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Abstract
Influenza virus is a common virus in people’s daily lives, and it has certain infectivity in humans and animals. Influenza 
viruses have the characteristics of a high mutation rate and wide distribution. Reverse genetic technology is primarily used 
to modify viruses at the DNA level through targeted modification of the virus cDNA. Genetically modified influenza viruses 
have a unique advantage when researching the transmission and pathogenicity of influenza. With the continuous development 
of oncolytic viruses in recent years, studies have found that influenza viruses also have certain oncolytic activity. Influenza 
viruses can specifically recognize tumor cells; activate cytotoxic T cells, NK cells, dendritic cells, etc.; and stimulate the 
body to produce an immune response, thereby killing tumor cells. This article will review the development and application 
of influenza virus reverse genetic technology.
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Introduction

Genetics is traditionally defined as the phenotype and traits 
of an organism and represents a branch of science that stud-
ies the genetic composition of organisms, whereas reverse 
genetics is a process designed to identify the genetic com-
position of an organism and investigate the phenotype and 
traits at genetic level [1]. Reverse genetic technology is 
applied through targeted transformation of biological genes, 
such as by site-directed mutation, base insertion, deletion, 
replacement, etc., and then the transformed gene is modified 
and assembled so that it can be stably expressed [2, 3].

Influenza virus belongs to the genus Orthomyxovirus 
of the Orthomyxoviridae family which includes enveloped 
segmented single-stranded negative-sense RNA viruses [4]. 
Reverse genetic technology uses modified cloned cDNA 
to obtain infectious viruses to study the effect of these 

modifications on phenotypes. The reverse genetic system of 
influenza A virus was established by Luytjes and Enami in 
1989 and 1990, respectively [5, 6]. In 1993, Takizawa dis-
covered that influenza virus had a certain proapoptotic effect 
on MDCK and HeLa cells cultured in vitro and proposed 
for the first time that influenza virus could induce apopto-
sis in cultured cells in vitro [7]. In 1997, a positive signal 
of apoptosis was observed after a mouse was infected with 
influenza virus in the nasal cavity, and this signal showed 
that influenza virus can also cause apoptosis in the body [8]. 
Since then, the continuous development of reverse genetic 
technology has had a massive impact on the study of the 
transmission characteristics, infection mechanisms, and 
antitumor mechanisms of influenza viruses and the devel-
opment of influenza vaccines. This article will review and 
discuss the reverse genetic technology of influenza virus and 
its research.

Introduction to influenza virus

Influenza viruses are spherical, and newly isolated viruses 
are generally 80–120 nm in size and consist of mostly fila-
mentous particles up to 4000 nm [9]. The viral genome is 
approximately 13.6 kb and divided into 8 independent frag-
ments of varying sizes. The 8 genome fragments encode 
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the 8 structural proteins (PB1, PB2, PA, HA, NP, NA, M1, 
and M2) and nonstructural proteins (NS1 and NS2) of influ-
enza virus [10] (Fig. 1). Because the nucleoprotein (NP) of 
influenza virus is highly conserved, it can be divided into 
three types: A, B, and C [11]. Influenza A virus is the main 
research object of this article. In addition to the above 10 
essential proteins, the influenza A genome also encodes up 
to 7 nonessential accessory proteins (PB1-F2, N40, PA-X, 
PA-N155, PA-N182, M42, and NS3) [12–15]. Influenza A 
virus contains hemagglutinin (HA) and neuraminidase (NA). 
According to their antigenicity, the virus can be divided into 
18 H subtypes and 11 N subtypes.

Main functional proteins of influenza virus

The influenza virus genome encodes a variety of proteins, 
including proteins that play a decisive role in the replication, 
spread, infection, and pathogenicity of the virus. The polymer-
ase of influenza A and B viruses is a complex of three proteins, 
namely, polymerase basic protein 1 (PB1), polymerase basic 
protein 2 (PB2) and polymerase acidic protein (PA). These 
proteins bind to one end of an antiparallel duplex formed by 
viral RNA and nucleoprotein (NP) and together form a viral 
ribonucleoprotein (vRNP) complex [16–19]. After virus infec-
tion, the vRNP is transported to the host cell nucleus and the 
modified viral RNA produces cRNA and mRNA. The former 

is a template for progeny viral RNA replication, and the latter 
is a template for viral protein translation [20].

