled every 500 generations, with the first 25% of

samples discarded as a burn-in (burninfrac = 0.25). MCMC diagnostics was calculated

every 5000 generations (diagnfreq = 5000). The resulting consensus tree was displayed and

edited with FigTree 1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/).

Taxonomic methods. This work did not involve sampling of specimens, but was based on

material deposited in the Invertebrates Collection, Fundación Miguel Lillo (FML), San Miguel

de Tucumán, a permanent public repository open to scientific research (Curator: M.A. Peralta,

maperalta@csnat.unt.edu.ar). Specimens were examined, measured and drawn using a Leica

Wild M3C stereomicroscope with camera lucida. Photographs of type specimens were kindly

taken by Abel Pérez-González and Willians Porto using a Leica DFC 290 digital camera

attached to a Leica M165C stereomicroscope; different focal planes of this image were com-

bined using Helicon Focus Pro (www.heliconsoft.com). Descriptions follow [58], especially for

the use of prolateral / retrolateral as a topological reference on appendages, and for the nota-

tion of the tarsal formula and pedipalp spination. In the latter, the use of square brackets is

here proposed to denote contiguous spines sharing the same tegumentary elevation (e.g., iIii

[Ii] means, from basal to distal, a sequence “small-large-small-small-large-small spines”, the

two latter arising from a bifid base); bold is used to indicate the largest spine in a group, if

applicable. An acute cuticular projection is termed a ‘spine’ if articulated into a socket, or an

‘apophysis’ when emerging smoothly from the tegument [58]. All measurements are in mm.

Relative lengths (ratios) for legs and pedipalps express n-times the scutum length; for the basal

tarsomere, n-times the sub-basal tarsomere; in both cases, an “x : x : x : x” notation separates

leg pairs. Male genitalia were studied and illustrated in temporary mounts in glycerol [58]

using a Nikon E200 microscope with camera lucida. Macrosetal patterns on the VP were

described following [25]. Line drawings were digitized using the free software Inkscape 0.92

(www.inkscape.org).
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Nomenclatural acts

The electronic edition of this article conforms to the requirements of the amended Interna-

tional Code of Zoological Nomenclature (https://www.iczn.org/the-code/), and hence the new

names contained herein are available under that Code from this electronic edition. To fulfil

the requirements for availability stated in Art. 8.5. of the Code, this published work and the

nomenclatural acts it contains have been registered in ZooBank (Official Register of Zoological

Nomenclature) (http://zoobank.org), and they accordingly have their respective LSID (Life

Science Identifier). The electronic edition of this work was published in a journal with an

ISSN, and has been archived and is available from the following digital repositories: PubMed

Central and LOCKSS. ZooBank LSIDs can be resolved and the associated information viewed

through any standard web browser by appending the LSID to the prefix “http://zoobank.org/”.

The LSID for the present electronic publication is urn:lsid:zoobank.org:pub:CDE55C43-9233-

48F4-A44F-A390E4AEC60E.

Cartography

The location map was designed with the free, open-source geographic information system

software QGIS 2.4.0—Chugiak (https://qgis.org/), using spatial data freely available at https://

www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world (shapefiles based on

[59]) and http://www.diva-gis.org/Data.

Systematic results

Cladistic analysis

Trees obtained with implied weights (IW). They displayed a quite similar topology

across a wide concavity span (k = 1 to k = 13), and at the same time, replicated most branches

of K&V hypothesis [25]; the single tree resulting with k = 6 was the preferred hypothesis (Fig

2). Three major unranked clades recognized in K&V [25], Laminata (L), Microsetata (Mic)

and Greater Gonyleptidae (GG), were consistently retrieved with IW from k = 1 to k = 13 (S1

Fig), although only L had a relatively high BS value (Fig 2). On the contrary, the extent of

Gonyleptoidea constitutes a remarkable disagreement between analyses. The monophyly of

‘Gonyleptoidea in a broad sense’ (i.e., including Stygnopsidae, as the sister clade of all the rest

[25]), was not supported in this study. Instead, Gonyleptoidea was recovered in the “narrow

sense” [26, 60], that is, restricted to Agoristenidae + the rest (STOPS excluded and displaced

one node towards the root; the clade, with low BS, is then abbreviated ‘Go(-)’. Between k = 1

and k = 13, Otilioleptes and Osornogyndes grouped in a clade (O+O), as the sister group of the

‘Laminata’ in their original scope (S1 Fig; Table 2). Considering the defining apomorphies of

the clade Laminata (recognition of a well-defined VP and associated features [25]; see also S2

Fig), together with results of resampling analyses (see below), I here propose L to embrace Oti-
lioleptes and Osornogyndes as its most basal branches. At lower concavities (k = 1 to k = 5), Tri-

commatines grouped with Cranaidae (T+C, forming the sister clade of AMP+GON), but

between k = 6 and k = 13, tricommatines became the sister group of Gonyleptidae. In both k

intervals the clade “Gonyleptidae sensu lato” (G-SL) was recognized (TRIC+CRA+AMP

+GON), while a subordinated cluster, “Gonyleptidae sensu stricto” (G-SS): (AMP (TRIC

+GON)) was generated with k = 6–13 (Fig 2; S1 Fig; Table 2). The latter hypothesis would be

in better agreement with the current assignment of Tricommatinae as a subfamily within

Gonyleptidae; with T+C, to recognize TRIC as a subfamily would require considering CRA as

a member of the family as well. Concavities k = 14 and k = 15 resulted in the pectination of

Osornogyndes and Otilioleptes (in this order) in the base of NOM (S1 Fig). From k = 16
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Fig 2. Cladistic relationships of Gonyleptoidea and placement of Otiloleptes marcelae gen. nov., sp. nov. Single most parsimonious tree obtained with implied

weights (IW), k = 6 (Ci: 0.30, Ri: 0.59, tree length: 510 steps). Number above each branch indicates Bremer support; below, values of bootstrap, jackknife and symmetric

resample (B-J-SR). Grid (‘Navajo rug’) beside a clade summarizes whether it is retrieved (grey cell) or not (white cell) in selected treatments (k = 1, 3, 6, 9, 12, 15, B, J, SR

resamplings of the k = 6 tree). In red: sector of K&V [25] hypothesis where Otilioleptes is incorporated (basal in Laminata).

https://doi.org/10.1371/journal.pone.0223828.g002

Relictual harvestman from a lava tube in Argentina

PLOS ONE | https://doi.org/10.1371/journal.pone.0223828 October 23, 2019 9 / 37

https://doi.org/10.1371/journal.pone.0223828.g002
https://doi.org/10.1371/journal.pone.0223828


onwards (IW was tested up to k = 50), Otilioleptes and Osornogyndes were placed more inter-

nally than NOM, pectinated at the base of Microsetata (roughly resembling the topology

obtained with EW, see below). In any case, no concavity supported any close relationship

between Tricommatinae and Otilioleptes.

Table 2. Recovery of the relevant clades, monitored in different analytical treatments.

Go(-) L O+O O+O +NOM Mic C+M GG G-SL T+C G-SS

IW—concavity k 1 + + + – + + + + + –

k 3 + + + – + + + + + –

k 6 + + + – + + + + – +

k 9 + + + – + + + + – +

k 12 + + + – + + + + – +

k 15 + + – + OT + + + + – +

k 18 – + – – + + + + – +

resample k = 3 B 17 32 – � – – 26 – 6 20 –

J 17 54 – OT-L – – 42 20 37 39 –

SR 14 49 – OT-L – – 37 13 25 37 –

resample k = 6 B 17 27 – � – – 27 3 10 12 –

J 14 44 – OT-L – 7 44 19 35 17 –

SR 14 41 – OT-L – 4 39 15 26 18 –

resample k = 15 B 16 10 – � – – 25 1 6 – 2

J 10 26 – � – 5 44 4 10 – 12

SR 13 18 – � – 3 38 5 10 – 11

EW EW-str – – – OS – + + – – – +

EW-50 – – – OS – + + – – – +

resample EW B 11 2 – � – – 18 – – – 1

J 5 3 – � – – 21 – – – 4

SR 7 3 – � – – 22 – – – 3

Mkv + + – – – + – – – +

Treatments: Implied weighting (IW) with seven different concavity values (k); equal weights (EW), strict consensus (EW-str) and majority rule (EW-50); resampling

with bootstrap (B), jackknife (J) and symmetric resample (SR): values indicate branch support when�1; Mkv: results obtained with the Bayesian Mkv analysis.

Clades: Go(-): Gonyleptoidea, narrow extent (without STOPS); L: Laminata; O+O: Otilioleptes + Osornogyndes; O+O+NOM: (Otilioleptes (Osornogyndes
(Nomoclastidae))); Mic: Microsetata; C+M: Cosmetidae + Metasarcidae; GG: Greater Gonyleptidae; G-SL: Gonyleptidae sensu lato; T+C: Tricommatidae + Cranaidae;

G-SS: Gonyleptidae sensu stricto. If O+O is not recovered, it is indicated whether Otilioleptes is more basal than Osornogyndes (OT, denoted as OT-L if the most basal of all

Laminata), Osornogyndes is more basal (OS), or these terminals collapse in a basal polytomy of Laminata (�).

https://doi.org/10.1371/journal.pone.0223828.t002

Table 3. Summary results of the eight analyses (k = 1, 3, 6, 8, 12, 15, 18; equal weights) performed on the matrix of S1 Table.

