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Abstract: This observer study investigates the effect of computerized artificial intelligence (AI)-based
decision support system (CDSS-T) on physicians’ diagnostic accuracy in assessing bladder cancer
treatment response. The performance of 17 observers was evaluated when assessing bladder cancer
treatment response without and with CDSS-T using pre- and post-chemotherapy CTU scans in
123 patients having 157 pre- and post-treatment cancer pairs. The impact of cancer case difficulty,
observers’ clinical experience, institution affiliation, specialty, and the assessment times on the
observers’ diagnostic performance with and without using CDSS-T were analyzed. It was found
that the average performance of the 17 observers was significantly improved (p = 0.002) when aided
by the CDSS-T. The cancer case difficulty, institution affiliation, specialty, and the assessment times
influenced the observers’ performance without CDSS-T. The AI-based decision support system has
the potential to improve the diagnostic accuracy in assessing bladder cancer treatment response and
result in more consistent performance among all physicians.

Keywords: observer study; computer-aided diagnosis; bladder cancer; treatment response

1. Introduction

In 2021, it was estimated that about 83,730 new cases of bladder cancer would be
diagnosed and about 17,200 would die from it in the US. This would account for 0.4% of all
new cancer cases and 2.8% of all cancer deaths [1]. The 5-year relative survival rate was
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96% for in situ stage, 69% for localized stage, 37% for regional stage, and 6% for distant
stage. The 5-year relative survival rate for all SEER stages combined is 77% [1]. Early
diagnosis can improve the survival rate. Neoadjuvant chemotherapy performed prior
to radical cystectomy can improve patient survival rate and decrease the probability of
metastatic disease [2–4]. However, neoadjuvant chemotherapy has toxicities including
neutropenic fever, sepsis, mucositis, nausea, vomiting, malaise, and alopecia [5]. It is of
great importance to evaluate the response of bladder lesions to chemotherapy treatment to
spare the patient the toxicities of further unnecessary chemotherapy or to support surgery
de-escalation [6].

We have developed a computerized artificial intelligence (AI)-based decision support
system for muscle-invasive bladder cancer treatment response assessment (CDSS-T) to
assist physicians to evaluate the response to treatment of these cancers on pre- and post-
treatment CT urography (CTU) scans [7]. It is critical to gain understanding of various
factors that may affect the impact of CDSS-T on physician performance in identifying
bladder cancers with complete response after neoadjuvant chemotherapy through observer
studies that can guide the design of future clinical trials. Patients with complete response
may be considered for organ preservation therapy instead of cystectomy (the removal of the
bladder). Our previous studies showed that CDSS-T can improve physician performance
from a single institution [6,8,9]. The goal of the current study is to further investigate
the impact of CDSS-T on the performance of physicians from different specialties and
different institutions.

2. Materials and Methods
2.1. Data Set

With Institutional Review Board (IRB) approval, we collected the pre- and post-
chemotherapy CTU scans of 123 patients (157 pre- and post-treatment cancer pairs). The
pathological cancer stage after treatment was collected as reference standard for deter-
mining if a patient had complete response to treatment. The reference standard indicated
that 40 out of 157 lesion pairs had complete response (stage T0) after chemotherapy, and
117 lesion pairs had incomplete response (>T0) after chemotherapy. The patient and cancer
characteristics are presented in Table 1.

Table 1. Characteristics of the patients and cancers used in the observer study.

Characteristics Notes Detail Total Number

Patient gender and age
100 males Mean: 63 years

Range: 43–84 years
123 patients

23 females Mean: 63 years
Range: 37–82 years

Average maximum
diameter (mm)

Completely responding cancers
(T0 stage)

Pre-treatment: 30.1
Post-treatment: 14.3

157 cancer pairs
Incompletely responding cancers

(>T0 stage)
Pre-treatment: 43.0
Post-treatment: 31.2

Cancer stage

Pre-treatment Post-treatment

157 cancer pairs

T0 0 40

T1 8 37

T2 76 23

T3 63 38

T4 10 19
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2.2. Computerized AI-Based Decision Support System for Treatment Response Assessment
(CDSS-T)

CDSS-T combined a deep-learning convolutional neural networks (DL-CNN) model
and a radiomics model to estimate the likelihood of response to neoadjuvant chemotherapy
treatment [7]. Each model output a discriminant score for each scan pair. A combined score
was generated by taking the maximum of the two scores [7].