After infection by the virus, HA binds to the sialic acid 
receptor on the surface of the host cell and the virus invades 
the cell through receptor-mediated endocytosis. In addition, 
HA will also promote the fusion of the viral capsule and the 
host cell membrane [21–23]. HA will produce the polypeptide 
chain HA0 after translation, which is cleaved by host proteases 
into the HA1 and HA2 subunits, which become active HA 
proteins. HA1 is responsible for binding to the receptor, and 
HA2 is responsible for membrane fusion [24–26]. The main 
function of the NA protein of influenza virus is to cleave sialic 
acid on the surface of host cells or on the surface of newly 
generated virus particles. The NA protein can prevent the 
accumulation of virus particles on the cell surface and pro-
mote the release of new virus particles from the host cell after 
budding [27]. However, studies have shown that the sialidase 
activity of NA protein can also help viruses enter host cells 
[28]. In addition, the ratio of HA to NA on the virus particles 
can hinder viral passage through the receptor-rich mucus layer 
and ultimately affects the ability of the virus to infect host cells 
[29, 30].

The matrix protein 2 (M2) of influenza virus is a multi-
functional modular protein. M2 constitutes the proton channel 
of the virus. The proton channel undergoes a conformational 
change in the acidic environment of intracellular vesicles, 
thus causing the protons in the intracellular vesicles to enter 
the virus particles through the proton channel. This activity 
promotes the fusion of the viral capsule with the intracellular 
vesicle membrane and the release of the vRNP complex into 
the cytoplasm [31, 32]. M2 can also stabilize the pH in the 
cytoplasm, prevent the conformational changes of HA, and 
promote the release of progeny viruses [33].

The matrix protein 1 (M1) of influenza virus is crucial for 
the assembly of virus particles, and M1 is also the main deter-
minant of the shape of the virion [34]. Nonstructural protein 
2 [NS2, also known as nuclear export protein (NEP)] mainly 
mediates the transport of vRNP from the nucleus to the cyto-
plasm. Recent studies have shown that the expression of NS2 
is essential for determining the level of virus replication [35]. 
Nonstructural protein 1 (NS1) is an antagonist of the host’s 
natural immune response induced by the virus [36]. The NS1 
protein can inhibit the production of interferons in the host 
and the establishment of antiviral status. Similarly, NS1 also 
controls the synthesis and splicing of viral RNA, as well as 
restricts the host cell’s mRNA polyadenylation [35].

Life cycle of influenza virus

Influenza virus replication refers to the whole process of 
virus particle invasion into the host cell to the final cellular 
release of the progeny virus, including adsorption, entry, 

Fig. 1   Schematic diagram of the influenza virus structure. HA 
hemagglutinin, NA neuraminidase, M1 matrix protein 1, M2 Matrix 
protein 2, PB1 polymerase basic protein 1, PB2 polymerase basic 
protein 2, NS nonstructural protein, NP Nucleoprotein, PA polymer-
ase acidic protein
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uncoating, gene expression, assembly, and release (Fig. 2). 
Influenza viruses bind to sialic acid-terminating glycan 
receptors on the surface of host cells through HA. The vRNP 
complex is released into the cytoplasm through endocyto-
sis. Low-pH conditions stimulate HA2-mediated membrane 
fusion and activate the M2 proton channel, thus accelerat-
ing the release of vRNP into the host cytoplasm [37]. The 
newly synthesized vRNP interacts with the M1 protein, is 
released outside the nucleus with the participation of the 
NS2 protein, and is incorporated into the progeny virus par-
ticles containing HA, NA and other proteins. The progeny 
viruses are then released outside the host cell through the 
cell membrane [38, 39].

