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Overexpression of endophilin A1 exacerbates
synaptic alterations in a mouse model of
Alzheimer’s disease
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Endophilin A1 (EP) is a protein enriched in synaptic terminals that has been linked to Alz-

heimer’s disease (AD). Previous in vitro studies have shown that EP can bind to a variety of

proteins, which elicit changes in synaptic transmission of neurotransmitters and spine for-

mation. Additionally, we previously showed that EP protein levels are elevated in AD patients

and AD transgenic animal models. Here, we establish the in vivo consequences of upregu-

lation of EP expression in amyloid-β peptide (Aβ)-rich environments, leading to changes in

both long-term potentiation and learning and memory of transgenic animals. Specifically,

increasing EP augmented cerebral Aβ accumulation. EP-mediated signal transduction via

reactive oxygen species (ROS)/p38 mitogen-activated protein (MAP) kinase contributes to

Aβ-induced mitochondrial dysfunction, synaptic injury, and cognitive decline, which could be

rescued by blocking either ROS or p38 MAP kinase activity.
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Progressive neuronal transmission deregulation, synaptic and
neuronal loss, and declined cognition are features of Alz-
heimer’s disease (AD)1–8. Amyloid-β peptide (Aβ) is one of

the critical molecular factors in AD pathogenesis and causes
synapse deterioration in the early stages of AD9–12. Specifically,
Aβ deregulates neurotransmitter release from the presynaptic site
from studies both in vitro with oligomer Aβ-treated primary
neuronal cultures and in vivo AD mouse models overexpressing
amyloid precursor protein (APP)/Aβ13–15. Subsequently, the
post-synaptic dependent long-term synaptic plasticity is affected
by Aβ. These changes in synaptic transmission events are asso-
ciated with the loss of synapses, neuronal perturbations, and
memory decline in AD. However, the molecular mechanisms for
these deleterious effects of Aβ on synaptic transmission events
and specifically those relevant to the critical neurotransmitter
release/recycling machinery, have not been reported.

Endophilin A1 (EP) is a brain-specific protein enriched in
synaptic terminals16. It has been reported to bind with synapto-
janin, synaptotagmin, synaptosomal-associated protein 25, and
vesicle glutamate transporter 1, which in turn are directly
involved in neurotransmitter release. EP also plays a key role in
endocytosis, which is a critical process for the clearance of neu-
rotransmitters from synaptic cleft and dendritic spine morpho-
genesis and stability17–19. The interaction of EP with
synaptojanin is required for synaptic vesicle endocytosis by
retrieval of synaptic vesicles20. Therefore, EP is a crucial mole-
cular player in terms of governing synaptic transmission. Other
studies indicate that loss of EP function in mice leads to neuronal
dysfunction under normal physiological condition21,22, and its
expression can control glutamate release23 and affects dendritic
spine formation19.

Although the important role of EP in synaptic transmission
was first established in the past decade, only a few studies have
illustrated EP as a mediator for synaptic malfunction in neuro-
degenerative diseases. Intriguingly, a role of EP in synaptic dys-
function and neuronal loss in Parkinson disease has been
reported17,24–27. For example, in the Parkinson disease-affected
brain, EP interacts with leucine-rich repeat kinase 2 (LRRK2) and
parkin, serving as a substrate that can be modified by phos-
phorylation or ubiquitination, which results in synaptic dys-
function and loss22,25. With respect to AD, we have previously
demonstrated that EP is significantly increased in AD-affected
brain regions when compared to the non-AD brain. In addition,
we showed that EP levels were also higher in Aβ-rich brains from
transgenic (Tg) AD mice again when compared to non-Tg con-
trol mice28, thus suggesting that EP may potentially be an
important intracellular player in the synaptic alterations detected
in AD pathogenesis. However, to date, the direct effects of EP on
Aβ-induced synaptic impairment in vivo AD mice have not yet
been explored.

In the present study, we generated and characterized Tg mice
overexpressing EP in neurons. Using this genetically manipulated
neuronal EP mouse model and a neuronal culture system with an
Aβ-enriched environment, we have comprehensively analyzed the
effects of neuronal EP on Aβ-induced abnormalities in synaptic
neurotransmission and plasticity, synaptic density, and also the
altered learning and memory capabilities. We were also interested
in synaptic mitochondria as they are vital for providing energy
and modulating calcium homeostasis as well as being the main
resource for the generation of reactive oxygen species (ROS).
Consequently, we analyzed the effect of EP on mitochondrial
function and oxidative stress to determine whether EP-mediated
mitochondrial defect links to synaptic alterations caused by Aβ
insult. As we had previously shown that EP could affect the stress
kinases28, we also assessed how EP could affect the oxidative
stress and relevant signaling pathway via activation of p38

mitogen-activated protein (MAP) kinase. In view of the impact of
ROS on Aβ metabolism, we finally analyzed the effect of EP on
cerebral Aβ accumulation and APP processing. Our studies
indicate that EP signaling does contribute to amyloid pathology
and Aβ-induced synaptic injury and impairment in learning and
memory in AD.

Results
Tg mice overexpressing neuronal EP. In view of that EP has a
raised expression in the brains of AD patients28 and Tg mice with
neuronal overexpression of a mutant human form of APP (Tg
mAPP, APPSwInd, J-20 line) driven by the platelet-derived
growth factor β-chain promoter at 9–10 months of age (Supple-
mentary Fig. 1a, b), we sought to develop a model system in
which neuronal expression of EP would be exaggerated so that
consequences of EP-dependent signaling in Aβ-rich environment
could be established. A transgene bearing full-length mouse EP
driven by Thy-1 promoter was constructed and used to generate
Tg mice, termed Tg Sh3gl2 (Supplementary Fig. 2a). Tg Sh3gl2
mice were identified as bearing the transgene by polymerase chain
reaction (PCR) analysis of tail DNA (Supplementary Fig. 2b).
Immunoblotting of cortical homogenates confirmed the increase
in EP expression in Tg Sh3gl2 mice, compared with non-Tg lit-
termates (Supplementary Fig. 2c, d). Immunostaining of brain
sections demonstrated enhanced expression of EP antigen in
cortical and hippocampal neurons of Tg Sh3gl2 mice compared
with non-Tg littermates (Supplementary Fig. 2e–g).