2.3. DL-CNN Assessment Model

Bladder cancers on the CTU images were segmented using the auto-initialized cas-
caded level sets (AL-CALS) system [10]. Multiple regions of interest (ROIs) were extracted
from the segmented tumor slices. The size of the ROIs was 32 × 16 pixels. A hybrid ROI of
32 × 32 pixels was composed using an ROI from the pre-treatment scan and an ROI from
the post-treatment scan of the same tumor. Multiple hybrid ROIs were generated from the
same pre- and post-treatment CTU scan pairs by taking different combinations of the pre-
and post-treatment ROIs [7]. All hybrid ROIs were labeled as a complete responder (T0) or a
non-complete responder (>T0) based on the pathological stage of the cancer after treatment.
The hybrid ROIs were used to train and test the DL-CNN model using a leave-one-case-out
cross-validation scheme. The DL-CNN model was trained with all hybrid ROIs except for
those from the left-out case. The trained DL-CNN model was then applied to the hybrid
ROIs of each left-out test case, and a likelihood score of pathologic T0 disease was output
for each test ROI. The average value of all the hybrid ROIs associated with the CT scan pair
of a specific cancer was the discriminant score for this cancer.

2.4. Radiomics Assessment Model

A radiomics-feature-based analysis was used for this assessment model. Ninety-one
features were extracted from each CTU scan [7]. The chosen features had previously
been demonstrated to be useful in analysis of breast mass [11], lung nodules [12], and
bladder cancer treatment response assessment [7]. For each cancer, the features from the
pre- and post-treatment scan were compared and the percent difference of each radiomics
feature was calculated. To build this model, a two-loop leave-one-case-out cross-validation
scheme [13] was used. For the inner loop, the subset of features was selected, and the
random forest classifier [7] was trained by using a leave-one-case-out scheme within the
training partition. For the outer loop, the trained classifier was applied to the left-out test
case and a discriminant score was generated by the radiomics model. An average of four
features was selected, including two run-length statistics features and two contrast features.

2.5. CAD Score

For each pre-post-treatment scan pair, a combined score was obtained by taking the
larger value of the two discriminant scores generated by the DL-CNN model and the
radiomics model. Receiver operating characteristics (ROC) analysis was performed on
the combined scores to estimate the CDSS-T performance. Linearly scaling the combined
scores generated computer-aided diagnosis (CAD) scores in the range from 1 to 10. Smaller
scores indicated lower probability that the post-treatment lesion had a complete response,
and larger scores indicated higher probability that the post-treatment lesion had a complete
response A curve was fitted to the distribution of the linearly transformed scores for the
cancers in each class, i.e., the stage T0 and the stage > T0 cancers. The area under each fitted
curve was normalized to 1. The CAD score for the cancer being read and the two fitted
curves were displayed to the observers during the CDSS-T assisted reading. The fitted
distributions provided a reference of the likelihood of complete response for the CAD score
(Figure 1d). The CAD scores and the fitted curves were predetermined and were the same
for all observers.
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Figure 1. The graphical user interface for reading with and without our computerized decision
support system (CDSS-T) for bladder cancer treatment response assessment. (a,b) The pre- and
post-treatment CTU scans are shown side-by-side. (c) The observer estimates the treatment response.
(d) The observer is shown the CAD score and the score distribution of the two classes as reference.
(e) The observer may revise their treatment response assessment after considering the CAD score.