Overview of reverse genetics of viruses

The reverse genetics of viruses is often called viral rescue, 
which is achieved by constructing an infectious clone of the 
virus and manipulating it in vitro at the DNA level to study 
the structure and function of the virus [40, 41]. Infectious 
molecular clones include infectious cDNA and infectious 
in vitro transcripts. To construct infectious cDNA, the cDNA 

fragment of the RNA virus genome is amplified by reverse 
transcription-polymerase chain reaction (RT-PCR), and 
restriction enzyme sites are used to clone it into a suitable 
vector to obtain a full-length cDNA clone of the genome. 
Using this clone to transfect appropriate cells, the full-length 
cDNA is replicated and transcribed, and it produces all the 
components of the virus in the cell and finally packages them 
into infectious virus particles [42, 43] (Fig. 3).

Development of influenza virus reverse 
genetic technology

Viruses can be divided into DNA viruses and RNA viruses 
according to their genome types. RNA viruses can be 
divided into positive-sense RNA viruses and negative-sense 
RNA viruses. When the whole genome RNA of a positive-
sense RNA virus is transfected into eukaryotic cells, its 
RNA can directly serve as mRNA [44, 45]. The genome 
of a negative-sense RNA virus cannot be used directly as a 
template for viral protein translation. To replicate normally, 
RNP complexes must be formed [46].

Fig. 2   Influenza virus infection of host cells. The HA of the influenza 
virus binds to the sialic acid-terminating glycan receptor on the sur-
face of the host cell and enters the host cell through endocytosis. The 

vRNP released by the virus enters the host cell nucleus and produces 
viral mRNA. By translating the newly generated viral protein and the 
progeny vRNP, the progeny virus is synthesized again and released
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In 1976, the first reverse genetic manipulation system 
for DNA viruses was established. Goff et al. successfully 
rescued in vitro DNA containing the artificial mutation 
SV40 [47]. In 1978, Taniguchi et al. established the first 
non-segmented reverse genetic manipulation system for 
positive-sense RNA viruses. The first in vitro rescue of an 
RNA virus, the Qβ phage, was achieved, and the difficulty of 
RNA virus rescue was overcome [48]. It was not until 1989 
that the Palese research team completed the manipulation of 
the genome of a negative-sense RNA virus for the first time, 
which became the starting point of reverse genetic research 
of negative-sense RNA viruses [5]. In 1994, Neumann et al. 
successfully achieved the use of the human RNA polymerase 
I system to transcribe RNA fragments of influenza virus 
in cells, which laid the foundation for the establishment of 
the reverse genetic system of influenza virus [49]. Subse-
quently, the scientists used the T7 RNA polymerase system 
to establish a reverse genetic system for a plasmid-based, 
non-segmented negative-sense rabies virus [50]. In the next 
few years, scientists used similar methods to establish a vari-
ety of reverse genetic systems of non-segmented negative-
sense RNA viruses, such as human respiratory syncytial 
virus, parainfluenza virus, Sendai virus, and rinderpest virus 
[51–54]. Building on the success of these practices, Bridgen 
and Elliott used the T7 RNA polymerase system to establish 
a reverse genetic system for Bunya virus. The Bunya virus 
genome is a negative-sense RNA virus divided into 3 seg-
ments [55].

In 1999, Neumann et al. of the Kawaoka research team 
established for the first time a completely plasmid-based 