EP expression aggravates Aβ-induced LTP reduction. We first
determined whether increased EP expression aggravated Aβ-
induced synaptic dysfunction by recording long-term potentia-
tion (LTP) in hippocampal CA1 neurons from EP overexpression
mice (Tg Sh3gl2) and non-Tg littermate controls. Hippocampal
slices from 3-month-old non-Tg and Tg Sh3gl2 mice were
exposed to a variety of oligomer Aβ concentrations (50, 100, and
200 nM): non-Tg slices displayed a significant decrease in LTP
from baseline to 188%, 158%, and 148%, respectively, whereas Tg
Sh3gl2 slices demonstrated a further reduction in LTP 147%,
120%, and 120%, respectively (Fig. 1a–c). The basal synaptic
transmission (BST) was unchanged either in non-Tg or Tg Sh3gl2
hippocampal slices (Supplementary Fig. 3a, b). These results
indicate that increased neuronal EP exacerbates synaptic
impairment induced by Aβ.

EP impairs synaptic function, learning, and memory. Again,
given that EP expression was significantly elevated in human AD
brains enriched for Aβ accumulation, Tg Sh3gl2 mice were
crossed with Tg mAPP mouse29 to mimic an AD environment.
Tg mAPP is a well-known AD mouse model, and has been well
characterized with respect to neuropathology, synaptic, and
cognitive function11,13. Thus, this AD mouse model was well
suited for our strategy of determining whether overexpression of
EP might enhance/accelerate Aβ-induced synaptic dysfunction
and learning and memory impairments in an in vivo setting. Tg
Sh3gl2 mice were cross-bred with Tg mAPP mice to produce
double Tg mice (Sh3gl2/mAPP), single Tg mice (Sh3gl2, mAPP),
and non-Tg littermate controls.

Utilizing these new Tg animals, we first examined synaptic
transmission under basal conditions and during LTP. Compared
to other groups of mice, Tg Sh3gl2/mAPP mice revealed
significant reduction in CA1 neuronal LTP (Fig. 2a). There were
no changes in BST as shown by field-excitatory post-synaptic
potential (fEPSPs) and LTP between single Tg mice (Tg Sh3gl2
and mAPP mice) and non-Tg control mice at 5–6 months of age
(Supplementary Fig. 3c).
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Fig. 2 Effect of EP overexpression on synaptic plasticity and spatial learning and memory in transgenic Tg Sh3gl2/ mAPP mice. a Tg Sh3gl2 or mAPP at
5–6 months of age do not alter hippocampal LTP, but the hippocampal LTP is significantly reduced in Tg Sh3gl2/mAPP mice as compared with non-Tg
mice. Error bars represent s.e.m., n= 7–10 per group; *p < 0.01 (one-way ANOVA). Upper panel shows representative traces of fEPSP in the indicated
slices before θ-burst stimulation (black line) and after 1 h (gray line). b–e Mice were tested in Morris water maze at the age of 5–5.5 months. b Escape
latencies in hidden platform during Morris water maze task training in indicated groups of mice. Error bars represent s.e.m., n= 8–9 mice per group (one-
way ANOVA in b). c Time spent in the quadrant with the hidden platform and d mean number of crossings of the target during the probe test. e The
representative searching traces during the probe test. Data are shown as mean ± s.e.m., n= 8–9 mice per group (one-way ANOVA in c, d)
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NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04389-0 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2968 | DOI: 10.1038/s41467-018-04389-0 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


We next evaluated whether these EP-induced deficits in
synaptic activity were also reflected in behavioral changes. Mice
were subjected to Morris water maze (MWM) for evaluation of
the spatial learning and memory. Although behavioral testing
results obtained in different laboratories can vary30,31 due to the
testing protocol and variable environment, our results from
hidden platform MWM test are consistent with results from ours
and others previously published reports, which showed that
deficits in learning and memory in Tg mAPP mice occurred at
6–7 months of age or later13,32,33 compared to non-Tg mice.
Notably, Tg Sh3gl2/mAPP mice displayed a significantly longer
latency to locate the hidden platform during the training session
(Fig. 2b) and decreased time spent in the target area (Fig. 2c) and
the number of times crossing the target (Fig. 2d, e) during the
recording period in comparison with mAPP mice. Thus, Tg
Sh3gl2/mAPP mice exhibited exacerbated impairments in spatial
learning and memory compared to mAPP mice. The different
groups of Tg mice had similar swimming speeds as established by
the visual swimming speed test (Supplementary Fig. 4a). Thus,
the observed difference in spatial learning and memory of Tg
Sh3gl2/mAPP mice is a result of cognitive decline, which is not
due to alteration in motility or motivation. These data indicate
that increased neuronal EP expression accelerates and exaggerates
synaptic abnormality and learning and memory impairments in
mAPP mice.

EP aggravates ROS and mitochondrial dysfunction. Because Aβ
facilitates oxidative stress-induced neuronal dysfunction and
synaptic injury13 and because oxidative stress and Aβ alter EP
expression levels28, we determined whether increased EP
expression enhanced Aβ-mediated generation of reactive oxygen
free radicals (ROS). Using highly specific and sensitive electron
paramagnetic resonance (EPR) spectroscopy, we quantitatively

measured ROS levels in brain slices from 3-month-old mice in
response to Aβ. Fifty nanomolar of Aβ-treated non-Tg slices did
not show an increase in ROS levels compared to vehicle-treated
slices. However, exposure of Tg Sh3gl2 slices to 50 nM Aβ pro-
duced higher levels of EPR spectra than Aβ-treated non-Tg slices
(Fig. 3a, b). Application of antioxidant EUK-134 (EUK, 500 nM),
a synthetic superoxide dismutase/catalase mimetic, diminished
Aβ-induced ROS accumulation (Fig. 3a, b). Only Tg Sh3gl2 brain
slices with 50 nM Aβ treatment showed significant mitochondrial
dysfunction as demonstrated by the reduction in mitochondrial
respiratory chain key enzyme CcO (cytochrome c oxidase)
activity and ATP levels. The addition of antioxidant EUK blocked
EP-mediated mitochondrial defect (Fig. 3c, d). Consistent with
these in vitro results with Aβ treatment, double Tg Sh3gl2/mAPP
mice displayed a significant higher oxidative stress and worse
mitochondrial function than the other groups of mice, including
Tg mAPP, Tg Sh3gl2, and non-Tg littermates (Fig. 3e–h). These
results indicate that overexpression of neuronal EP enhances Aβ-
induced ROS generation, accumulation, and mitochondrial dys-
function. To confirm the effect of neuronal EP overexpression on
Aβ-induced oxidative stress and mitochondrial dysfunction, we
evaluated mitochondrial function by assessing ROS levels, CcO
activity, and ATP levels in EP-overexpressed or non-Tg neurons
cultured from Tg Sh3gl2 mice or non-Tg mice, respectively. Tg
Sh3gl2 neurons with Aβ treatment revealed a significant elevated
ROS level and declines in CcO activity and ATP levels (Supple-
mentary Fig. 5a–d); in contrast, non-Tg-derived neurons with the
same treatment did not show such changes (Supplementary
Fig. 5a–d).