Concavity (k) Trees retained Tree length Ci Ri Best score (fit)

1 1 515 0.30 0.58 49.46307

3 1 515 0.30 0.58 36.75061

6 1 510 0.30 0.59 27.30825

9 1 510 0.30 0.59 21.88885

12 1 510 0.30 0.59 18.32948

15 3 507 0.31 0.59 15.78042

18 3 505 0.31 0.59 13.85395

None (EW) 33 503 0.31 0.60 n/a

https://doi.org/10.1371/journal.pone.0223828.t003
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Trees obtained with equal weights (EW). This analysis yielded 33 equally parsimonious

trees. The consensus of EW trees (either strict or by majority rule) failed to recover most of the

branches referred to above (S1 Fig). Of the major clades recognized by K&V [25], only Micro-

setata and C+M (Cosmetidae + Metasarcidae) were retrieved (the latter is indeed the only

clade present in all and any treatments). Very relevant lineages, like Go(-), L or GG did not

appear using EW. Even worse, in some cases (Cryptogeobiidae, Nomoclastidae), familiar clus-

ters lost their cohesion and got dismantled. Alike with k� 16, Osornogyndes and Otilioleptes
resulted basal to Microsetata using EW, leaving NOM more basally in Laminata; however, in

this case, the intrusion of Stygnidae amongst NOM actually dissolved the monophyly of the

latter and the Laminata under EW. Although trees obtained with EW were shorter (length

503) than with IW (Table 3), they show many topological inconsistencies, especially when

resampling methods are considered.

Resampling methods. Bootstrap, jackknifing and symmetrical resampling were per-

formed for three concavities (k = 3, k = 6, k = 15), to represent their respective intervals. In

general, Go(-), L and C+M were the best-supported clades with all three methods (Table 2). In

contrast, Mi, which was retrieved across all tested concavities, received weak or no support at

all when resampled. Similarly, the clade O+O, consistently formed from k = 1 to k = 13, disap-

peared in all resamplings; depending on the k used, these terminals either formed a pectination

basal to all Laminata (Otilioleptes at the base, followed by Osornogyndes), or both genera sepa-

rately collapsed into a basal polytomy of that large clade (S1 Fig; Table 2). In no case, Otilio-
leptes or Osornogyndes were placed outside Laminata, or shifted into a more terminal position,

or moved far away from each other. Resampling of EW trees resulted in an unexpected resur-

gence of the main clades Go(-) and L, missing in the regular analysis, although always with low

support (Table 2).

Bayesian analysis. The six independent runs of the Mk model converged on very similar

posterior estimates, with an average standard deviation of split frequencies of 0.009148. PSRF

(a convergence diagnostics that compares the estimated between-chain variance with the

within-chain variance for a parameter) was close to 1.0 both for parameters and for trees, indi-

cating that the sample from the posterior probability is good. The analysis did not yield a fully

resolved tree, resembling results obtained with EW. Branches that were weakly supported in

the precedent parsimony analyses collapsed here in several polytomic nodes (S3 Fig). Some

major clades identified in most variants of the cladistic analysis were recognized with Bayesian

methods as well (Table 2), in most cases having a high posterior probability (S3 Fig). These

include: Go(-), i.e., the Gonyleptoidea without STOPS; Laminata, as one of the best supported

major internal clades within Go(-); Gonyleptidae sensu stricto (G-SS), and the clade comprising

Cosmetidae and Metasarcidae (C+M); these results give thus independent evidence in favor to

the strength of those parts of the phylogenetic hypothesis. Like with EW, CRYP is not retrieved

as monophyletic, and all three terminals of this family separately joined the Go(-) polytomy

(S3 Fig). The Bayesian analysis did not resolve the exact placement of Otilioleptes and Osorno-
gyndes, which do not form a clade O+O, but individually take part of the large Laminata polyt-

omy that comprises other five well-supported lineages: NOM, C+M, MAN, CRA and G-ss.

Position of Otilioleptes. Although not an aim of this study, the cladistic analysis served as

a kind of proof of the robustness of K&V hypothesis [25]–and it passed the test quite well.

Results with IW maintained most major clades, despite the inclusion of several new taxa

(chiefly the Tricommatinae, Osornogyndes and two extra Cryptogeobiidae), the replacement of

others, and the incorporation of additional characters. As seen, the only main disagreement

was the extent of Gonyleptoidea, here recognized in the “narrow sense” because of the exclu-

sion of STOPS. It should be noted that clades resolving these relationships have relatively low
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BS (Fig 2) and that the inclusion of this family (or not) within Gonyleptoidea is at least conten-

tious in the literature (see e.g., [25, 26, 60–62]).

On the other hand, this analysis reinforced one previously suspected relationship: the other-

wise isolated Otilioleptes is consistently placed near the bizarre ‘pachyline’ Osornogyndes. Both

genera are likely the basal members of the Laminata (S1 Fig), although in a few treatments

they may appear related to NOM (IW k = 14–15) or shifted one further step inside the tree

(EW). In any case, support for a clade O+O is weak; in the selected tree (Fig 2, see also S2 Fig)

this clade has a very low BS (1.88) and is defined by a single homoplastic feature, #53 (state

0> state 1: presence of VPS, also shared with clades GON, CRYP and one single TRIC) , so that

a sister-taxa relationship of these two genera does not appear stable enough. The recovery of O

+O with some IW concavities (k = 1–13) is, indeed, the only evidence to group both genera,

say, in the same family. However, evidence against this supposed confamiliar status appears

stronger: O+O is not retrieved from k = 14 onwards, neither with EW nor any resampling

method (S1 Fig). This conclusion is endorsed by relevant alpha-taxonomic differences too, as

detailed under the generic description. The Bayesian consensus tree, much less resolved than

parsimony, did not support a clade O+O either, not even the topological vicinity of Otilioleptes
and Osornogyndes, except for both belonging to the Laminata (S3 Fig). Grouped in a clade or

not, the recurrent topological proximity of these genera (S1 Fig), can be explained by their

shared basal condition, not necessarily for being sister-taxa. From these results it is clear that

Osornogyndes can no longer be maintained in Gonyleptidae Pachylinae, nor assigned to Otilio-

leptidae fam. nov. or any other existing suprageneric clade. Osornogyndes is therefore kept as

“Family uncertain” within Gonyleptoidea Laminata until its relationships are investigated in

more depth.

Characters optimized in the Otilioleptes branch (S2 Fig) include three non-homoplasious

autapomorphies, two of which refer to genitalia: #66 (state 4> state 7: macrosetae A-B trans-

verse) and #81 (state 2> state 4: VPS truncate), the remaining one to exomorphology: #82

(state 1> state 0: frontal hump equal-sized as ocular mound). Homoplasious apomorphies in

this clade comprise: #6 (0 > 1, presence of frontal hump, shared with GER, two MET and G-

SS); #21 (0 > 1, medial subapical spine on pedipalp femur, with several back and forths, and

independent appearances in Cryptogeobius, Quindina, MET, MAN and GON); #40 (1> 0, tar-

sal process, separately lost in Otilioleptes, MET and TRIC); #76 (1 > 0, multiple macrosetae

AB, shared with Phalangodus sp. and Acrographinotus sp.); #78 (0> 2, macrosetae A-B dis-

placed to the truncus, present in Acrographinotus sp.); #79 (1 > 0, macrosetae C shifted proxi-

mad, a state scattered among Nomoclastes, ASS, STY and STOPS); #80 (1 > 0, apical border of

VP cleft, as in Gonyleptes + Acutisoma, MET gen. sp. and Zamora); #85 (1 > 2, pedipalp coxa

moderately elongated) and #88 (1 > 2, coxa III long, like GER, Zalanodius and Ayenea).

Results proved that Tricommatinae are not related to Otilioleptes, as initially believed, but they

are close to Gonyleptidae and allies instead (Fig 2).

Taxonomic treatment

Family Otilioleptidae fam. nov

urn:lsid:zoobank.org:act:7973595B-826D-4F82-8AE3-95BF3CFC6E2C

Type genus. Otilioleptes gen. nov. Family monotypic.

Diagnosis. Opiliones, Laniatores, Gonyleptoidea, Laminata. Small, long-legged harvest-

men, of delicate habitus, thoroughly unarmed. Ocular mound as a blunt granulous mound,

with extremely rudimentary eyes. Scutum almost smooth, with five mesotergal areas, sulci

almost vanishing. Free tergites I-III and dorsal anal plate unarmed. Stigmatic segment broad,

posterior border sub-straight, surpassing the coxa-trochanter IV joint. All appendages
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elongated. Chelicera and pedipalps with normal appearance; pedipalp femur armed with a

strong medial subapical spine; tibia and tarsus with proventral and retroventral rows of long

spines. Legs I-IV unarmed in both sexes. Coxa II longer than III on ventral view. Distal end of

coxa IV not entirely fused to the stigmatic segment. Coxa IV unarmed or with a short, conic

prolateral apophysis in male (extremely reduced in female), and a small retrolateral one (both

sexes). Distitarsi tri-segmented in all legs. Tarsal process on legs III-IV absent. Tarsal formula:

6 : 9–11 : 6–7 : 6–7; basal tarsomere elongated, about 2–3 times as long as the preceding one on

leg I, three times or more on legs II-IV. Sexual dimorphism negligible, limited to subtle size

differences of the prolateral apophysis on coxa IV, and legs slightly longer in males. Penis slen-

der and straight. VP devoid of ventral microsetae cover, its apical portion forms a translucent

spatula-like platform. Macrosetae groups as typical for Laminata: distal group (macrosetae C),

basal group (A+B), and small D and E macrosetae. All setae noteworthily displaced proximad,

with group A+B of multiple strong transverse setae, inserted on the truncus end. Glans aligned

with truncus, without DPG; stylus oblique, cylindrical, bearing a simple blunt VPS.