reverse genetic system for influenza viruses. This sys-
tem clones the cDNAs of eight kinds of RNA fragments 
of influenza virus into a plasmid vector containing the 
human RNA polymerase I promoter and mouse RNA poly-
merase I terminator one by one. The genes encoding nine 
viral proteins (PB2, PB1, PA, HA, NP, NA, M1, M2, and 
NS2) were cloned into the protein expression vector con-
taining the RNA polymerase II promoter and poly-A sig-
nal one by one. For the first time, this study eliminated the 
large amount of screening processes required for auxiliary 
viruses, which was a large step toward the rescue of influ-
enza viruses in vitro [56]. Since then, Fordor et al. also 
established a reverse genetic system for influenza virus in 
1999. Unlike the 17-plasmid system of Neumann et al. they 
used a 12-plasmid system to rescue influenza virus [57]. 
The so-called 12-plasmid system includes PB2, PB1, PA 
and NP, four RNA polymerase II expression plasmids, and 
eight RNA polymerase I expression plasmids. The cells 
are transfected with these plasmids, which transcribe and 
express the viral genomic RNA and virus-related proteins in 
the cells, thereby producing infectious virus particles. Based 
on the 12-plasmid system, Hoffmann et al. further estab-
lished an 8-plasmid system of influenza virus reverse genetic 
manipulation technology in 2000 [58] (Fig. 4). The system 
further improved the RNA polymerase I system and led to 
the invention of the "bidirectional vector", which indicates 
that the cDNA encoding the influenza virus gene fragment 
is positively inserted between the RNA polymerase II pro-
moter and the poly-A signal, and then the RNA polymerase I 
promoter and terminator sequences are inserted in reverse at 
both ends. This arrangement enables viral RNA replication 
and protein expression on the same template. Among them, 
RNA polymerase I is responsible for transcribing negative-
strand viral RNA and RNA polymerase II is responsible for 
synthesizing positive-strand mRNA, thus reducing the 12 
required plasmids to 8. Current technology is mainly based 
on the 8-plasmid system; however, obtaining viral RNA and 
expressing viral proteins on the same template reduces the 
"elasticity" of the system. As a result, when studying gene 
delivery or viral proteins, if one or more fragments are miss-
ing or if a certain fragment(s) has a lethal mutation, then the 
virus cannot be rescued.

Latest progress of influenza virus reverse 
genetic technology

Based on the 12-plasmid system and the 8-plasmid system, 
Neumann et al. cloned the RNA polymerase I transcription 
units of all 8 gene fragments into one plasmid. The RNA poly-
merase II transcription unit expressing the three polymerase 
proteins PB2, PB1, and PA of the virus was cloned into another 
plasmid. In addition, the RNA polymerase II transcription 

Fig. 3   Process of viral rescue. Viral RNA is extracted and reverse- 
transcribed into RNA viral genomic cDNA by RT-PCR. The cDNA 
is inserted into the vector plasmid, and the recombinant virus is 
obtained by transfecting cells in vitro
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unit expressing the viral nuclear protein NP was cloned into 
a plasmid. With this system, only three plasmids need to be 
transfected to rescue influenza virus. This system can greatly 
improve the efficiency of influenza virus rescue in cell lines 
with low transfection efficiency (such as Vero cells) [59]. Sub-
sequently, Zhang et al. cloned the bidirectional transcription 
unit of all 8 gene fragments of influenza virus into a plasmid. 
Transfecting this plasmid in chicken embryo fibroblasts can 
efficiently rescue influenza viruses [60]. In 2010, Muraki et al. 
established an influenza C virus-like particle (VLP) generation 
system and reverse genetic system [61]. Zhou similarly con-
structed the low-copy plasmid pGJ3C3 in 2011. This plasmid 
can be used to clone other unstable segments of influenza A 
virus and rescue recombinant virus. This technology has pro-
moted basic research and vaccine production of influenza A 
virus [62]. Song et al. constructed a reverse genetic system 
using the Vero cell RNA polymerase I promoter to replace the 
traditional human RNA polymerase I promoter. The results 
showed that the Vero polymerase I promoter transcription level 
in Vero cells and the rescue efficiency of human RNA viruses 
were improved compared with those for the reverse genetic 
system transfection of 293 T cells containing the human poly-
merase I promoter [63]. Subsequently, Chen et al. cloned the 
bidirectional transcription unit of 8 gene fragments of influ-
enza virus into bcmd-RGFlu. After transfection, these frag-
ments can efficiently rescue influenza virus in a variety of cells 
[64]. Although these new attempts have greatly reduced the 
number of plasmids required to rescue influenza virus, the 8 
gene fragments of the virus need to be integrated into one or 
several vectors at the same time, which significantly increases 
the difficulty and complexity of the cloning process (Fig. 5).