EP activates p38 MAP kinase signaling. Aβ and oxidative stress
both induce activation of p38 MAP kinase, and its phosphor-
ylation has been demonstrated to link neuronal and synaptic
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perturbation34–36. Therefore, we next evaluated the potential role
of p38 MAP kinase activation in EP-involved synaptic damage,
using antibodies to phosphorylate p38 MAP kinase and hippo-
campal extracts to estimate activation. Immunoblotting of hip-
pocampal lysates exhibited that phosphorylation of p38 MAP
kinase occurred selectively in Aβ-perfused slices as compared to
vehicle-treated slices, whereas the level of phosphorylation of p38
MAP kinase was significantly higher in Tg Sh3gl2-derived slices
than non-Tg slices in the presence of Aβ (Fig. 4a). Levels of total
p38 MAP kinase were comparable between non-Tg and Tg Sh3gl2
slices with or without treatment of Aβ. Consistent with in vitro
results with Aβ treatment, double Tg Sh3gl2/mAPP mice also
displayed a significant higher level of phosphorylation of p38
MAP kinase than the other groups of mice, including Tg mAPP,
Tg Sh3gl2, and non-Tg littermates (Fig. 4b). These results indicate
that EP is involved in Aβ-induced activation of p38 MAP kinase
signal transduction.

To determine whether EP/Aβ-mediated ROS provokes the
activation of p38 MAP kinase signal transduction, Tg Sh3gl2
slices were first treated with antioxidant EUK, MitoTEMPO, or
p38 MAP kinase inhibitor (SB203580) for 5 min prior to the
addition of Aβ. The addition of SB or antioxidant EUK inhibited
phosphorylation of p38 MAP kinase (Fig. 4c), along with
suppressed ROS, and completely restored CcO activity and
ATP levels (Fig. 4d–g) in the presence of Aβ. These results suggest

that EP-mediated p38 MAP kinase activation is responsible for
Aβ-induced aberrant mitochondrial function and oxidative stress.
Furthermore, by applying a mitochondria-targeted antioxidant
MitoTEMPO (TEMPO) in Aβ-treated Tg Sh3gl2 slices, phos-
phorylation of p38 MAP kinase was inhibited (Fig. 4c) along with
the suppression of ROS levels (Fig. 5a, b), increased CcO activity
and ATP levels (Fig. 5c, d), implying that elevated mitochondrial
oxidative stress induced by EP/Aβ contributes to mitochondrial
alterations. Moreover, addition of the antioxidant EUK or the
specific p38 MAP kinase inhibitor, SB203580/SB, not only
markedly reduced ROS levels but also rescued mitochondrial
dysfunction in Aβ treated Tg Sh3gl2 neurons (Supplementary
Fig. 5e–h). These results confirmed that increased EP expression
enhances Aβ-induced oxidative stress and mitochondrial dys-
function, which can be rescued by antioxidant and p38 MAP
kinase inhibitors.

Recent studies have shown a link between EP expression and
spine morphogenesis. Therefore, we next assessed the direct effect
of neuronal EP on Aβ-induced synaptic protein loss and
morphology by quantification of synaptic protein levels and
synaptic density. Both presynaptic proteins synaptojanin and
synaptophysin were significantly reduced in Tg Sh3gl2 hippo-
campal slice exposed to Aβ (50 nM) compared to Aβ-treated non-
Tg or vehicle-treated Tg Sh3gl2 slices (Fig. 6a, b). Treatment of
antioxidant EUK, TEMPO, or the p38 MAP kinase inhibitor
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(SB203580) prevented loss of these presynaptic proteins in EP/
Aβ-insulted slices (Fig. 6c, d). Synaptic density was quantified by
measuring synaptophysin-positive clusters attaching to dendrites
labeled with MAP2. Non-Tg neurons treated with a low
concentration of Aβ (50 nM) did not exhibit loss of synapses
compared to vehicle-treated cells (Fig. 6e, f). However, Tg Sh3gl2
neurons had a significantly decreased synaptic density (Fig. 6e–h).
Importantly, scavenging ROS by the addition of EUK-134
(Fig. 6g–h) or MitoTEMPO (Fig. 6g–h), or inhibiting p38 MAP
kinase activation (Fig. 6g–h) effectively protected against Aβ-
induced synaptic loss. These results suggest that suppression of
ROS-involved activation of p38 MAP kinase signaling rescues EP/
Aβ-induced synaptic loss.

To further evaluate whether EP/Aβ-induced oxidative stress is
responsible for the deficits in synaptic plasticity, Tg Sh3gl2
hippocampal slices were treated with the antioxidant EUK-134 in
the presence of Aβ. Treatment with EUK-134 completely restored
the EP/Aβ-induced hippocampal LTP decline (Fig. 7a). The BSTs
were unchanged in the indicated Tg Sh3gl2 hippocampal slices
(Supplementary Fig. 7a). Similarly, administration of EUK-134 to
Tg Sh3gl2/mAPP mice revealed the improvement in spatial
learning and memory, showing shorter latency to find the
platform during training (Fig. 7b), longer time spent in the target
area (Fig. 7c), and an increase in the number of times crossing the
target (Fig. 7d, e) in the MWM behavioral test. The swimming
speed was comparable among the indicated four groups of mice
(Supplementary Fig. 4b). These results indicate that blockade of

EP/Aβ-mediated oxidative stress improves synaptic and cognitive
function.

Inhibition of p38 MAP kinase rescues synaptic deficits. Next,
we evaluated whether the p38 MAP kinase pathway was involved
in the EP-mediated deficits in synaptic plasticity instigated by Aβ.
Tg Sh3gl2 hippocampal slices were treated with SB203580 in the
presence of Aβ. Blockade of p38 MAP kinase activity completely
restored hippocampal LTP in Tg Sh3gl2 mice (Fig. 8a). The BSTs
were unchanged in the indicated Tg Sh3gl2 hippocampal slices
(Supplementary Fig. 7b).