Genus Otilioleptes gen. nov.

urn:lsid:zoobank.org:act:458D142C-74B5-4FA8-A142-DB20EF1D768E

Type species. Otilioleptes marcelae sp. nov. here designated. Genus monotypic.

Etymology. The generic name merges the word Otilia (after Cueva Doña Otilia, the type

locality), with final vowel changed to -o for euphony, and the ending–leptes (from Greek: lep-
tos,meaning thin, fine, delicate), as used in several gonyleptid genera (e.g., Gonyleptes Kirby,

1818). Grammatical gender is masculine.

Distribution. Only known from the species type locality (Cueva Doña Otilia, Payunia

region, Mendoza Province, Argentina).

Diagnosis. Gonyleptoidea, Laminata, Otilioleptidae fam. nov. The generic diagnosis is to

be referred to the family diagnosis above.

Affinities. A mix of several presumably primitive characters, together with the uniqueness

of the genital shape, strongly suggests that Otilioleptes belongs to an isolated gonyleptoid line-

age. The presence of a well-defined ventral plate (VP) and a simple, unfolded glans support the

placement of the new genus amidst Gonyleptoidea families grouped by K&V [25] in their

unranked clade Laminata. This position is consistently recovered in all phylogenetic analyses,

in most cases Otilioleptes occupying a basal topology, in the vicinity of the Chilean “gonylep-

tid” genus Osornogyndes.
Alpha-taxonomic remarks. The VPS-bearing stylus of Otilioleptes has some faint resem-

blance with Gonyleptidae. Other features, however, would be clearly atypical for that family,

even if troglomorphic characters are set aside: (1) the almost lack of sexual dimorphism, (2)

the coxa IV not completely fused to the stigmatic area, and (3) the caudal border of the latter

(sternite III) broad and with posterior margin sub-straight, not deeply concave as in most

gonyleptids. At the same time, character (3) might represent a similarity of Otilioleptes with

Tricommatinae, currently considered a small subfamily within Gonyleptidae [23, 25]. Also, tri-

commatines do not have a tarsal process on tarsi III-IV (absent in the new genus too, but pres-

ent in most gonyleptids). Tricommatines were not included in K&V phylogeny [25], but these

observations made them prime candidates to be added in the cladistic analysis. Stylus and VPS

of Otilioleptes have some apparent resemblance with Osornogyndes. The rest of the penis, how-

ever, looks very dissimilar: shape in Osornogyndes is ‘normal’, not elongated, and macrosetae

are arranged in a different way (see below). Osornogyndes is unusual in several external fea-

tures too, some of them recalling Otilioleptes, like the lack of armature in scutum, legs and ocu-

lar mound, and the almost complete absence of sexual dimorphism; moreover, the stigmatic
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segment is broad as well [24]. Despite those coincidences these genera differ in many relevant

aspects, like the general habitus (Otilioleptes is more slender, with much longer appendages),

the scutum outline, and the design of mesotergal areas (in Osornogyndes the first sulcus is

straight; in Otilioleptes this sulcus is curved, as if the diffuse area I were divided) (cf. Figs 1 and

3). The shape of chelicerae, pedipalps and coxa IV, as well as the tarsal formula, are very dis-

tinctive too.

Otilioleptes marcelae sp. nov.

urn:lsid:zoobank.org:act:B805C6B2-6BCB-4243-B5F4-927332C84231

Type series. Holotype male and 1 female paratype (FML-OPIL 00211), Argentina, Men-

doza Province: Cueva Doña Otilia, Malargüe, ~350 m from entrance, 20 August 2006 (A. Salvo

& M. Peralta); 1 male paratype (FML-OPIL 00218), same loc., 04 April 2012 (M. Peralta).

Type locality. Cueva Doña Otilia, near Malargüe, Mendoza Province, Argentina; ca. 35˚57’

S 69˚42’ W.

Etymology. The specific name is dedicated to the speleologist Marcela Peralta, in recogni-

tion to her determination in unveiling the biospeleological value of Cueva Doña Otilia, as to

provide sound evidence for the urgent need to protect this beautiful and fragile ecosystem.

Description

General color uniform whitish-yellowish, completely depigmented and with hyaline appear-

ance (Fig 1). Detailed measurements of holotype male, male and female paratypes: Table 4.

Dorsal scutum (Fig 3A). Outline type α [25]; abdominal scutum only a little wider than

prosoma. Scutal narrowing feeble; from there, lateral sides of prosoma diverge anteriorly, ren-

dering this tagma slightly sub-trapezoidal. Prosoma width is maximal at the ozopores, which

are conspicuous, oval, and bordered by a shoulder-like tegumentary projection each. Frontal

hump (Fig 3D) is a blunt protuberance on the anterior border, covered by coarse granulation

(the most ornate part on dorsal view, indeed). Similar granulation forms a row both sides on

the anterior border. Ocular mound low and unarmed, covered by small granules; eyes are hard

to find among granulation since corneas are extremely reduced (in all specimens, two spots of

retinal pigment deepened, probably because of retraction of internal tissues during fixation).

Scattered small granules behind and beside the ocular mound give this part a tenuous rugulose

look. Abdominal scutum little globose in lateral view, contrasting with the gently upwards

sloping prosoma (Fig 3C). Scutal grooves almost faded away. Only in lateral view (and using

side illumination), five faint scutal areas are insinuated; a row of minute granules each on

areas III and IV help to identify them. Limit between lateral areas and mesotergum also feeble,

denoted by an irregular ramp, which continues into the prosoma; extremely weak transverse

sulci separating prosoma from opisthosoma, and mesotergum from area V. Scutum unarmed

and smooth (matt), with finely granular texture on mesotergum; area V has 6–8 minute conic

granules, sparsely aligned on its border. Free tergites unarmed, with similar granule rows as

area V. Dorsal anal plate unarmed, with two horizontal rows of small granules.

Venter (Fig 3B). Ventral side of coxae covered by faint granulation; on coxa I, 3–4 setiger-

ous granules on a row, plus many short setae along the sclerotized border of coxapophysis I;

one row of five smaller setae on coxa II, plus one single, notorious one on coxapophysis II;

even smaller setae on coxa III, one row with six, plus 2–3 additional setae posteriorly. Coxae I

and II of similar length; apical end of coxa II diagonal, it surpasses moderately coxa III length.

Prolateral border of coxa I with one granule, retrolateral border smooth; on coxa II, one prolat-

eral and two retrolateral granules. Coxa I-II joint as a smooth sulcus; coxa II-III joint fixed,

without articular serration; coxa III-IV joint with interlocking articular denticles. Distal end of
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coxa IV not fused to the stigmatic segment (separation arises more anteriorly than the stigma

position itself). Stigmatic segment extended caudally beyond the coxa-trochanter joint, leaving

the oval-transverse stigma distanced from the border; posterior edge of stigmatic segment sub-

straight to faintly concave medially. Free sternites with rows of sparse tiny granules; ventral

anal operculum with a few scattered grains.

Chelicerae. Basichelicerite elongated, especially the pedicel-like proximal portion; bulla dis-

tinct though low, unarmed except for a few sparse grains on the sides. Hand normal, conspicu-

ously setose on its front surface, mostly near the finger joint.

Pedipalps (Fig 4A and 4B). All segments elongated; Pp length / scutum length ratio: 2.1

(males), 2.0 (female). Pp coxa elongated, it surpasses coxa I. Distal part of trochanter with scat-

tered blunt grains and a small but conspicuous ventral setigerous tubercle. Femur long and

slender, almost smooth except for a dorsal and a ventral row of vestigial granules, bearing deli-

cate bristles; a basal, ventral setigerous tubercle, mirroring that of trochanter; and a large sub-

apical medial spine on a raised socket between the distal and middle thirds, together with a

small tubercle more apically. Patella elongated, smooth. Tibia smooth, armed with iIii[Ii] ven-

trolateral and IiIiIi ventromedial spines; ventral side flat, borne with sparse small spine-like

bristles. Tarsus smooth, with scattered dorsal and lateral minute setae, and IiiIii ventrolateral,

IiIii ventromedial spines. Spines on tibia and tarsus are long, spanning widely to the sides if

seen from above. Claw as long as tarsus.

Legs. Slender and delicate, unarmed, with all segments elongated. Leg length / scutum

length ratios: 3.3 : 6.0–6.2 : 4.2–4.3 : 5.5–5.6 (males), 3.0 : 5.5 : 3.9 : 5.1 (female). Dorsal border

of coxae I-II with two blunt proximal tubercles each, associated with the ozopore complex.