Reverse genetic technology use in influenza 
virus pathogenicity research

The application of reverse genetic technology has played an 
important role in the discovery of the factors that determine 
influenza virus pathogenicity. Studies have found that the 
low-pathogenicity avian influenza virus has only one alka-
line arginine at the HA cleavage site and can be cleaved by 
trypsin-like proteases present in the respiratory and diges-
tive tracts; therefore, the virus is generally restricted to 
replication in the respiratory and digestive tracts [65, 66]. 
The highly pathogenic H5 and H7 subtype avian influenza 
viruses have multiple consecutive alkaline amino acids at 
the HA cleavage site that can be cleaved by proteases widely 
present in cells, which potentially leads to systemic infection 
[67]. A reverse genetic system was used to remove multi-
ple basic amino acids from the HA cleavage site of highly 
pathogenic avian influenza virus, and the results showed that 
the virus’s pathogenicity in poultry and mice was reduced 
[68]. During the epidemic of H5N1 avian influenza virus, 
20 amino acids at positions 49 to 68 were deleted from the 
stem of the NA protein. Viruses containing this deletion 
expanded significantly in 2002. By 2007, all H5N1 avian 
influenza viruses had acquired this deletion [69]. After res-
cue of the mutant virus containing this deletion by reverse 
genetic technology, it was found that the NA stem deletion 
virus was significantly more pathogenic than the wild-type 
virus. At the same time, using reverse genetic technology, 
multiple amino acid mutations affecting the pathogenicity 
of influenza virus were found in the NS1 protein [70–72].

Fig. 4   Schematic diagram of 
the influenza virus 8-plasmid 
reverse genetic operation 
process. MDCK and 293 T cells 
are co-transfected with plasmids 
containing 8 influenza virus 
gene fragments. MDCK cells 
are infected to identify whether 
the recombinant influenza virus 
can be successfully rescued. A 
large amount of recombinant 
virus is amplified by infected 
chicken embryos
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Influenza virus reverse genetics research 
for the development of new vaccines

The best method of preventing flu is vaccination. There-
fore, new and more effective influenza vaccines are urgently 
required. The three common forms in global influenza vac-
cine development are inactivated influenza vaccines, recom-
binant influenza vaccines and live attenuated influenza vac-
cines [73]. The recombinant influenza virus constructed by 
plasmid-based reverse genetic technology is an important 
object in the research of recombinant influenza vaccines. 
Single or multiple viral genome mutations contained in this 
form can provide additional research methods for new or 
improved vaccines.

With the development of influenza virus reverse genetic 
technology, inserting foreign epitopes into influenza virus 
protein structural domains to exert a better immune func-
tion has become an extensive research method. The most 
representative influenza virus vaccine vector is the cold-
adapted live attenuated influenza vaccine (LAIV), which 
has been approved for use in many countries [74–76]. The 

phenotype of the LAIV is controlled by multiple mutations 
in the internal protein genes of the donor virus. Therefore, 
the LAIV viral vector is relatively stable and the probabil-
ity of reassortment with wild-type influenza virus is low 
[77, 78]. In addition, recombinant vaccine vectors modi-
fied for influenza virus proteins are also widely used. Vac-
cine vectors targeting HA and NS1 are the most common. 
The stalk domain of the HA protein is relatively conserved 
among different subtypes of influenza viruses; therefore, 
the development of an influenza vaccine against the stalk 
domain of the HA protein is a new approach to influenza 
vaccine development. Studies have confirmed that virus-
like particles composed of the HA protein with the missing 
head and the HA protein stem domain antigen are widely 
effective in clinical trials [79, 80]. In addition, since NS1 
can antagonize the host’s innate immune type I interferon 
(IFN-I) response, a variety of potential vaccine strategies 
have been developed, and they are mainly based on the 
use of modified NS1 protein as a means of virus attenu-
ation [81].