2.6. Observer Performance Study

Seventeen physicians from six specialties and four institutions, University of Michigan
(UM), Pennsylvania State University (PSU), University of Iowa (UI), and Tokuda Hospital
(TH), Sofia, provided assessment of response by reading the pair of pre- and post-treatment
CTU for each cancer. The specialty and institution information of observers is presented in
Table 2. A graphical user interface developed for CDSS-T was used to assist physicians to
make the estimations. First, without CDSS-T (Figure 1a,b), the pre- and post-treatment
scans were shown side-by-side. The physician provided the estimation of treatment re-
sponse (Figure 1c), consisting of: (1) percentage response to treatment on a scale of −100%
to +100% using the Response Evaluation Criteria in Solid Tumors (RECIST) criteria [14],
where 0% indicated no change between the pre- and post-treatment scan, −100% indicated
at least doubling of tumor size, and 100% indicated a complete response; (2) tumor response
category (based on the RECIST criteria) including progressive disease, stable disease, partial
response, and complete response [14]; (3) likelihood of T0 stage (complete response) on a
scale of 0 to 100%, where 0 indicated no chance of this post-treatment cancer being at T0
stage and 100% indicated 100% chance of this post-treatment cancer being at T0 stage; (4) a
recommendation for the next treatment procedure including surgery or radiation. Second,
with CDSS-T (Figure 1d), a CAD score along with the CAD score distributions was shown
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to the physician. The physician might revise his/her estimates or leave them unchanged
(Figure 1e). For the analysis of intra-observer variability, a subset (mean N = 51) of the
157 lesion pairs was assessed for the second time by the 17 observers. Note that this subset
or 51 lesions was randomly sampled so that it varied for each observer. The first read of
the subset was called the original evaluation, and the second read of the subset was the
repeated evaluation in the following discussion.

Table 2. Observers of different specialties and from different institutions.

Specialty Observer Number Proficiency
Institution

UM UI PSU TH

Abdominal Radiologist 5 Experienced 4 - - 1
Diagnostic Radiology Resident 4 Inexperienced 4 - - -

Urologist 1 Experienced 1 - - -
Oncologist 5 Experienced 2 2 1 -

Medical Student 1 Inexperienced - - 1 -
Neurology Fellow 1 Inexperienced 1 - - -

UM: University of Michigan, UI: University of Iowa, PSU: Pennsylvania State University, TH: Tokuda Hospi-
tal, Sofia.

2.7. Statistical Analysis

The physicians’ estimates of the likelihood of T0 stage (complete response) were
analyzed with multi-reader, multi-case (MRMC) ROC methodology [15]. The MRMC
analysis tool can provide values of area under curve (AUC) and numerical information
which can be used to plot ROC curves. A p-value of less than 0.05 was considered to
indicate a significant difference.

A number of comparisons were performed, including between observers with different
degrees of clinical experience, observers from different institutions, observers from different
specialties, and between two subsets of cases with different levels of diagnostic difficulty.
The intra-observer variability was estimated from the repeated readings of 51 cases. As
for the degree of experience, the radiologists, oncologists, and urologists were regarded as
experienced physicians in assessing bladder cancer treatment response, and the radiology
residents and the neurology fellow were regarded as inexperienced physicians. Note that
the medical student was also categorized as an “inexperienced physician” for simplicity of
discussion. For each cancer, the standard deviation of the estimates of likelihood of T0 stage
by nine radiologists was used to evaluate the level of difficulty in assessing the response of
the cancer. The assessment was categorized as relatively easy when the standard deviation
was less than 25, and the corresponding scan pair was grouped into the “easy cancer”
subset, or relatively difficult when the standard deviation was larger than 25, and the
corresponding scan pair was grouped into the “difficult cancer” subset. The threshold of
25 was selected by approximately balancing the number of complete responses (T0 after
chemotherapy) in the easy and difficult cancer subsets for the purpose of performing a
reliable ROC analysis [6]. There were 95 pre-post-treatment scan pairs in the easy subset, in
which 77 cancers did not respond completely (>T0) and 18 had a complete response (T0).
The remaining 62 pairs were grouped in the difficult subset, with 40 cancers not responding
completely and 22 with complete response.

The physicians’ estimates of the likelihood of T0 stage of the original and repeated
evaluations were not fully-crossed due to the varied subset for different observers. We
used the iMRMC package [16] for the analysis of the intra-observer variability which can
handle the data and output the AUCs and the statistical significance of the difference in the
AUCs [16]. The Bland–Altman method and the Krippendorff’s alpha method were also
employed to evaluate the intra-observer variability.