Trochanters I-III have some blunt conic grains on retrolateral and ventral sides. Femora, patel-

lae and tibiae I-III straight and simple, just with rows of minute acute granules. Leg IV (Fig

3A). Coxa IV elongated, not globose; lateral sides granulous. Small, acute proapical apophysis;

in the male, this apophysis is simple and unciform, curved over the coxa-trochanter joint; in

the female, coxa IV has the same outline, but the apophysis takes the shape of a blunt grain.

Tiny retroapical apophysis as a lobular projection in the space separating coxa and stigmatic

segment. Trochanter long, covered by sparse grains, only a retrolateral pair and one retroapical

a little larger. Femur, patella and tibia simple, with regular rows of conic granules. Tarsal seg-

ments: 6/6:9/11:6/6:7/7 (holotype ♂), 6/6:9/9:6/6:7/6 (paratype ♂), 6/6:9/9:7/7:7/7 (paratype ♀);

distitarsus tri-segmented in all legs. Basal tarsomere elongated (Fig 4C–4F); ratio basal / sub-

basal tarsomeres: 2.6–2.8 : 2.8–3.5 : 3.1–3.6 : 3.4–4.7 (males), 2.1 : 4.1 : 4.9 : 3.5 (female). Claws

smooth. Tarsal process on tarsi III-IV absent, its position is occupied by an apical hair. Scopula

present on tarsi III-IV, denser on the 4–5 distal tarsomeres.

Penis (Fig 5A and 5B). General aspect elongated, very slender and straight, distally just a lit-

tle arched ventrad; VP and glans aligned with trunk, without noticeable flexures. From the api-

cal macrosetae anteriad, VP is expanded, remarkably thin and translucent, overall spatulate or

petal-shaped; this flattened apical portion has lateral lobate borders, and distal edge concave.

Distal group (macrosetae C) strongly displaced basally, arising on subdistal one-quarter of VP;

it consists of 2–3 spine-like setae, long and apically curved, with two pairs of reduced macrose-

tae E, more ventrally. Middle group (macrosetae D) represented by an isolated, short seta (D1)

on the VP narrowing. Basal group (A+B) strongly displaced beyond the glans–trunk boundary;

it consists of 6–8 strong, long setae, whose sockets arrange longitudinally on the trunk sides;

setae point almost straight to the laterals, giving the appearance of a mighty transverse

Fig 3. Otilioleptes marcelae gen. nov., sp. nov., holotype male (FML-OPIL 00211), habitus. A: Dorsal view. B: Ventral view. C: Lateral view. D: Detail of ocular

mound and frontal hump, lateral view. Scale bars: 1 mm.

https://doi.org/10.1371/journal.pone.0223828.g003
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Table 4. Measurements (mm) of the holotype male, and female and male paratypes of Otilioleptes marcelae gen. nov., sp. nov.

HOLOTYPE♂ FML 211 PARATYPE ♀ FML 211 PARATYPE♂ FML 218

Body length 5.20 5.69 4.89

Scutum, length 4.38 4.26 4.00

maximal width 3.03 2.92 2.86

Prosoma lenght 1.61 1.55 1.50

width (at ozopores) 2.30 2.19 2.06

width at constriction 2.17 2.00 1.85

Leg I, total length 14.56 12.85 13.07

trochanter 0.65 0.56 0.58

femur 3.46 3.14 3.25

patella 1.23 1.12 1.09

tibia 2.58 2.21 2.24

metatarsus 3.95 3.39 3.55

tarsus (total) 2.69 2.43 2.36

Basal tarsomere 0.98 0.84 0.86

Leg II, total length 27.20 23.56 24.19

trochanter 0.72 0.62 0.65

femur 6.77 5.85 5.91

patella 1.61 1.46 1.38

tibia 5.11 4.45 4.52

metatarsus 6.00 5.23 5.54

tarsus (total) 6.99 5.95 6.19

Basal tarsomere 2.26 1.87 2.05

Leg III, total length 18.85 16.49 16.80

trochanter 0.74 0.64 0.67

femur 5.35 4.68 4.92

patella 1.53 1.40 1.35

tibia 3.40 2.97 3.03

metatarsus 5.11 4.41 4.58

tarsus (total) 2.71 2.39 2.24

Basal tarsomere 1.14 1.00 1.03

Leg VI, total length 24.68 21.75 22.19

trochanter 1.01 0.80 0.85

femur 7.08 6.15 6.34

patella 1.85 1.66 1.65

tibia 4.98 4.49 4.53

metatarsus 6.58 5.72 6.06

tarsus (total) 3.18 2.92 2.77

Basal tarsomere 1.34 1.10 1.22

Pedipalp, total length 9.14 8.62 8.48

trochanter 0.74 0.60 0.67

femur 2.53 2.34 2.32

patella 1.09 1.01 0.97

tibia 1.73 1.70 1.66

tarsus 1.56 1.45 1.40

claw 1.49 1.51 1.46

Chelicera, distal part length 1.92 1.80 1.79

basichelicerite length 0.77 1.10 1.18

https://doi.org/10.1371/journal.pone.0223828.t004
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armature. Ventral side of VP smooth, not covered by spiny mats. Glans–trunk articulation as a

slight flexure; glans elongated and simple, just a little flattened and expanded sideways; there is

no DPG. Stylus oblique, smooth, with no spination; it bears a simple, blunt VPS arising in the

point where the stylus changes its orientation from longitudinal to oblique.

Genus Osornogyndes Maury, 1993

urn:lsid:zoobank.org:act:E394E57A-3AE1-4E53-881F-6242D8821FC7

Osornogyndes Maury, 1993: 100 [24]; Kury, 2003: 180 [63].

Type species. Osornogyndes tumifrons Maury, 1993, by original designation. Genus

monotypic.

Distribution. Chile, Región de Los Lagos: Osorno Province.

Diagnosis update. Opiliones, Laniatores, Gonyleptoidea, Laminata, family uncertain

(removed from Gonyleptidae Pachylinae, as hitherto assigned). Outline of dorsal scutum type

θ, unarmed (Fig 6A). Front margin of prosoma without frontal hump, with three denticles.

Ocular mound blunt, unarmed. Areas I-V well-defined by transverse grooves, area I entire

(not divided in two halves by a longitudinal groove). Lateral areas, area V, free tergites, dorsal

and ventral anal plates and sternites with a few granules. Border of stigmatic segment gently

concave (Fig 6B). Cheliceral bulla armed with a conspicuous dorso-caudal apophysis in both

sexes. Pedipalps: femur short, thicker than legs femora, without a subapical mesal spine; tibia

and tarsus with a weak armature, the former having two or three pairs of ventral pairs of

Fig 4. Otilioleptes marcelae gen. nov., sp. nov., holotype male (FML-OPIL 00211), appendages. A-B, right pedipalp,

A: retrolateral view; B: prolateral view. C-F: right tarsi of legs, retrolateral view (basal tarsomeres indicated as “b”), C.

Tarsus I; D. Tarsus II; E. Tarsus III; F. Tarsus IV. Scale bars: 1 mm.

https://doi.org/10.1371/journal.pone.0223828.g004
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setigerous tubercles. All legs unarmed in both sexes, subequal and relatively short. Coxa II

with apical end curved (Fig 6B), slightly longer than coxa III. Coxa IV short (not hypertelic),

its distal end not completely fused to the stigmatic area. Tarsal formula: 4:5:6:6; distitarsi I-II

tri-segmented. Tarsal process on legs III-IV vestigial, with a rigid seta. Sexual dimorphism rep-

resented by only subtle differences: in males, chelicerae and pedipalps are slightly more robust

than in females, and the basitarsite I is a little swollen. Penis (Fig 7A and 7B) of a typical Lami-

nata shape, with a well-defined VP (not flattened). Six pairs of equally sized marginal macrose-

tae along the distal half; the anterior three pairs are slightly distinct and can be interpreted as

the C group; the rest may be a part of the basal group (macrosetae A), shifted distally; a short

acute macroseta D near the caudal-most seta in that row (at the narrowing of VP). Lateral at

the VP–truncus boundary, the remaining large macroseta A (which was overlooked in the

original descriptions and figures [24]), together with a stump-like macroseta B. Small, tuber-

cle-like setae subapical on the ventral side representing group E. Glans with a protruding dor-

sal convexity, without DPG. Stylus tubular, gonyleptid-like, with a simple, straight VPS, apically

Fig 5. Otilioleptes marcelae gen. nov., sp. nov., holotype male (FML-OPIL 00211), distal end of penis. A. Lateral

view (slightly rotated dorsad to reveal the VPS), B. Dorsal view. Scale bar: 0.1 mm.

https://doi.org/10.1371/journal.pone.0223828.g005
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peltate and covered by a spiny tuft (stylus was originally described as ‘divided into two simi-

larly-sized branches’, and VPS drawn as truncate [24]).

Affinities. Like Otilioleptes, Osornogyndes consistently occupies a basal position within the

clade Laminata (Fig 2; S1 Fig). As stated above, these genera share many plesiomorphies, but

evidence for considering them close relatives is weak. Otherwise, Osornogyndes is quite iso-

lated. The cladistic analysis clearly supports its exclusion from Gonyleptidae.