Fig. 5   Influenza virus reverse genetic technology development timeline. The timeline is from 1976 to 2014
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Antitumor research using influenza virus 
reverse genetic technology

Antitumor application of influenza virus

Although influenza virus is a pathogen that endangers 
human health, many studies have found that it has certain 
oncolytic ability as well. In 1993, Takizawa discovered 
that MDCK and HeLa cells cultured in vitro showed a 
series of specific changes in apoptosis after being infected 
with human influenza A virus, and he proposed for the first 
time that influenza virus can induce apoptosis in cultured 
cells in vitro [7]. In 1997, a positive signal of apoptosis 
was observed in the mouse nasal cavity after infection with 
influenza virus, indicating that influenza virus can also 
cause apoptosis in the body [8]. Afterward, an influenza 
virus vector with MAGE-3 constructed by Storbel et al. 
could transfect human dendritic cells (DCs) and highly 
express MAGE-3. The transfected DC phenotype does not 
affect its antigen presentation function and can stimulate 
the generation of MAGE-3-specific cytotoxic T lympho-
cytes (CTLs) [82]. These cells can induce an effective anti-
tumor immune response. Sanda Sturlan et al. constructed 
replication-deficient influenza A virus, induced peripheral 
mononuclear cells to produce IFN-γ, activated CTLs, and 
induced CD8+ immune pathways to kill tumor cells [83]. 
R Weiss constructed an influenza virus vector expressing 
IL-24, which can enhance influenza virus-mediated apop-
tosis. Studies have found that the recombinant virus has 
stronger oncolytic activity than the virus alone and IL-24 
[84]. Recently, Jennifer R. Hamilton et al. inserted anti-
CTLA4 antibodies into the PB1 and PA segments of influ-
enza virus and found that it had good therapeutic effects in 
mice with aggressive B16-F10 melanoma [85].

Apoptosis and influenza virus

Typical features of apoptosis include DNA fragmenta-
tion, phosphatidylserine exposure on the cell membrane, 
plasma membrane deformation and blistering, and apop-
totic body formation. Apoptosis can generally be divided 
into intracellular pathways and extracellular pathways. 
Influenza virus infection is a factor that causes apopto-
sis. It can cause apoptosis through intracellular pathways 
or extracellular pathways [86]. Studies have found that 
the PB1-F2 protein expressed by the influenza virus can 
interact with mitochondria in infected cells, change the 
permeability of the mitochondrial membrane, and accel-
erate the release of cytochrome c and the production of 
apoptotic bodies, thereby internally causing cellular apop-
tosis [87–89]. In addition, after influenza virus infects host 

cells, this protein also promotes the expression of Fas cell 
surface death receptor ligand (Fasl) and tumor necrosis 
factor-related apoptosis-inducing ligand (TRAIL) and 
other death receptor ligands, which externally cause cell 
apoptosis [90, 91].

Immunity and influenza virus

The elimination of the virus by the human immune system 
is an important barrier against influenza. Understanding 
the mechanism of the human body’s response to influenza 
viruses can help transform influenza viruses into ideal onco-
lytic viruses. When the influenza virus infects the human 
body, it is first cleared by the mucus of the respiratory epi-
thelium. After the influenza virus has passed through the 
mucus layer infects immune cells or non-immune cells, 
its viral RNA is recognized as a foreign substance and 
stimulates the body’s secretion of IFN-I, proinflammatory 
cytokines, etc. Additionally, IFN produced by macrophages 
and DCs will promote the expression of hundreds of antiviral 
genes in the surrounding cells of the infected cell [92]. The 
virus protein will then be degraded into peptide fragments 
in antigen-presenting cells (APCs). These peptide fragments 
will be presented to T lymphocytes by MHC class I or class 
II molecules to stimulate the proliferation and differentia-
tion of T lymphocytes into effector T cells and memory T 
cells. Effector T cells are responsible for eliminating infected 
cells and secreting antiviral cytokines. Memory T cells are 
responsible for reimmunization responses [93]. Infected 
cells will also become the target of NK cells. Finally, innate 
immunity, humoral immunity and cellular immunity are 
used to jointly construct the body’s antiviral state.