To further confirm the effect of EP-mediated p38 MAP kinase
signaling in vivo Tg mAPP mice, Tg Sh3gl2/mAPP mice were
administrated with SB203580 (0.5 mg/kg, daily) for 3 weeks and
then evaluated for LTP and learning and memory. Tg Sh3gl2/
mAPP mice, which received the p38 MAP kinase inhibitor,
showed an increase in LTP as compared to vehicle-treated mice
(Fig. 8b). The BSTs were unchanged in the indicated Tg Sh3gl2/
mAPP hippocampal slices (Supplementary Fig. 7c). Similarly,
treatment of SB203580 significantly improved spatial learning and
memory as shown by shorter latency to find the platform during
training (Fig. 8c) and increased the time spent in the target
quadrant and the number of times crossing the target (Fig. 8d–f)
during the recording period. The swimming speed was comparable
among the indicated four groups of mice (Supplementary Fig. 4c).
These results indicate that blockade of EP-mediated activation of
p38 MAP kinase improves synaptic and cognitive function.
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EP impairs Aβ-induced synaptic vesicle recycling. To evaluate
the effect of EP on Aβ-induced synaptic vesicle recycling, we
investigated the capacity of synaptic vesicle release. To visualize
synaptic vesicle recycling, 14-day in vitro cultured cortical neu-
rons were loaded with the fluorescent styryl dye FM1–43 as a
marker for synaptic vesicles (Fig. 9bI–eI and gI–kI). Synaptic
vesicle release was indicated by the disappearance of FM1–43
fluorescent intensity upon stimulation with 50 mM K+

(Fig. 9bII–eII, dIII–eIII, and gII–kII). The fluorescent density was
normalized by dividing the initial fluorescence prior to the
addition of K+ in each nerve terminal, and the kinetics of
fluorescent styryl dye FM1–43 loss was assessed from randomly
selected synaptic boutons (Fig. 9a, f). The unloading phase con-
tains the rapid release of dye from a mobilizable pool of vesicles,
and the slow replenishment of this rapidly mobilizable vesicle

population is from the reserve pool37. In non-Tg neurons,
synaptic boutons exhibited a strong dye loss (Fig. 9a, b), whereas
treatment with Aβ induced a weak dye loss from synaptic boutons
(Fig. 9a, d). In contrast, a much weaker dye loss was detected in
synaptic boutons from Tg Sh3gl2 neurons with Aβ treatment
(Fig. 9a, e), although there was no significant difference between
non-Tg and Tg Sh3gl2 neurons with vehicle treatment (Fig. 9a–c).
This indicates that Aβ impairs synaptic vesicle recycling ability in
Tg Sh3gl2 neurons. Interestingly, administration of EUK-134
(Fig. 9f, i), SB203580 (Fig. 9f, j), or MitoTEMPO (Fig. 9f, k)
completely rescued this synaptic vesicle recycling impairment in
Tg Sh3gl2 neurons treated with Aβ, suggesting that EP-involved
oxidative stress and the p38 MAP kinase signal pathway are
responsible for cerebral synaptic vesicle recycling impairment in
an Aβ-rich environment.
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groups of brain slices. β-Actin served as protein loading controls. The upper panel displays quantification of immunoreactive bands for the corresponding
protein relative to β-actin. Data are expressed as fold change relative to the non-Tg vehicle control group. Data are shown as mean ± s.e.m., n= 3 per group
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decreased in Aβ-treated Tg Sh3gl2 neurons compared to vehicle-treated non-Tg neurons in e–h. Treatment with EUK-134, or SB203580, or MitoTEMPO,
inhibited Aβ-induced synaptic loss in cultured EP overexpression neurons (g, h). Representative images for synaptophysin (green), MAP2 (red), and nuclei
(blue) in the indicated groups of neurons are shown in e, g. Scale bars, 50 μm. Quantifications of synaptophysin-positive clusters per 10 μm of dendrites are
shown in f, h. Data are shown as mean ± s.e.m., n= 12 cells for each group (one-way ANOVA in f, h)
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EP promotes Aβ accumulation in Tg mAPP mice. We then
evaluated the effect of overexpressing EP on cerebral Aβ
pathology in mAPP mice. We first measured cerebral Aβ levels in
mAPP and Tg Sh3gl2/mAPP mice by enzyme-linked immuno-
sorbent assay (ELISA) and immunoblotting. Notably, Aβ levels,
including Aβ40 and Aβ42, were significantly elevated in the
entorhinal cortex (AD-affected regions at very early stages of AD
and proceeding hippocampus) of Tg Sh3gl2/mAPP mice as
compared with mAPP mice at the age of 5–5.5 months (Fig. 10a,
b). These results suggest that overexpressing EP exacerbates
cerebral Aβ accumulation. Given that overexpression of EP
augmented ROS production and activation of p38 MAP kinase in
mAPP mice, we examined whether EP-mediated oxidative stress
and p38 MAP kinase signaling contributes to amyloid pathology.
Intriguingly, administration of the ROS scavenger EUK-134 or
the p38 MAP kinase inhibitor to Tg Sh3gl2/mAPP mice almost
abolished elevated Aβ levels compared to vehicle treatment
(Fig. 10c, d), suggesting that EP-induced oxidative stress and p38
MAP kinase signaling pathway may be responsible for cerebral
Aβ accumulation. Immunoblots also confirmed elevation of Aβ
levels in Tg Sh3gl2/mAPP mice compared to mAPP mice
(Fig. 10e). We also found that the levels of β-site APP cleaving
enzyme 1 (β-secretase 1, BACE1), critical to the generation of Aβ
from APP, were significantly increased in Tg Sh3gl2/mAPP brain
compared to mAPP brain (Fig. 10g). Increased levels of Aβ or

BACE1 were suppressed by the antioxidant EUK-134 or p38
MAP kinase inhibitor SB203580 (Fig. 10f, h) treatment in Tg
Sh3gl2/mAPP mice. Furthermore, increased EP reduced expres-
sion levels of insulin degrading enzyme (IDE), an enzyme for
degrading Aβ to facilitate Aβ clearance (Fig. 10i). Similarly,
administration of EUK-134 or SB203580 to Tg Sh3gl2/mAPP
mice reversed IDE levels (Fig. 10j). These results indicate that
increasing EP boosts Aβ production and accumulation possibly
through APP processing or Aβ clearance by enhancing BACE1
activity and suppressing Aβ-degrading enzyme IDE. Together,
these results suggest that EP-involved oxidative stress and the p38
MAP kinase signaling pathway are responsible for cerebral Aβ
accumulation and production in Aβ-rich environment.