The Krippendorff’s alpha method assesses the agreement between two response
outcomes from multiple cases and multiple observers, i.e., inter-observer variability, and
allows for missing responses for the cases. We applied the Krippendorff’s alpha method to
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the estimates of the 17 observers on the 157 cases. Krippendorff suggests 0.8 as a customary
threshold for satisfactory reliability, but if tentative conclusions are acceptable, 0.667 is the
lowest conceivable limit [17].

3. Results
3.1. Overall Results for All Cancers

The AUC of the CDSS-T CAD scores was 0.80. The average ROC curves with and
without CDSS-T aid for all observers together with the individual AUC values with and
without CDSS-T aid for the 17 observers are presented in Figure 2. The individual p values
are presented in Table 3. All observers except #6 had larger AUCs with the CDSS-T aid
(Figure 2), but the improvement reached statistical significance only for 7 of the 17 observers
(p values in Table 3). Observer #9 with CDSS-T aid had a larger AUC (0.81) than CDSS-T
alone (0.80), but the difference did not achieve significance (p = 0.776). The average AUC
over all observers was 0.73 without CDSS-T and improved to 0.77 with CDSS-T. The
difference was statistically significant (p = 0.002).
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Figure 2. Results of the observer performance study. (a) AUCs of the 17 observers with and without
CDSS-T. The performance of the CDSS-T system is shown with the dashed line. The performance of
all but one observer (#6) increased with using CDSS-T. (b) Average ROC curves with and without
CDSS-T.

Table 3. AUCs of observers with and without CDSS-T. The standard deviation of the AUCs of
17 observers was calculated for both the without CDSS-T and with CDSS-T conditions.

Observer # AUC without CDSS-T AUC with CDSS-T Individual p Value

1 0.74 0.77 0.155
2 0.75 0.77 0.260
3 0.73 0.76 0.013 *
4 0.74 0.77 0.128
5 0.76 0.80 0.010 *
6 0.74 0.74 0.861
7 0.76 0.77 0.541
8 0.73 0.75 0.135
9 0.78 0.81 0.191
10 0.74 0.76 0.244
11 0.67 0.73 0.014 *
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Table 3. Cont.

Observer # AUC without CDSS-T AUC with CDSS-T Individual p Value

12 0.75 0.79 0.095
13 0.72 0.77 0.027 *
14 0.65 0.76 0.020 *
15 0.67 0.78 0.003 *
16 0.76 0.79 0.026 *
17 0.73 0.76 0.083

Mean AUC 0.73 0.77 0.002 *,$

Standard Deviation 0.04 0.02 -
* Statistically significant difference at p < 0.05 level. $ Obtained from MRMC analysis.

3.2. Easy vs. Difficult Cancer Subsets

The AUC of the CDSS-T was 0.88 for the easy subset, and 0.67 for the difficult subset.
The performance comparisons of observers for the easy subset and the difficult subset are
shown in Table 4. All 17 physicians, and the 9 radiologists, achieved statistically significant
improvement for the easy subset (p < 0.035), but had no significant improvement for the
difficult subset (p > 0.148). The five oncologists had significant improvement for the difficult
subset (p = 0.009), but a borderline significance for the easy subset (p = 0.051).

Table 4. Performance comparisons with and without CDSS-T for easy and difficult subsets.

AUC of CDSS-T Average AUC
without CDSS-T

Average AUC
with CDSS-T p Value # of Physicians

Easy Subset 0.88 0.80 0.84 0.016 * 17 physicians
Difficult Subset 0.67 0.58 0.62 0.148

Easy Subset 0.88 0.83 0.85 0.033 * 9 radiologists
Difficult Subset 0.67 0.59 0.61 0.379

Easy Subset 0.88 0.78 0.84 0.051 5 oncologists
Difficult Subset 0.67 0.57 0.63 0.009 *

* Statistically significant difference at p < 0.05 level.