Antitumor mechanism of influenza virus

After the influenza virus infects tumor cells, several meth-
ods of killing the tumor cells are observed. First, the virus 
can proliferate in the cell and lyse the tumor cells. The 
virus particles released after cell lysis can infect other cells 
again until all the tumor cells are killed [85, 94, 95]. Sec-
ond, influenza viruses express proteins that are cytotoxic 
to tumor cells during the cell replication cycle, and they 
also stimulate the body to produce tumor cell-specific and 
non-specific immune responses [96]. Tumors can escape the 
body’s immunity largely because tumor cells can reduce the 
expression of major histocompatibility antigens and their 
stimulating factors so that the body cannot produce an effec-
tive immune response. An influenza virus constructed by 
reverse genetic technology can express some proteins on 
the surface of tumor cells after infecting the tumor cells, 
thereby stimulating the body’s immune system to recognize 
the tumor cells and generate an immune response against 
them [85, 97] (Fig. 6).
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Insufficient antitumor applications of influenza 
virus

Modified influenza viruses still present certain problems 
when applied for tumor treatment. First, influenza viruses 
can only infect a portion of tumor cells. Therefore, designing 
a virus treatment plan that promotes the killing of adjacent 
uninfected cells will be a key point of influenza virus anti-
tumor treatment. In addition, the safety of influenza viruses 
is also an important consideration. Although influenza virus 
is the most common human virus, from a safety perspective, 
the potential side effects caused by injecting live virus and 
returning non-disease-induced virus strains to a more patho-
genic phenotype are controversial. In addition, due to the 
harsh tumor microenvironment, directly achieving tumor tar-
geting is not always possible. These issues represent future 
challenges for influenza virus antitumor treatment.

Future directions of influenza virus antitumor 
applications

Antitumor research on influenza virus has made great 
progress in recent years with the development of reverse 
genetic technology. First, in terms of tumor immunotherapy, 
multiple recombinant influenza viruses expressing tumor 

necrosis factor and interleukin family members have been 
established, and they have good therapeutic effects on tumor 
models [95, 98–100].

In addition, treating tumors by targeting their own 
immune characteristics represents a new direction for 
recombinant influenza viruses. Tumor antigens need to be 
degraded into short peptides within APCs and then the anti-
gen peptide MHC-TCR complex is formed and recognized 
by T cells to stimulate CTL responses. Therefore, when 
designing a cancer treatment plan, whether it will induce a 
cytotoxic immune response against cancer cells should be 
determined. Tumor-associated antigens (TAAs) are effec-
tive targets for immune response induction. The construc-
tion of an influenza virus vector expressing a TAA through 
reverse genetic technology can effectively induce a specific 
immune response to the TAA, thereby inducing the body’s 
own immune system to target the tumor to achieve treatment 
[96, 101, 102]. DCs are currently the most powerful APCs 
in the body. In recent years, increasing evidence has shown 
that the cellular immunity activated by DCs, especially the 
T cell-mediated CTL response, plays a leading role in the 
body’s antitumor activity [103–105]. Influenza virus vectors 
load foreign gene fragments to infect DCs and induce cel-
lular immune responses. Using DCs to induce CTLs is an 
effective method for tumor immunotherapy. DCs that have 

Fig. 6   Influenza viruses infect tumor cells and elicit an antitu-
mor immune response. Influenza viruses can induce the release of 
DAMPs/PAMPs, type 1 IFNs, viral antigens, and TAAs/neoantigens 

after infecting tumor cells. These cytokines will activate NK cells, 
APCs. and T lymphocytes to strengthen the immune response against 
the tumor and achieve tumor treatment
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been genetically modified to express TAAs can effectively 
induce antitumor immune responses and have potential can-
cer treatment capabilities [96].

In recent years, additional tumor immunotherapy methods 
have been applied, and activated macrophages represent an 
important treatment option. Additionally, with the deepening 
of research on influenza virus targeting of tumors, oncolytic 
activity may be increased. At present, with the continuous 
development of cancer drug research and development, the 
combined use of recombinant viruses and antitumor drugs 
has also become a new antitumor method [106].

Conclusions

In summary, reverse genetic manipulation technology has 
been used to redirect influenza viruses into viral vectors, 
which has good application prospects in clinical treatment 
and vaccine development. The oncolytic properties of influ-
enza virus as well as its gene delivery vector ability can 
be applied to tumor therapy, including tumor vaccines and 
immunotherapy. Although the influenza virus poses a great 
threat to humans and has some problems in its application, 
continuous improvements in its transformation may promote 
the beneficial effects of this virus.
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