Discussion
Synaptic dysfunction is an early marker in the progression of AD.
However, the mechanisms of how this dysfunction occurs
are only beginning to be identified. From studies into the
proteomic consequences of Aβ binding to mitochondrial proteins,
we have previously identified proteins that change their expres-
sion in dementias38, including synaptic proteins EF-hand
domain-containing protein D2 (swiprosin-1), which is
decreased39, and EP which is increased28. For the latter, we
showed that EP protein levels were increased in the neurons of
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Fig. 7 Effect of ROS scavenger on EP/Aβ-mediated synaptic plasticity and spatial learning and memory impairment. a Hippocampal slices from 5-month-
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AD patients, and also in Tg animals with elevated Aβ levels28.
Subsequently, we have reported that EP protein expression can be
controlled by other factors, such as leptin40, while other
groups have now associated EP with other dementias such as
Parkinson’s disease26, spinocerebellar ataxia 241, and Hunting-
ton’s disease42.

The consequence of this elevated EP level has been previously
linked to the stress kinase pathways28. However, it is becoming
increasingly clear that EP may have other direct effects on
synaptic signaling as its expression level has been reported in
several in vitro studies, to influence the probability of glutamate
release23; brain-derived neurotrophic factor-activated tropomyo-
sin receptor kinase B recycling43; and more recently influence
spine formation19. Therefore, EP may have different effects in
different locations, as it is found in both the pre-synapse and
post-synapse38.

In this study, we sought to identify the in vivo consequences of
a raised EP protein level in Aβ-rich environment to mimic EP
levels in AD-affected brain. EP expression levels in mAPP brains
were significantly elevated by 9–10 months of age (Supplementary
Fig. 1b), suggesting that increased EP in mAPP mice could be a
risk factor to promote/accelerate AD-like pathology such as
mitochondrial and synaptic perturbation and amyloid pathology.
To achieve this goal, Tg animals that overexpressed EP in

neurons was produced in the presence of increased levels of Aβ.
Levels of EP were elevated by 4–5-folds in mAPP brain (similar to
the AD brain)28 compared to non-Tg brain; thus, these EP-
overexpressing mice are an appropriate model for the study the
effect of EP relevant to the AD. Notably, when EP overexpressed
hippocampal slices expressing endogenous human Aβ or expos-
ing exogenous Aβ, there were significant changes in LTP. This
change in synaptic behavior was significant enough to change the
cognitive function of these animals. To our knowledge, this is the
first in vivo description that the elevated levels of EP in AD mice
could have a significant effect on cognitive function.

Mitochondria are a major source of ROS generation. Inhibition
of the electron transport chain by blocking complex activity in
general would produce ROS. Aβ is capable of blocking the
respiratory chain including complex I and IV11,13,44–46. In line
with this, there is a significant decrease of mitochondrial complex
IV activity in the AD-affected brains44, AD cybrid cells neurons
containing AD-derived mitochondria or mild cognitive
impairment-derived mitochondria, and Aβ-insulted neurons
along with increased levels of mitochondria-derived ROS36,45–47.
Deficiency in this key electron transport enzyme could lead to an
increase in ROS production and reduction in energy stores.
Indeed, suppression of ROS protected against EP/Aβ-induced
mitochondrial and synaptic dysfunction as shown by restoring
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complex IV activity and ATP levels, increased LTP, reduced
synaptic loss, and deficits in synaptic vesicle release both from
in vitro cellular and in vivo EP/Aβmouse models. Addition of the
complex IV inhibitor KCN significantly reduced LTP and
impaired synaptic vesicle release (Supplementary Figs. 8 and 9).
Scavenging mitochondrial ROS by TEMPO restored the KCN-
mediated synaptic deficits (Supplementary Fig. 9). Taken toge-
ther, we believe the enhancement of ROS production in our
animal model and the Aβ-treated ex vivo or in vitro models is
contributed by disruption of the respiratory chain activity, such as
complex IV. Given that mitochondria-derived ATP is important
for maintaining normal synaptic function and vesicle cycling48,
EP/Aβ-mediated ROS overproduction and the decline in synaptic
mitochondrial ATP could contribute to synaptic dysfunction and
aberrant synaptic vesicle cycling.

ROS production has been linked to the activation of the stress
kinases36,45. We had previously shown that an increase in EP
expression can activate the stress kinase. Here, we found a sig-
nificant increase in p38 MAP kinase activity in the presence of
elevated EP and Aβ-rich environment. Significantly, scavenging
ROS production or blocking p38 MAP kinase activation not only

reduced ROS levels but also restored mitochondrial function in
the presence of Aβ, suggesting that EP-mediated p38 MAP kinase
activation is responsible for Aβ-induced mitochondrial dysfunc-
tion and oxidative stress. Furthermore, inactivation of p38 MAP
kinases alleviated the EP/Aβ-induced synaptic loss and deficits in
vesicle recycling and hippocampal LTP, and improved learning
and memory, indicating the impact of p38 MAP kinase activity
on synaptic formation and function49.

Aβ can directly or indirectly mediate synaptic dysfunction
through disruption of signal transduction including the PKA/
CREB pathway50 or activation of p38 MAP kinase51. Although
synaptic N-methyl-D-aspartate receptor is important for LTP,
extra-synaptic NMDARs can trigger de novo long-term depres-
sion (LTD)52. Increasing the activation of NR2B-containing
extra-synaptic NMDARs facilitates hippocampal LTD53. Aβ-
inhibited LTP was prevented using selective NR2B inhibitors54.
Thus, endophilin-mediated ROS production and p38 MAP kinase
activation could be involved in NR2B-linked synaptic deficits.
Immunoblotting of hippocampal lysates for NR2B exhibited a
significant reduction in NR2B levels in Tg Sh3gl2 hippocampal
slices as compared with non-Tg hippocampal slices in the
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Aβ for 24 h alone (e, h) showed synaptic vesicle release impairment compared to the vehicle Tg Sh3gl2 treatment (c, g) and non-Tg neurons, whereas
treatment with 50 nM Aβ (d) showed no difference compared to the vehicle non-Tg neurons (b). Pretreatment with 500 nM EUK-134 (i), 1 μM SB203580
(j), or 1 μM MitoTEMPO (k) rescued Aβ-induced synaptic vesicle recycling impairment in Tg Sh3gl2 neurons. Scale bar= 50 µm. Error bars represent s.e.
m., n= 8 per group. *p < 0.01 compared to other groups in a and f (one-way ANOVA)
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presence of Aβ (Supplementary Fig. 6a). Suppression of mito-
chondrial ROS or inactivation of p38 MAP kinase
completely rescued the loss of the NR2B protein (Supplementary
Fig. 6b), suggesting that an EP/ROS/p38 MAP kinase signal
also contribute to NR2B-mediated synaptic damage insulted
by Aβ.