Osornogyndes tumifrons Maury, 1993

urn:lsid:zoobank.org:act:AC4EBC47-B01B-400E-8CD4-24D070A53C8F

Osornogyndes tumifrons Maury, 1993: 100, Figs 1–14 [24]; Kury, 2003: 180 [63].

Type locality. Sierras S of Maicolpué, Osorno Province, Región de Los Lagos, Chile; ca. 40˚

36’43"S 73˚44’50"W.

Distribution. This species was hitherto collected in two separate areas in Osorno Province,

Chile (Fig 8): near the Pacific coast, south of Bahı́a Mansa (S of Maicolpué, type locality), and

in the National Park Puyehue, close to the international boundary with Argentina (Anticura,

Termas de Puyehue, Aguas Calientes, Los Derrumbes). The two areas belong to the Valdivian

Fig 6. Osornogyndes tumifrons Maury, 1993, paratype male (MACN 9117), habitus. A. Dorsal view; B. Ventral view. Photos: Willians Porto.

https://doi.org/10.1371/journal.pone.0223828.g006
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temperate forests ecoregion, with a record gap of about 190 km in between. Specimens were

collected in leaf litter and under fallen logs [24].

Material examined. CHILE: Osorno, 3 km S of Maicolpué, Bahı́a Mansa, 21-xii-84–3-ii-85

(S. & J. Peck), MACN 9117, 1 ♂ paratype, MACN 9118, 1 ♀ paratype.

Description of Doña Otilia cave

Geological background

Doña Otilia is located at 1932 m a.s.l., not far from the karstic Caverna de Las Brujas. Both

caves are placed in a geologically complex region, where the Andean ranges (to which Las Bru-

jas belong) converge with the Payunia, an extensive back-arc volcanic field in southern Men-

doza (Fig 8). The whole massif contains more than 800 monogenetic basaltic cones, together

with a few polygenetic volcanoes fed by shallow magmatic chambers [64]; in many cases, erup-

tions were inferred to be of fissural type. According to the divisions of the Payunia, based on

geographical position, age and geochemical characteristics [65, 66], Doña Otilia belongs to the

relatively young ‘Llancanelo volcanic field’, where most volcanoes are arranged along short

ENE–WSW trending fractures. The cave is placed near the margins of a large lava flow (16 x 4

km), with a thickness estimated in 8–12 m (E. Llambı́as, pers. comm. to C. Benedetto). This

flow is made of olivinic basalt and consists of pahoehoe lava (a flow type prone to develop lava

tubes [2, 22]). The Payunia is younger than 5 Ma, with an increased volcanic activity since 2

Fig 7. Osornogyndes tumifrons Maury, 1993, paratype male (MACN 9117), distal end of penis. A. Lateral view; B.

Dorsal view. Scale bar: 0.1 mm.

https://doi.org/10.1371/journal.pone.0223828.g007
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Ma [67]. No precise dating is hitherto available for Doña Otilia, but two hydromagmatic volca-

noes of the Llancanelo basin (Malacara and Carapacho, placed at ~21 km and ~27 km from

the cave) were estimated to be formed between 0.45 and 1 Mya [64] (that is, around Middle

Pleistocene). Even younger dates were obtained at Cerro Jarilloso (a hydromagmatic volcano,

at ~35 km; 0.16±0.07 Mya) and Cerro Las Ovejas (a scoria cone, at ~28 km; 0.28±0.02 Mya)

[65]. Vulcanism appears to have persisted in the Holocene in a few sites around the Payún

Matru volcano, 50 km south of Doña Otilia. In the Payunia, Pliocene-Holocene basalt layers

(5.1 Mya and younger) lay over an older volcanic basement, dated in the Miocene [64].

Epigean environment

This area is characterized by general aridity and typical north-Patagonian plant physiognomy

(Fig 9). Climate is cold (annual mean 9–13˚C) and dry, with frequent frosts [68], correspond-

ing to BW (desert) in Koeppen´s system; annual rain in the Payunia averages 250–300 mm,

Fig 8. Location of Doña Otilia cave in the Payunia region (Mendoza Province, Argentina). The site is indicated as

(1). Other caves in the area with records of Gonyleptidae: (2) Caverna de Las Brujas; (3) Caverna de Chorriaca and

Caverna Aguada de la Mula, Neuquén Province. Light-blue dots: records of Osornogyndes tumifrons Maury, 1993 in

Osorno Province, Chile. Ecoregions (following [59]): Patagonian Steppe (PS, white outline) and Valdivian Temperate

Forests (VTF, shaded). Inset: position of Mendoza Province (grey) and the type locality (dot) in South America.

https://doi.org/10.1371/journal.pone.0223828.g008
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and evapotranspiration rates are high [69]. Scarcity of precipitation is accentuated by its inop-

portune availability (winter), which results in little benefit for plants [70]. The floristic district

of the Payunia is an intricate mosaic of arbustive steppes, in which local dominance varies

according to substratum, elevation and topography [71]. Two xeric vegetal communities are

the most characteristic, both with low and scarce plant cover [68]: grasslands of “coirón”

(Stipa spp.) on deep sandy soils, and arbustive steppes on scoria plains, accompanied by pulvi-

nate plants and sparse xerophytic shrubs (Fig 9). The district stretches northwards as a wedge

between the Andean and the Monte ecoregions (Fig 8) so that some elements of the latter (e.g.,

Larrea spp.) are frequent [68, 71]. It is worth noting that the Payunia harbors a remarkable

number of endemic plants, like the shrubs Prosopis castellanosii Burkart (Fabaceae), Condalia
megacarpa A. Cast. (Rhamnaceae) and Schinus roigii Ruiz Leal & Cabrera (Anacardiaceae), as

well as the herbaceous Argylia robusta Sandwith (Bignoniaceae) and Pappostipa malalhuensis
(F.A. Roig) Romasch. (Poaceae) [70].

Hypogean environment

The Payunia harbors several lava tubes that attracted increasing interest of speleologists, of

which Doña Otilia cave is the longest [13]. This cave has only one small entrance (0.5 x 1 m),

concealed in a shallow hole and almost unnoticeable in the outer landscape. This narrow slit

gives way to a brief inclined descent covered by medium-sized boulders, referable to the ‘tran-

sition zone’ of the cave (sensu [22]), with virtually no twilight zone. The rest of the lava tube is

a single S-N oriented gallery, 838 m long (Fig 10). As typical for volcanic caves, it describes a

Fig 9. Epigean landscape in the Payunia, around Doña Otilia cave. Plant cover shows the characteristic pulvinate shrubs on sandy soil; the Sierras de Palauco

are on the background.

https://doi.org/10.1371/journal.pone.0223828.g009
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rather superficial and nearly horizontal trajectory (with a very gentle descending slope; maxi-

mum depth at 8 m beneath the surface). Sand, detritus, sparse gravels and fine sediment fill the

bottom and give the effective passage a rough half-moon section in most of its length. Heights

along the cave are varied: in the first half they range from ~1 m (a lengthy crawlway at the

start) to 2.5 m, but in some deeper parts the conduit is higher than 6 m.

The finely-grained floor helps maintain humidity in constant high levels, of around 80%

[14], in contrast to the xeric epigean conditions. Temperatures (August) recorded in nine sta-

tions, from 8.5 m to 410 m from the entrance (7˚-8˚-10˚-9˚-9˚-10˚-10˚-11˚-11˚C), evidenced

stabilization in deeper sites (Instituto Argentino de Investigaciones Espeleológicas, unpub-

lished, 2006). There are plenty of fissures and crevices in the ceiling and the walls that enable

continuous groundwater filtration. The second quarter of the cave (henceforth referred to as

‘2Q’) has a distinctive character. It is a spacious sector (walking-sized, heights of 2–2.5 m)

extending approximately between 230 m and 400 m from the entrance. There, water percola-

tion is more intense than in other parts of the cave, favoring the formation of delicate gypsum

and calcium carbonate speleothems over large surfaces in the ceiling and the walls (Fig 11A

and 11B); this feature distinguishes Doña Otilia from other lava tubes in the area [13]. The 2Q

sector is also peculiar in having many roots of epigean plants breaking through crevices, most

of them small, tuft-shaped and aligned along the fissures (Fig 11B). Larger roots emerge in a

few sites, either freely dangling or fit along irregular wall cracks, and may extend downwards

to reach the humid floor. Both the roots and the speleothems are moistened by continuous

water dripping; they are also very fragile so that any gentle rubbing makes them easily break

off. In Hawaiian lava tubes, dangling tree roots were considered to constitute their primary

energy source by supplying food, either directly as living or decaying roots, or by forming

pathways for the infiltration of organically rich water [22]. Specimens of Otilioleptes marcelae
were found in the 2Q sector of the cave, around 350 m from the entrance (Fig 10). They were

discovered on the walls, either slowly crawling on gypsum-coated surfaces, or resting among the

whitish speleothems, 30 cm from the floor, then manually-collected. Depigmentation makes

these harvestmen hard to be detected on such a clear background (M. Peralta, in litt.). A few

Fig 10. Plan view map of Doña Otilia cave. Transverse sections of the passage are displayed at the same scale. Q2: the humid sector; cw: crawlway passages. Arrow

indicates the approximate location of Fig 11A and the collecting site of Otilioleptes marcelae. Redrawn from a 1973 survey made by C.A.E. (Centro Argentino de