3.3. Experienced vs. Inexperienced Observers

The performance comparisons of experienced and inexperienced physicians are shown
in Table 5. We can see there was no observable difference between their performances.
The level of statistical significance of the inexperienced radiologists was slightly higher
(p = 0.007) after using CDSS-T compared to that of experienced radiologists (p = 0.06). The
use of CDSS-T resulted in more consistent performance among all subgroups of physicians
(all AUC = 0.77).

Table 5. Performance comparison between experienced and inexperienced observers for the total of
157 lesion pairs.

AUC of CDSS-T Average AUC
without CDSS-T

Average AUC
with CDSS-T p Value # of Physicians

Experienced Physicians

0.80

0.73 0.77 0.007 * 5 abdominal radiologists,
1 urologist, and 5 oncologists

Inexperienced Physicians 0.73 0.77 0.019 * 5 residents and 1 medical student

Experienced Radiologists 0.75 0.77 0.060 5 abdominal radiologists

Inexperienced Radiologists 0.74 0.77 0.007 * 4 radiology residents

UM Experienced Radiologists 0.75 0.77 0.018 * 4 abdominal radiologists from UM

UM Inexperienced Radiologists 0.74 0.77 0.007 * 4 radiology residents from UM

* Statistically significant difference at p < 0.05 level.
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3.4. Multi-Specialty Observers

The average AUC values and the corresponding ROC curves for the physicians from
the different specialties are shown in Table 6 and Figure 3, respectively. Radiologists,
oncologists, and the medical student had statistically significant improvement after using
CDSS-T (p < 0.020). The improvement gained by the urologist and the neurology fellow
did not reach statistical significance (p = 0.244 and p = 0.083, respectively). Note that the
number of observers in each group was different so that the level of significance should
not be directly compared. There was a difference between the average AUCs of observers
from different specialties without CDSS-T. However, with CDSS-T the performance was
improved to a similar level.

Table 6. Performance comparison between observers from different specialties for the total of 157
lesion pairs.

AUC of CDSS-T Average AUC
without CDSS-T

Average AUC
with CDSS-T p Value # of Physicians

Radiologists

0.80

0.75 0.77 0.014 * 9

Urologist 0.74 0.76 0.244 1

Oncologists 0.71 0.77 0.011 * 5

Medical Student 0.65 0.76 0.020 * 1

Neurology Fellow 0.73 0.76 0.083 1

* Statistically significant difference at p < 0.05 level.
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3.5. Multi-Institution Observers

The average AUC values and the corresponding ROC curves of observers from dif-
ferent institutions are shown in Table 7 and Figure 4, respectively. The UM physicians (all
specialties) and the PSU oncologist achieved statistically significant improvement with
CDSS-T. Again, note the varied number of observers in the different groups so that the
level of significance should not be compared directly.
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Table 7. Performance comparison between observers from different institutions for the total of
157 lesion pairs.

AUC of CDSS-T Average AUC
without CDSS-T

Average AUC
with CDSS-T p Value # of Physicians

UM Physicians

0.8

0.74 0.77 0.002 * 12

TH Physician 0.74 0.74 0.861 1

PSU Physicians 0.69 0.76 0.117 2

UI Physicians 0.72 0.78 0.326 2

UM Oncologists 0.71 0.76 0.071 2

PSU Oncologist 0.72 0.77 0.027 * 1

UI Oncologists 0.72 0.78 0.326 2

* Statistically significant difference at p < 0.05 level.
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3.6. Inter- and Intra-Observer Variability

The individual AUC values and the standard deviations of 17 observers for the original
and the repeated evaluation are presented in Table 8. For the original evaluation, the
average AUC increased significantly from 0.75 (without CDSS-T aid) to 0.81 (with CDSS-T
aid) (p = 0.003). For the repeated evaluation, the average AUC also increased significantly
from 0.77 (without CDSS-T aid) to 0.81 (with CDSS-T aid), (p = 0.006). There was no
significant difference between the average AUC values for the original and repeated
evaluations without CDSS-T (p = 0.217) or for the evaluations with CDSS-T (p = 0.692). The
standard deviation of the observers’ results was slightly smaller with CDSS-T.