Intriguingly, synaptic mitochondria are more sensitive to Aβ
than soma-derived mitochondria14, and raised EP protein levels
have been shown to be due to elevated levels of mitochondrial Aβ
and its binding to mitochondrial protein amyloid binding alcohol
dehydrogenase/17β hydroxysteroid dehydrogenase type 10 28.
Therefore, we hypothesize that an increase in mitochondrial Aβ
leads to an increase in EP, which in turn leads to an increase in
ROS production that stimulates p38 MAP kinase activity, sub-
sequently disrupting the synaptic activity (both in changes in
morphology and LTP), that then manifests itself in changes in
cognition and behavior. Indeed, the addition of antioxidants and
the specific p38 MAP kinase inhibitor not only suppresses ROS
but also reverses Aβ-induced mitochondrial defects and activa-
tion of p38 MAP kinase signal transduction. Future studies will
therefore focus on how an elevated EP protein level increases ROS
production, presumably by affecting mitochondrial function, and
as such this could be a previously unreported positive feedback
mechanism to enhance the mitochondrial dysfunction that first
caused the elevation of EP protein levels. Another intriguing
possibility will be to explore the role of Parkin, which can bind to
EP and can used as an ubiquination substrate, which is controlled
by phosphorylation26. Disruption of both Parkin and Pink1-
involved mitochondrial quality control could lead to the pro-
duction of ROS15,55. In addition, EP has been reported to bind to
LRRK2, another protein implicated in Parkinson’s disease25.
LRRK2 activity has also been linked to mitochondrial activity;
specifically, mutations in LRRK2 are linked to mitochondrial
depolarization55.

Taken together, we have provided substantial evidence of the
connection of EP with Aβ-induced alterations. First, we have
demonstrated that overexpressing EP increased ROS levels and
promoted mitochondrial dysfunction in in vitro hippocampal
culture neurons and in vivo Tg Sh3gl2/mAPP mice, suggesting a
link of EP to ROS and mitochondrial stress. ROS scavengers
almost completely suppressed EP/Aβ-induced phosphorylation of
p38 MAP kinase. Accordingly, the suppression of EP-induced
activation of p38 MAP kinase increased complex IV activity and
ATP levels, demonstrating a link between EP-induced ROS to p38
MAP kinase activation. Second, we provide evidence of the con-
tribution of EP/ROS/p38 MAP kinase signaling to Aβ-mediated
synaptic defects. Administration of an antioxidant or p38 MAP
kinase inhibitor to Tg Sh3gl2/mAPP mice or hippocampal neu-
rons alleviated LTP decline and synaptic loss, increased synaptic
vesicle recycling, and improved learning and memory; these
results indicate that blocking EP-involved ROS production and
p38 MAP kinase activation restores synaptic and cognitive func-
tion in an model of AD-expressing EP/Aβ. Thus, EP/ROS/p38
MAP kinase signaling contributes to synaptic and cognitive per-
turbation in Aβ-rich environment. Finally, we observed exciting
data on the promotion of cerebral Aβ accumulation and pro-
duction in Tg Sh3gl2/mAPP mice. We have identified that EP also
alters APP processing and Aβ clearance by the upregulation of
BACE1 levels and the decrease in expression of the Aβ- degrading
enzyme IDE. Notably, inhibition of EP-induced ROS or p38 MAP
kinase activation blocked these increased levels of Aβ and BACE1,
and restored IDE levels. Given that the detrimental effect of oxi-
dative stress on the activity of α-secretase while elevated the
expression and activation of β-secretase and γ-secretase, enzymes
responsible for the generation of Aβ from APP56–60, our results
indicate a contribution of EP/ROS/p38 MAP kinase signaling to
amyloid pathology and abnormal Aβ/APP metabolism, possibly
through APP processing and Aβ clearance.
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Fig. 10 Effect of EP overexpression on cerebral Aβ accumulation. ELISA for measurement of Aβ40 (a, c) and Aβ42 (b, d) in the entorhinal cortex of Tg
mAPP and Tg Sh3gl2/mAPP mice at the age of 5–5.5 months. EUK-134 (EUK, 2 mg/kg) (c, d) or SB203580 (SB, 0.5 mg/kg) (c, d) was administered to Tg
Sh3gl2/mAPP mice once a day for 3 weeks and then cortical tissues were subjected to Aβ measurement at the age of 5–5.5 months. Date are shown as
mean ± s.e.m., n= 3–6 per group (one-way ANOVA in a–d). Quantification of immunoreactive bands for Aβ (e), BACE1 (g), or IDE (i) in the indicated Tg
mice at the age of 5–5.5 months. Quantification of immunoreactive bands for Aβ (f), BACE1 (h), or IDE (j) in Tg Sh3gl2.mAPP mice treated with EUK or P38
inhibitor (SB) relative to vehicle treatment. β-Actin was used as a protein loading control. Lower panels are representative immunoblots for the indicated
proteins in the indicated Tg mice. Date are shown as mean ± s.e.m., n= 3 per group (one-way ANOVA in e–j)
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Therefore, we report a new mechanism of how the synaptic
protein, EP, which is elevated in AD patients, can lead to synaptic
and cognitive dysfunction. We propose that increased levels of EP
in AD and in an Aβ-rich brain disrupt the mitochondrial
respiratory chain by inhibiting complex IV activity and ATP
production, leading to excessive ROS production and accumula-
tion. Consequently, excessive ROS activates p38 MAP kinase
signaling, which is important for maintaining synaptic and cog-
nitive function. Thus, EP-mediated signal transduction via ROS/
p38 MAP kinase axis contributes significantly to mitochondrial
dysfunction, synaptic injury, and cognitive decline. Furthermore,
EP/ROS-mediated signal transduction could enhance amyloid
pathology. Thus, inhibition of ROS production will prevent the
activation of p38 MAP kinase signal pathway and rescue detri-
mental phenotypes in AD-type mice. Indeed, EP/Aβ-induced
ROS production and mitochondrial dysfunction is prevented by
ROS scavenger and the p38 MAP kinase inhibitor. As we have
previously shown that EP protein levels can be controlled by
other factors40, methods for attenuating EP expression could be
sought to be a potential drug target, as is the use of p38 MAP
kinase inhibitors or ROS scavengers, which are also being sought
to be used in neurodegenerative diseases.