Espeleologı́a).

https://doi.org/10.1371/journal.pone.0223828.g010
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additional specimens were sighted in the same 2Q sector, hidden in deep fissures at 1.80 m or

higher. Preliminary observations determined that hypogean conditions in Doña Otilia are suited

to sustain a varied cave life [14, 72], although the presence of true troglobites in this lava tube has

never been demonstrated before. The availability of organic material in a humid environment is

distinctive for Doña Otilia among other basaltic caves in the Payunia. In addition to the men-

tioned percolating water and roots, seasonal and occasional inputs of surface water through the

entrance, which drag organic rests of allochthonous origin (vegetal detritus, bone remains) into

the cave, have been also described [14]. Surveys made in 1999, 2002 and 2006 revealed an inver-

tebrate fauna of mites, collembolans, pseudoscorpions and earthworms in association with the

roots, and myriapods, diplopods and Blattaria on the walls; spider exuviae and dead tipulids

were detected in mesocavernous spaces (0.1–20 cm) in the ceiling [14]. Cadaveric entomofauna

(dipterans and coleopterans, either troglophile or trogloxene) associated to scattered vertebrate

remains (rodents, lizards) were also recorded (M. Peralta, in litt.). Except for a chilopod identi-

fied by L.A. Pereira as Cryptops sp. (Scolopendromorpha: Cryptopidae; FML-MYRIAP 00626),

most of these samples remain undetermined and still await expert analysis.

Conservation status

In the lack of any specific study on the conservation of Doña Otilia, only some general com-

ments can be given here. Because of aridity, human population in the Payunia is limited to

very low densities (0.05 inhabitants / km2). Consequently, human activity is minimal and with

little impact on the area: up to the 19th century it consisted of nomadic, hunter-gatherer

aboriginal inhabitants, then replaced by a few, scattered rural settlements (‘puestos’), dedicated

to extensive but low-scale livestock farming (especially goats), as seen today [73]. Oil extraction

and mining activities were developed in some sites. More recently, the fascinating geography

of the Payunia has motivated an increasing development of the ecotourism [73], including the

so-called ‘speleotourism’ or recreational caving, which, if done without supervision or regula-

tions, may represent a threat to fragile hypogean ecosystems. It appears uncertain that Doña

Otilia can tolerate even moderate visitor traffic (speleothems get easily destroyed by uninten-

tional rubbing with helmets, especially in narrow passages) so that this cave can be considered

at least ‘vulnerable’; therefore, strict preservation measures would be highly desirable. How-

ever, Doña Otilia cave is placed in a private property, without any management strategy, other

than the strict and efficient watch of Mr Martı́n Zagal, a rural resident in a neighboring

‘puesto’. Unfortunately, the cave is not embraced within the limits of any of two nearby pro-

vincial protected areas in the Payunia (http://www.areasnaturales.mendoza.gov.ar/): the

Laguna Llancanelo Reserve (880 km2, aimed to conserve an outstanding wetland), and La

Payunia Reserve (6 657 km2, comprising the Payún Matru and neighboring volcanic fields).

Both reserves, together with large adjacent areas (encompassing Doña Otilia cave too) are

comprised in the proposed ‘La Payunia, Campos Volcánicos Llancanelo and Payún Matrú’

unit (11 943 km2) [73], which, since 2011, is included in the Tentative Lists to integrate the

UNESCO World Heritage (https://whc.unesco.org/en/tentativelists/5615/).

An overview on cave-dwelling gonyleptoids

There are several cavernicolous Gonyleptoidea known from South American caves, in most

cases reported from Brazil. The best-studied ones are indeed either troglophiles (species

equally able to complete their life cycles both inside and outside the cave) or trogloxenes (those

using caves as shelter, but which are regularly active outside the hole, for example to mate or

forage), e.g., [74–77]. Among them are the various species of Goniosomatinae (Gonyleptidae)

that seek for diurnal shelter in the cave, but walk outside to forage every night; the cave is
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surrounded by humid forests, what enables their daily epigean activity without risk [74, 76,

77]. Lack or scarcity of detailed biological knowledge often makes an ecological classification

of cave harvestmen tentative, since true troglobites without marked troglomorphism are not

rare, especially in tropical regions ([78]; A. Pérez-González, in. litt.), fading the morphological

limits between troglobites and troglophiles. This uncertainty might be the case of Eusarcus
cavernicola Hara & Pinto-da-Rocha 2010 [79], described from several caves in central Brazil

(Bahia, Goiás and Minas Gerais States). In a preceding paper [80], the species was listed as tro-

globitic (referred to as Eusarcus sp. n. 3), but since it inhabits karstic areas that are not inter-

connected, these authors later interpreted the species as troglophile, or (alternatively) as

representing an ensemble of ‘cryptic’ troglobites [79].

Fig 11. Hypogean environment in Doña Otilia cave. A: General view in the 2Q section of the cave (at about 350 m from the

entrance); large roots can be observed hanging on the left side. B: Detail of speleothems and roots of epigean plants emerging through

fissures on the ceiling and the walls.

https://doi.org/10.1371/journal.pone.0223828.g011
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Harvestmen are important components of cave communities, with around 80 troglobitic

species worldwide [2]. In South America, gonyleptoids considered strict troglobites comprised

up to now 11 nominal species, from Brazil and Venezuela (compiled in Table 5). Most of them

live in limestone caves, with only one Brazilian species found in a sandstone cave (Table 5).

Otilioleptes marcelae gen. nov., sp. nov. joins the list as the twelfth troglobitic gonyleptoid,

being the very first known from inside a lava tube. The degree of troglomorphism varies

among the troglobitic gonyleptoids (Table 5). Of the species hitherto described only Pachylos-
peleus strinatii, Iandumoema uai, I. smeagol, I. setimapocu and Giupponia chagasi have eyes

reduced or absent, and only the former has diffuse scutal grooves [15, 17, 18, 80, 81]. Some tro-

glomorphic traits of Otilioleptes marcelae gen. nov., sp. nov., like depigmentation, little tegu-

mentary sclerotization and faded mesotergal sulci, seem among the most accentuated in the

superfamily; in other features, however, troglomorphy is not as outstanding (e.g., legs are

among the less elongated, and tarsal count is also quite normal, except for the elongated basal

tarsomere, see Table 5 and Fig 4C–4F).

In sharp contrast with Brazil, reports of cave harvestmen are very scarce in Argentina, so it

is worthwhile to add here some notes on them. These include the sparse “Parabalta” records

from Las Brujas and Chorriaca (both limestone) [4], and unpublished material from “Aguada

de la Mula” cave (gypsum), Neuquén Province (map in Fig 8), all three belonging to Gonylep-

tidae. They are the members of Gonyleptoidea geographically placed the nearest of Otilioleptes
(Doña Otilia is 40 km from Las Brujas, 240 km from Chorriaca and Aguada de la Mula). Since

all available samples consist of adult females, their generic assignment remains undefined.

They all have in common that their troglomorphy is only insinuated by the slightly elongated

appendages [4], but pigmentation and eye development display a decided epigean type. The

modest troglomorphism of “Parabalta” suggests that these harvestmen might be ranked in

either one of non-strict cave dwellers categories, troglophiles or trogloxenes [22, 78]. Epigean

activity of harvestmen at Las Brujas was believed to be impossible due to the general aridity

[4]; it was then hypothesized that these harvestmen were forced to stay inside the cave, despite

their little specialization to cave life, and the expression ‘geographical troglophiles’ for this par-

ticular case was coined [4]. I was able to examine some amateur photos made by E. Chamorro

during an occasional “harvestmen sighting” in Las Brujas, revealing two meaningful facts:

males can be recognized by the well-developed sexual dimorphism (legs IV are armed, as usual

in the family), and this species is probably not restricted to the cave but may have some kind of

surface activity outside the cave. The inventory of Argentinean cave gonyleptids is completed

by a record of Discocyrtus testudineus (Holmberg, 1876) from “Cueva de los Murciélagos”,

northern Buenos Aires Province, a small cavity formed by erosion on the Paraná River cliffs

[85]. Caves seem to represent an infrequent or accidental refuge for this epigean harvestman,

which is common in the area and is widely spread in most of the ‘Mesopotamian’ opiliogeogra-

phical region [5, 86].

Material examined. ARGENTINA. Mendoza Province. Caverna de Las Brujas (Bardas

Blancas, Malargüe), 1–5 Apr. 1985 (C. Benedetto—G.E.A.), 1 ♀ (MACN), ca. 35˚47’S 69˚49’W.

Neuquén Province. Caverna de Chorriaca, 10 Feb. 1985 (G. Dejean), 1 ♀ (MACN), ca. 37˚57’S

69˚59’W; Caverna “Aguada de la Mula”, Cordón del Salado (gypsum cave, 30 m from

entrance), 26 June 2000 (J.S. Romero & H. Cejas—Grupo Espeleológico del Neuquén), 1 ♀
(LEA 000.395), ca. 38˚ 3’S 70˚ 3’W.