3.6.1. Bland–Altman Analysis

The standard deviation of the original and repeated evaluations of each observer was
calculated by the Bland–Altman method, without and with CDSS-T aid, respectively. The
mean value of the standard deviations for the 17 observers was 25.47 without CDSS-T and
was reduced to 19.72 with CDSS-T.
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Table 8. Diagnostic performance in terms of AUC of physicians without and with the CDSS-T aid
for the assessment of complete response to neoadjuvant chemotherapy on the first 51 cases in each
observer’s individually randomized reading list. The iMRMC package provided standard deviation
value along with each AUC. The mean and standard deviations of AUC values for the 17 observers
with and without CDSS-T for both the original and the repeated evaluations were calculated.

Observer #
AUC Original Evaluation AUC Repeated Evaluation

Without CDSS-T With CDSS-T Without CDSS-T With CDSS-T

1 0.75 ± 0.08 0.76 ± 0.08 0.8 ± 0.07 0.79 ± 0.07

2 0.88 ± 0.05 0.91 ± 0.04 0.88 ± 0.05 0.92 ± 0.03

3 0.65 ± 0.10 0.72 ± 0.10 0.67 ± 0.10 0.72 ± 0.09

4 0.71 ± 0.09 0.71 ± 0.09 0.69 ± 0.09 0.71 ± 0.08

5 0.70 ± 0.07 0.78 ± 0.06 0.82 ± 0.06 0.83 ± 0.05

6 0.82 ± 0.07 0.85 ± 0.07 0.81 ± 0.07 0.81 ± 0.07

7 0.75 ± 0.08 0.77 ± 0.08 0.84 ± 0.05 0.87 ± 0.05

8 0.74 ± 0.09 0.77 ± 0.08 0.81 ± 0.08 0.8 ± 0.08

9 0.81 ± 0.06 0.85 ± 0.05 0.8 ± 0.06 0.85 ± 0.05

10 0.79 ± 0.08 0.84 ± 0.07 0.8 ± 0.07 0.87 ± 0.07

11 0.65 ± 0.08 0.75 ± 0.08 0.73 ± 0.07 0.78 ± 0.07

12 0.81 ± 0.07 0.85 ± 0.07 0.75 ± 0.08 0.76 ± 0.07

13 0.81 ± 0.06 0.89 ± 0.04 0.77 ± 0.07 0.83 ± 0.06

14 0.59 ± 0.10 0.82 ± 0.07 0.69 ± 0.10 0.81 ± 0.07

15 0.73 ± 0.07 0.88 ± 0.06 0.64 ± 0.10 0.83 ± 0.07

16 0.86 ± 0.05 0.93 ± 0.03 0.87 ± 0.05 0.87 ± 0.05

17 0.63 ± 0.08 0.69 ± 0.08 0.68 ± 0.10 0.76 ± 0.09

Mean AUC 0.75 0.81 0.77 0.81

Standard Deviation 0.08 0.07 0.07 0.06

Statistical significance in the difference of AUC:

AUC (orig.without) versus AUC (orig.with): p = 0.003 *

AUC (repeat.without) versus AUC (repeat.with): p = 0.006 *

AUC (orig.without) versus AUC (repeat.without): p = 0.217

AUC (orig.with) versus AUC (repeat.with): p = 0.692

* Statistically significant difference at p < 0.05 level.

3.6.2. Krippendorff’s Alpha Method

The agreement between the original and repeated evaluations of each of the observers
without and with CDSS-T aid was calculated by the Krippendorff’s alpha method. The
average of the 17 Krippendorff’s alpha reliability coefficients was 0.69 without CDSS-T and
increased to 0.81 with CDSS-T.

The Krippendorff’s alpha reliability coefficient of the 17 observers for the whole data
set (N = 157) was 0.56 without CDSS-T and increased to 0.67 with CDSS-T.