Methods
Mice. All studies on mice were performed in accordance to the National Institutes
of Health guidelines for animal care with the approval of the Institutional Animal
Care and Use Committee of the University of Kansas-Lawrence. To generate Tg
mice overexpressing EP in neurons, we created a Tg expression cassette bearing
Sh3gl2 gene coding for full-length mouse EP (Genebank Accession Number
NM_019535) driven by a Thy-1 promoter. A schematic depiction of Tg cassettes is
shown in Supplementary Fig. 2a. The construct was verified by DNA sequencing.
The founders of Tg Sh3gl2 mice were identified as bearing the transgene by PCR
analysis of tail genomic DNA using genotyping primers (5′- ATGTCGGTG
GCAGGGCTG-3′ (forward) and 5′-CTAATGGGGCAGAGCAACCAG-3′ (back-
ward)). Tg Sh3gl2 mice were backcrossed 10 times into C57BL6/J mice and then
cross-bred with mAPP mice overexpressing an mAPP (J-20 line, obtained from
Jackson Laboratory) to generate double Tg mice expressing neuronal Tg Sh3gl2 and
mAPP/human Aβ (Tg Sh3gl2/mAPP), single Tg (Sh3gl2, or mAPP), and non-Tg
littermate offspring.

Pharmacological treatment. Human Aβ1–42 were purchased from GenicBio,
catalog number A-42-T-1, and oligermic Aβ was freshly prepared as previously
described11,61. Brain slices from 3-month-old non-Tg and Tg Sh3gl2 mice or pri-
mary cultured cortical neurons (day 14 in vitro (DIV14)) were treated with various
drugs. The final concentration of the drugs were as follows: SB203580 (1 µM),
EUK-134 (500 nM), and MitoTEMPO (1 µM). Mice were intraperitoneally injected
with SB203580 (0.5 mg/kg) or EUK-134 (2 mg/kg) for 3 weeks.

Hippocampal/cortical neuronal culture. We prepared hippocampal neurons
from day 1 non-Tg as described previously13, culturing neurons in neurobasal
medium supplemented with 1× B27, 600 μM L-glutamine, and
penicillin–streptomycin. At DIV14, neurons from both Tg mice were treated with
50 nM Aβ in neurobasal medium supplemented with 0.5× B27 for an additional 24
h, with or without EUK-134 (500 nM, Cayman Chemical), SB203580 (1 µM, EMD
Chemicals, Inc.), or MitoTEMPO (1 µM, Sigma) pretreatment for 1 h before the
addition of Aβ. Vehicle was used as a control in neurobasal medium supplemented
with 0.5× B27 for 24 h.

Evaluation of the intracellular ROS. Evaluation of intracellular ROS levels was
accessed by EPR spectroscopy. Brain tissues or cultured neurons was incubated
with CMH (cyclic hydroxylamine 1-hydroxy-3-methoxycarbonyl-2, 2, 5, 5-tetra-
methyl-pyrrolidine, 100 μM) for 30 min, and then washed with cold phosphate-
buffered saline (PBS) for three times. The brain tissues and neurons were collected
and homogenized with 100 μl of PBS for EPR measurement. The EPR spectra were
collected, stored, and analyzed with a Bruker EleXsys 540×-band EPR spectrometer
(Billerica, MA, USA) using the Bruker software Xepr (Billerica, MA, USA)62.

CcO activity assay. CcO (complex IV) activity was spectrophotometrically
determined using CcO Assay Kit (Sigma) as our previous study13. In brief, indi-
cated brain perfusion slices or brain tissues from hippocampal regions of indicated
mice were homogenized in the lysis buffer, incubated on ice for 15 min, and
centrifuged at 12,000 × g for 10 min. Suitable volume of supernatants and enzyme
solutions were added into 475-μl assay buffer. The reaction was triggered by the

addition of 25 μl ferrocytochrome c substrate solution (0.22 mM) into the cuvette.
The changes in absorbance of cytochrome c at 550 nm wavelength was recorded
immediately using a kinetic program with 5 s delay, 10 s interval, and total 6
readings on an Ultrospect 3100 Pro spectrophotometer.

Measurement of ATP level. ATP levels were determined using an ATP Biolu-
minescence Assay Kit (Roche) following the manufacturer’s instruction. Briefly,
indicated brain perfusion slices or brain tissues from hippocampal regions of
indicated mice were homogenized in the lysis buffer provided, incubated on ice for
30 min, and centrifuged at 12,000 × g for 10 min. ATP levels were then measured in
the subsequent supernatants using Luminescence plate reader (Molecular Devices).
A 1.6 s delay time after substrate injection and 10 s integration time were used.

Immunoblotting analysis. The preparation of cortical tissue extraction for
immunoblotting was followed by the method described in our previous study63.
Protein extracts were subjected to 10% Bis-Tris gel (Invitrogen, Grand Island, NY,
USA), incubated with 5% non-fat dry milk in TBST buffer (20 mM Tris-HCl, 150
mM NaCl, 0.1% Tween-20) for 1 h at room temperature, and then followed by the
primary antibodies with gently shaking overnight at 4 °C. The primary antibodies
used were as follows: anti-EP (Cat# 36-3000, Invitrogen), anti-phos-p38 (Cat#
612288, BD), anti-total-p38 (Cat# 9212, Cell signaling), anti-human Aβ 1-17 clone
6E10 (Cat# 9320-02, Signet), anti-synaptophysin (Cat# MAB5258; Chemicon),
anti-synaptojanin 1 antibody (AC1), (Cat# MA3-936; Thermo Fisher), anti-
NMDAR2B (Cat# ab81271, Abcam), anti-BACE1 antibody (Cat# ab108394,
Abcam), and β-actin (Cat# A5441; Sigma-Aldrich). ImageJ software (National
Institutes of Health, Bethesda, MD, USA) was used for quantification of intensity of
the immunoreactive bands in the scanned blots.

Immunohistochemistry staining. Brain slices from the indicated Tg mice were
subjected to double immunostaining with rabbit anti-EP (Cat# 36-3000, Invitro-
gen) and mouse anti-MAP2 (1:5000, sc-33796, Santa Cruz Biotechnology) at 4 °C
overnight, followed by the conjugation of goat anti-rabbit Alexa Fluor488 and goat
anti-mouse Alexa Fluor594. The staining images were taken under a Leica confocal
microscope and analyzed by Universal Metamorp Image Program.