Discussion

The systematic assignment of Otilioleptes gen. nov. was difficult for several reasons, especially

because of the astonishing simplicity of some external characters. This problem is not rare
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Table 5. An account of the known troglobitic South American gonyleptoids (Opiliones, Laniatores) and their troglomorphic traits. Ratios of appendage length

(femur length, in parentheses) over scutum length (or over total body length �) are based on measurements given in the literature, normally referred to the holotype;

unavailable data indicated as “?”.

Species name Author /

reference

Family /

Subfamily

Country:

State or

Province

Locality Geology

of cave

color ♂ appendage

(femur) /

scutum ratios

eyes

cornea

retina

Otilioleptes
marcelae gen.

nov., sp. nov.

This paper Otilioleptidae

fam. nov.

Argentina:

Mendoza

Cueva Doña

Otilia, Malargüe

basalt uniform whitish-

yellowish,

completely

depigmented

Pp: 2.1 (0.6)

Legs 3.3 (0.8)

: 6.2 (1.5) : 4.3

(1.2) : 5.6

(1.6)

reduced

to absent

spots of retinal

pigment

(deepened?)

Pachylospeleus
strinatii

Šilhavý, 1974

[15]

Gonyleptidae /

Pachylospeleinae

Brazil: São

Paulo

Iporanga: Gruta

das Areias de

Cima, Gruta das

Areias de Baixo,

Ressurgência das

Areias

limestone light yellowish-red [� on body

length]

Pp. 1.2 (0.4)

Legs 3.2 (?) :

7.0 (?) : 4.1 (?)

: 5.8 (?)

reduced very narrow

ring of black

pigment only

Iandumoema
uai

Pinto-da-

Rocha, 1996

[17]

Gonyleptidae /

Pachylinae

Brazil:

Minas

Gerais

Gruta Olhos

d’Agua,

Itacarambi

limestone uniformly

yellowish,

depigmented;

lateral margin,

apophysis IV and

trochanter-femur

IV reddish-brown

Pp. 1.5 (0.5)

Legs 4.4 (1.1)

: 9.1 (2.1) : 5.0

(1.4) : 7.1

(2.0)

normal pigments

reduced

Iandumoema
setimapocu

Hara &

Pinto-da-

Rocha, 2008

[80]

Gonyleptidae /

Pachylinae

Brazil:

Minas

Gerais

Lapa do Zu cave,

Coração de Jesus

limestone uniformly light

brown,

depigmented;

pedipalps, legs I–III

and tibia–tarsus IV

lighter

Pp. 1.6 (0.5)

Legs 4.7 (1.0)

: 9.6 (2.3) : 5.7

(1.6) : 8.0

(2.3)

reduced depigmented

Iandumoema
smeagol

Pinto-da-

Rocha,

Fonseca-

Ferreira &

Bichuette,

2015 [81]

Gonyleptidae /

Pachylinae

Brazil:

Minas

Gerais

Monjolos, Toca

do Geraldo cave;

Lapa do Santo

Antônio cave

limestone pale yellowish

carapace; tip of

tarsus and dorsal

tibia whitish

Pp. 1.7 (0.6)

Legs 3.6 (1.1)

: 7.1 (2.2) : 5.0

(1.5) : 6.9

(1.9)

absent depigmented

Giupponia
chagasi

Pérez &

Kury, 2002

[18]

Gonyleptidae /

Pachylinae

Brazil:

Bahia

Serra do

Ramalho,

Carinhanha

limestone depigmented Pp. 2.6 (0.9)

Legs 5.2 (1.3)

: 10.2 (2.5) :

5.6 (1.6) : 7.4

(2.1)

absent depigmented

Eusarcus elinae Kury, 2008

[82]

Gonyleptidae /

Pachylinae

Brazil:

Bahia

Caverna Pedra

Furada, Sistema

Lapa Doce,

Iraquara

limestone lighter than in

related epigean

species (but not

depigmented)

Pp. 1.1 (0.3)

Legs 2.8 (0.7)

: 6.4 (1.8) : 3.8

(1.1) : 6.6

(1.9)

normal pigmented

Discocyrtus
pedrosoi

Kury, 2008

[82]

Gonyleptidae /

Pachylinae

Brazil:

Bahia

Gruna do Brejo &

Verruga, Andaraı́,

Distrito de Igatú

sandstone lighter than in

related epigean

species (but not

depigmented)

Pp. 2.1 (0.6)

Legs 3.9 (0.9)

: 8.3 (1.9) : 5.4

(1.3) : 6.2

(1.7)

normal pigmented

Spinopilar
moria

Kury &

Pérez-

González,

2008 [19]

Cryptogeobiidae Brazil:

Minas

Gerais

Morena Cave,

Cordisburgo

limestone body and

appendages

uniform light

mahogany brown

Pp. ? (?)

Legs ? (0.9) :

7.9 (1.8) : ?

(1.1) : ? (1.7)

normal pigmented

(Continued)
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among troglobites. The systematic position of the troglomorph Picunchenops spelaeus is trou-

blesome as well, and remained long unsolved: Maury [3] was unable to assign the genus to any

subfamily, while Kury [63] listed it as ‘Triaenonychinae, Tribe uncertain’. As stressed, Otilio-
leptes has some unique features with little or no relationship to hypogean habits, the penis

morphology in the first place. Genital traits usually are considered conservative and little influ-

enced by cave-dwelling [87], what appears in agreement with the more or less ‘customary’

penial shapes shown by all other troglomorphic gonyleptoids [15, 17–19, 80]. Likewise, genital

morphology of cave triaenonychids studied by [20] maintains a close resemblance to their epi-

gean relatives. In two troglobitic gonyleptids in which troglomorphy is little accentuated

(Eusarcus elinae, Discocyrtus pedrosoi), genitalia even allowed their easy assignment to extant

epigean genera [82]. Although matching a generalized Laminata type well, the genitalic singu-

larity of Otilioleptes depicts a puzzling gap with epigean harvestmen and is accordingly sus-

pected to reflect a long-time isolation scenario, maybe this coupled with early divergence.

Adaptation to cave seems unable to account for the almost lack of sexual dimorphism too.

This is one outstanding difference with some relevant members of the superfamily, especially

Gonyleptidae. With the apparent exception of Giupponia chagasi, in all hitherto known troglo-

morphic gonyleptids males and females are recognizable through the usual exomorphological

dimorphism (Table 5). Finally, the coxa IV not completely fused to the stigmatic segment, and

the latter extended beyond the coxa-trochanter joint (Fig 3B), are other peculiarities not linked

to troglobitic adaptation. Despite their paucity, these features may contain valuable phyloge-

netic signals.

In an evolutionary context, two mutually exclusive scenarios might be invoked to under-

stand these relationships and the morphological gap: either Otilioleptes diverged early from its

relatives (and/or isolation in the cave operated with enough time, as to accumulate so many

changes); or the species has undergone a rush evolutionary process. In the second option,

Table 5. (Continued)

Species name Author /

reference

Family /

Subfamily

Country:

State or

Province

Locality Geology

of cave

color ♂ appendage

(femur) /

scutum ratios

eyes

cornea

retina

Trinella
chapmani

(Rambla,

1978) [83]

Agoristenidae Venezuela:

Falcón

Cueva de Trueno limestone much lighter than

epigean species;

pale straw-

yellowish, chelicera,

pedipalps, metatarsi

and tarsi very light

[� on body

length]

Pp. 2.3 (0.6)

Legs 7.9 (2.1)

: 16.6 (4.2) :

10.1 (3.1) :

14.4 (4.5)

slightly

reduced

pigmented

Trinella bordoni (Muñoz-

Cuevas,

1975) [16]

Agoristenidae Venezuela:

Zulia

Cueva Francisco

Zea

limestone yellowish [� on body

length]

Pp. 1.8 (0.5)

Legs 7.2 (1.9)

: 15.3 (4.3) :

9.4 (2.7) : 13.3

(3.9)

absent depigmented

Trinella
troglobia

Pinto-da-

Rocha, 1996

[84]

Agoristenidae Venezuela:

Zulia

Cueva de los

Laureles; Cueva

La Carlotica

limestone yellowish, with

scute margins and

legs brownish

(femur IV darker);

pedipalps light

Pp. 1.9 (0.5)

Legs 8.2 (2.1)

: 16.7 (4.2) :

12.7 (2.8) :

13.4 (3.7)

absent in

male,

reduced

in female

depigmented

Note: Records displayed by [80] as “Eusarcus sp. n. 1-2-3” and “Pachylinae sp. n. 1–2” are not included (Eusarcus sp. n. 1 was thereafter described as E. elinae [82];

Euscarcus sp. n. 2. as the troglophylic E. cavernicola Hara & Pinto-da-Rocha, 2010 [79]).

https://doi.org/10.1371/journal.pone.0223828.t005
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relatives would be expected to be found among geographically neighboring taxa; nonetheless,

to the moment no epigean relative of Otilioleptes has been recognized around or near the cave,

and this might give little support to a rapid evolutionary process. In the alternative scenario

(early divergence, long isolation), Otilioleptes would be relictual, and close relatives may have

become extinct, or if still existing, they may be found anywhere. The basal position of the new

genus in Laminata seems to sustain this scenario. It is generally accepted that high degree of

troglomorphism is correlated with long isolation time [20] so that a long-term process seems

at first sight better supported by all well-defined troglomorphic traits.