4. Discussion

For the overall performance evaluation (17 observers and 157 cancers), the results
showed that the CDSS-T aid can improve the observers’ performance significantly in
assessing bladder treatment response. The diagnostic difficulty of cancer cases can have an
impact on the performance as seen in Table 4. However, the increases in AUC between the
easy and difficult subsets were essentially equal for most of the groups in Table 4, except
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for the group of UM radiologists that showed a 0.01 larger improvement for the easy subset
than the difficult subset. While the other groups had significant improvement for easy
subset but not for difficult subset, the five oncologists only had significant improvement
for difficult subset, from AUC of 0.57 without CDSS-T to 0.63 with CDSS-T. This happened
because only oncologists reached AUC of 0.63 with CDSS-T which was the best, while the
other two groups were 0.60~0.62, and it increased from AUC of 0.57 which was the lowest
AUC score without CDSS-T among the four groups. The level of physician experience
only contributed to a small difference in the level of improvement (a difference of 0.01)
in assessing cancer treatment response. Without CDSS-T, it may be expected that the
performance of experienced observers would be better than that of inexperienced observers,
as can be observed from the slightly higher AUCs of 0.74 and 0.75 in Table 5. With CDSS-T,
the experienced and inexperienced observers reached the same average AUC level (0.77).
The smaller gain in AUC by the experienced observers may reflect that they were more
confident and persistent in their own assessments. More importantly, the CDSS-T aid was
able to assist the inexperienced observers in making diagnosis at a level comparable to that
of experienced observers.

The performance of observers from the different specialties without CDSS-T did
differ. In this study, on average, oncologists had a larger gain in AUC than radiologists
with the CDSS-T aid, suggesting that CDSS-T could be a potentially useful tool for non-
radiology physicians. There was some difference in the improvement of observers from
different institutions.

For both the original and repeated evaluations, the CDSS-T aid can improve the
observers’ performance significantly. The CDSS-T system can also narrow the performance
gap between observers, as demonstrated by the Krippendorff’s alpha reliability coefficients
of the 17 observers without and with CDSS-T. With CDSS-T aid, the observers had less
variability and better agreement for both the original and repeated evaluations.

There were limitations in our study. In some of the experiments, the lack of statis-
tical significance may be due to the small number of observers. For example, we had
only one urologist and one neurology resident, and their individual performance was
not significantly improved with the CDSS-T aid although they achieved substantial im-
provement. Additionally, the number of cases was relatively small. Leave-one-case-out
cross-validation method was used to generate the CAD score. The AUC of the CDSS-T
system was 0.80 which was higher than the majority of the AUCs of the observers. Ideally,
the system would be evaluated on an independent test set [18]. Nonetheless, the study
did demonstrate that, if a CDSS-T aid could achieve this level of performance in the clin-
ical cases, it would have the potential of improving the treatment response assessment
of bladder cancer for a wide range of physicians of different specialties, varied levels of
experience, and from different institutions.

In our future work, we will enlarge the dataset and use an independent dataset for both
the CDSS-T system evaluation and the observer study. We will improve the performance
of the CDSS-T system by integrating radiomics with clinical data and molecular and
histopathology biomarkers and by incorporating different deep learning models. We
will also perform observer study on a larger scale to further test the effectiveness of the
computerized decision support system.

Although the results of this observer study shows that our CDSS-T system is promising
as an aid to physicians for bladder cancer treatment response assessment, extensive work is
still required before translation to the clinic. First, further improvement of its performance is
needed as described above. Second, the processing pipeline has to be automated, including
the AL-CALS system for auto tumor segmentation [10] and radiomic feature extraction.
Third, the CDSS-T system will need to undergo rigorous validation of its generalizability
with a wide range of patient cases from multiple sites. Finally, well-controlled clinical
trial should be conducted by incorporating it into a real-world workflow to evaluate its
effectiveness and efficiency as a preparatory step before clinical translation.
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5. Conclusions

In conclusion, our study demonstrated that the computerized decision support system
(CDSS-T) has the potential to improve the diagnostic accuracy in assessing the complete
response of muscle-invasive bladder cancer to neoadjuvant chemotherapy prior to radical
cystectomy. The use of CDSS-T aid has resulted in improved and more consistent diagnostic
performance among the physicians from multiple institutions and multiple specialties.
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