Aβ measurement. Brain cortical tissues were incubated and homogenized in 5M
guanidine HCl and 50 mM Tris-HCl (pH 8.0) overnight and then subjected to Aβ
concentration detection using human Aβ1–40 and Aβ1–42 ELISA Kits (Invitrogen)
following the manufacturer’s instructions64.

Immunocytochemistry studies. We prepared hippocampal neurons from post-
natal day 1 pups as described previously13, followed by culturing them in neuro-
basal medium (Life Technologies) supplemented with 1× B27 (Life Technologies),
600 μM L-glutamine (Life Technologies), and penicillin–streptomycin (Life Tech-
nologies). The neurons at DIV14 were treated with 50 nM Aβ in neurobasal
medium supplemented with 0.5× B27 for 24 h with or without various drugs
(vehicle group) (EUK-134, 500 nM or MitoTEMPO, 1 µM or SB203580, 1 µM)
pretreatment for 1 h. After 24 h incubation, neurons were fixed with 4% ice-cold
paraformaldehyde for 5 min, and then incubated with 0.1% Triton and 5% goat
serum in PBS for 1 h at room temperature (RT). The following primary antibodies
were incubated with neurons overnight at 4 °C: rabbit anti-synaptophysin IgG
(1:5000, Dako) and mouse anti-MAP2 IgG, (1:10,000, Chemicon). The secondary
antibodies including Alexa Fluor® 594-conjugated goat anti-rabbit IgG and Alexa
Fluor® 594-488 goat anti-mouse IgG (1:1000, Invitrogen) were incubated with
neurons for 1 h at RT. Immunoreactive products were developed by Vectashield
mounting medium (H-1000, Vector Laboratories). Images were taken at equal
exposure for all different groups at ×63 oil lens under a confocal microscopy
(Leica) using Universal Metamorp Image Program. Quantification of synaptic
density of cultured neurons was described13,15,47,63. The experiments were per-
formed by investigators blinded to the information about genotype and treatment
until completion of image analysis.

Behavioral test. Mice were subjected MWM test as described in our previous
studies13,15. Briefly, in spatial acquisition session, mice were trained for five con-
secutive days with four trial each mouse per day. On the last day, a probe trial was
performed to assess the spatial memory of mice. Traces of mice were recorded, and
data were analyzed by HVS water 2020. Investigators were blinded by mouse
genotypes during behavioral test.

LTP recording. Transverse hippocampal slices (400 µm) were cut from the mouse
brain and maintained in an interface chamber at 29℃ and perfused with artificial
cerebrospinal fluid (ACSF) continuously bubbled with 95% O2 and 5% CO2. The
ACSF composition was: 124 mM NaCl, 4.4 mM KCl, 1 mM Na2HPO4, 25 mM
NaHCO3, 2 mM CaCl2, 2 mM MgCl2, and 10 mM glucose. CA3-CA1 ffEPSPs were
recorded from the CA1 region of the hippocampus by placing the stimulating
electrode at the level of the Schaeffer collateral (SC) fibers, whereas the recording
electrode was placed in the CA1 stratum radiatum. Extracellular responses were
acquired using Clampex software 14.2 (Molecular Device) and a microamplifier
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(IE-210, Warner Instruments). BST was assayed by plotting the slopes of fEPSP
against the amplitude of fiber volley to generate input–output relations. A 30-min
baseline recording was established using low-frequency stimulation (0.033 Hz; 0.1
ms impulse duration) and then adjusted intensity that induced fEPSPs with ~30%
of the maximal fEPSP amplitude. The LTP was induced using θ-burst stimulation
(4 pulses at 100 Hz, with the bursts repeated at 5 Hz, and each tetanus, including
three 10-burst trains separated by 15 s). Hippocampal slices from 5-month-old to
6-month-old EP or EP/mAPP mice were pretreated with SB203580 (1 µM) or
EUK-134 (500 nM) 5min before Aβ perfusion (100 nM for 20 min). Values of
fEPSP slope were expressed as mean ± s.e.m. percentage change relative to their
mean baseline amplitude.

Synaptic vesicles recycling (FM1–43). We analyzed endocytosis–exocytosis as a
measure of synaptic bouton function65,66. This strategy is based on the uptake and
unloading of the styryl dye FM1–43 (Molecular Probes, Invitrogen) by hippo-
campal neurons that are plated on coverslips at a density of 1 × 105 cells per
coverslip. Neurons were incubated for 10 min in a low-K+ buffer: 130 mM NaCl, 5
mM KCl, 1.2 mM NaH2PO4, 1.8 mM CaCl2, 10 mM glucose, and 25 mM HEPES,
pH 7.4, and were then labeled with 10 mM FM1–43 dye for 1 min in high-K+

buffer containing 79 mM NaCl and 56 mM KCl, followed by a 5 min wash by
perfusion with a Ca2+-free and then the low-K+ buffer to remove the surface-
bound dye. Baseline measurements were then acquired over 30 s by perfusing with
a low-K+ medium and then stimulating the cells for 5 min in a high-K+ medium,
leading to dye unloading.

Time-lapse recordings of images were acquired at a rate of one frame every 10 s
on a Carl Zeiss (Axiovert 200) microscope with incubation system (PeCon) to
maintain differentiated neuronal cells at 37 °C during image collection. Excitation
was provided by a 479 nm monochromator, and emitted light was collected using a
fluorescein isothiocyanate filter. Fluorescent signals were quantified using the
MetaMorph software.

Post hoc immunocytochemistry. To identify the field analyzed in the functional
(FM1–43) experiments, the chambers subjected to post hoc immunohistochemistry
were marked to ensure their position. After FM1–43 unloading, cultured neurons
were fixed with 4% ice-cold paraformaldehyde for 30 min and then permeabilized
with PBS containing 0.1% Triton and 5% goat serum for 1 h at room temperature,
followed by incubation with primary antibody: mouse anti-MAP2 (1:5000, sc-
33796, Santa Cruz Biotechnology), followed by the conjugation of a goat anti-
mouse antibody.

Statistical analysis. Student’s t tests were performed for analysis and comparisons
between two groups. One-way analysis of variance (ANOVA) was used for
repeated-measures analysis and comparisons in four groups, followed by Fisher’s
protected least significant difference for post hoc comparisons. P < 0.05 was con-
sidered significant. StatView statistics computer software was used. All data were
expressed as the mean ± s.e.m.

Data availability. All data generated or analyzed during this study are included in
this published article (and its Supplementary Information file).
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