Lava tubes and long-term evolution

However, an scenario of long-time evolution, as described above, appears to collide with the

cave´s age. Albeit the exact chronology of Doña Otilia is unknown, the basaltic region itself is

relatively young, estimated of Middle-Upper Pleistocene age (available datings near the cave

range from 0.16 to 1 Mya [64, 65]). Such a short time seems a tight chronological constraint

for large amounts of change. Moreover, volcanic caves seem a “poor choice” for long-term

evolution, because they can only deteriorate, not grow as limestone caves do [6]. In fact, lava

tubes have a rapid initial period of formation, then being degraded by erosion and siltation in

a brief geologic time: there is no chance for enhancement of the main passage in a lava tube

[22]. In any case, it is well known that troglobitic species can be older than the caves they

inhabit [20, 88]. Lava tubes have plenty of fissures, cracks and crevices (the so-called “mesoca-

vernous space” [89]), and these features may ultimately provide an effective connection with

the intermediate-sized space known as MSS–Milieu Souterrain Superficiel [superficial subterra-

nean environment] [90]. If new lava tubes are in a continuous process of formation, then the

obligate cave dwellers might be able to migrate through the MSS into newly formed voids [6].

As stressed, two main extrusive events have been recorded in the Payunia region: a more

recent Pliocene to Holocene event, younger than 5 Mya, and an older one, mostly Miocene in

age (26–8 Mya; [64]), with throughout prevalence of monogenetic effusions. This might have

offered a suitable background of smoothly evolving lava tubes, with enough time for long-term

evolution, in which epigean relatives may have become extinct (hence the taxonomic gap).

Influence of the epigean environmental changes

Together with the cave history, the evolution of the epigean landscape may provide additional,

coarse clues on the origin of Otilioleptes. Paleoenvironmental studies demonstrated that condi-

tions in the Patagonian and Monte ecoregions were very different in the past. Inspired on

Ringuelet (1978) [10], Maury (1986) [4] explained the presence of “Parabalta” in Las Brujas

and Chorriaca caves by the former extension of the ‘subtropical’ biota, which retreated north-

wards as aridity increased after the rise of the Andes; in this view, these harvestmen would rep-

resent relics of subtropical origin. A comparable relictual condition, involving withdrawal of

ancestral forests, has been suggested for other cave gonyleptoids in Brazil [19, 82]. This sce-

nario is consistent with the ‘Climatic Relict Hypothesis’ proposed by Thomas Barr in the

1960s, in which the parental epigean populations become extinct because of climatic change,

leaving relictual survivors in the cave [88].

At this point, it would be of interest to determine how long ago, if ever, ‘subtropical’ (or at

least humid) conditions might have existed around Doña Otilia. Based on the absence of gla-

cial erosion in the Payunian volcanos, the present aridity was extrapolated at least up to the

Late Pleistocene [64]; but very likely similar xeric vegetation extended back over the Pliocene,

up to the Late Miocene [91, 92]. During the Miocene, the strong Andean uplift (especially dur-

ing the ‘Quechua diastrophic phase’, 14–10 Mya), combined with the fall in global
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temperature, determined the establishment of arid and markedly seasonal environments

east of the Cordillera, as they look today [93, 94]. Xeric epigean conditions then seem the

presumed frame for the younger Payunian volcanic events (from 5.1 Mya [64]). For North

American cave sclerobunines (Laniatores: Travuniidae) it was estimated that 5 Myr might

be correlated with only moderate troglomorphy; highly troglomorphic taxa might need at

least 10 Myr divergence time to evolve [20]. Regardless of those appraisals (made on distant

taxa, and in a different geographical context, indeed), an epigean ‘subtropical’ ancestor

wandering on the arid surface at those times sounds hardly credible. Further backwards, a

period of volcanic inactivity has been reported in the Payunia from 8 to 5 Mya [64] (Late

Miocene); for this period, small thorny trees and bushes covering most of the Patagonia

west of the Andes were inferred [95, 96]. One has to go back to Early-Middle Miocene–i.e.,

before climate started to differentiate both sides of the rising Andes–to find the final expres-

sions of mixed subtropical conditions in parts of Patagonia [91, 95, 96]. They represent the

remnants of preceding forests that extensively covered the area, in the form of subtropical

(megathermal) rainforests in the Paleocene–Early Eocene, and with the emergence of meso-

and microthermal communities (including Nothofagus) in Middle Eocene–Oligocene [91,

92]. Environmental changes in the Miocene were not just limited to climate: successive

marine transgressions, collectively referred to as the ‘Paranean Sea’, submerged at ~15–13

Mya large portions of Patagonia and central Argentina [91], though likely not the Payunia

[97]. The Paranean Sea was hypothesized to be part of an intracontinental seaway that sepa-

rated the Andean-Patagonian from the extra-Andean realms [91, 98]. Early-Middle Mio-

cene (and final Upper Oligocene) are the ages for the older Payunian volcanic stage,

spanning over an extended time lapse between 26 and 8 Mya [64]. These rough correspon-

dences might vaguely place the divergence from a putative subtropical ancestor sometime

in the referred periods, likely around Middle Miocene. Such a chronology appears consis-

tent with the basal condition of Otilioleptes, as suggested by the cladograms. It is not

known, however, if lava caves themselves or the associated MSS could have persisted during

the prolonged 3 Myr volcanic inactivity in Late Miocene [64] as to enable the survival of the

troglobites into the Pliocene. It cannot be discarded that the hypogean condition of Otilio-
leptes originated elsewhere (for example, in neighboring karst cavities, or in the MSS), then

migrating into the lava tubes more recently.

Suggestively, the same events deemed to have isolated Otilioleptes (rise of the Andes,

increased aridity in western Argentina, eventually the Paranean Sea) might have well been

responsible for the definitive separation of the Chilean gonyleptid fauna from its subtropical

‘source’. During the referred periods, especially from Middle Miocene onwards, the Payunia

seems to have maintained broader and more continuous contacts with the Chilean biota

than with the subtropical one (cf. [99]). Hence, a most recent common ancestry of Otilio-
leptes with a Chilean gonyleptoid, rather than with a ‘pure’ subtropical lineage, emerges as a

robust alternative hypothesis. The cladistic vicinity with the Chilean genus Osornogyndes
might give support to this scenario, although evidence for Osornogyndes and Otilioleptes
sharing a presumed common ancestor is, to the moment, poor. Similarly, the Chilean origin

for Picunchenops spelaeus was proposed [3], in this case suggesting that subantarctic vegeta-

tion may have shifted northwards, presumably driven by Pleistocene glacier expansions, to

leave isolates in the cave in the retreat stage (the latter also combined with the increasing

aridity after the Miocene). As seen, a least for Otilioleptes, divergence time is probably much

older than the Pleistocene, so that Maury´s [3] approach does not seem fully applicable for

the new genus.
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Concluding remarks

In sum, with the scattered evidence put together (degree of troglomorphism; some unique fea-

tures not attributable to cave adaptations; the basal and isolated cladistic placement within

Laminata; geologic and paleoenvironmental background), Otilioleptes might be hypothesized

to be a relictual member of an early gonyleptoid lineage, which survived in evolving lava tubes

or associated cavities since long ago. Despite having only a weak hypothesis on the closest rela-

tives of Otilioleptes, the dilemma, subtropical vs Chilean origin of the new genus appears better

supported for the second option. Testing these scenarios would represent a challenge for future

research, which should start by inquiring in more depth the riddle of the phylogenetic relation-

ships of Otilioleptes and Osornogyndes. Molecular analyses are foreseen to test the phylogenetic

hypothesis obtained here. It is expected that molecular data might help overcome the limita-

tions of a purely morphological approach, especially those derived from the marked troglo-

morphism and the high proportion of presumable plesiomorph states.

There is also an anecdotal side around Doña Otilia: the cave was named after the grand-

mother of Mr Martı́n Zagal, who first discovered this lava tube [72]. But also the roots of the

name Otilia (German: Ottilien, female diminutive of the medieval given name Otto), meaning

"rich, wealthy or prosperous", may inspire a portrayal of the biological richness and evolution-

ary value of the cave. Beyond those allegories, the uniqueness of this lava tube, as well as the

fragility and vulnerability of its hypogean ecosystem emerge as clear-cut conclusions and

should stimulate further biospeleological research, along with the implementation of effective

measures for its adequate preservation. At present knowledge, conservation priority of Doña

Otilia cave seems undoubtedly the highest.
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4. Maury EA. 1986. Hallazgo aracnológico en cavernas del oeste argentino. Salamanca 2(2): 20–24.
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Natural 70: 225–239.

Relictual harvestman from a lava tube in Argentina

PLOS ONE | https://doi.org/10.1371/journal.pone.0223828 October 23, 2019 37 / 37

https://doi.org/10.11646/zootaxa.3821.3.1
https://doi.org/10.11646/zootaxa.3821.3.1
http://www.ncbi.nlm.nih.gov/pubmed/24989746
https://doi.org/10.1016/j.ympev.2009.08.020
http://www.ncbi.nlm.nih.gov/pubmed/19699807
https://doi.org/10.1038/ncomms2299
http://www.ncbi.nlm.nih.gov/pubmed/23250424
https://doi.org/10.1371/journal.pone.0223828

