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Endothelial barrier integrity is required for maintaining vascular homeostasis and fluid balance between
the circulation and surrounding tissues and for preventing the development of vascular disease. Despite
comprehensive understanding of the molecular mechanisms and signaling pathways that mediate
endothelial injury, the regulatory mechanisms responsible for endothelial regeneration and vascular
repair are incompletely understood and constitute an emerging area of research. Endogenous and
exogenous reparative mechanisms serve to reverse vascular damage and restore endothelial barrier
function through regeneration of a functional endothelium and re-engagement of endothelial junc-
tions. In this review, mechanisms that contribute to endothelial regeneration and vascular repair are
described. Targeting these mechanisms has the potential to improve outcome in diseases that are
characterized by vascular injury, such as atherosclerosis, restenosis, peripheral vascular disease, sepsis,
and acute respiratory distress syndrome. Future studies to further improve current understanding of the
mechanisms that control endothelial regeneration and vascular repair are also highlighted.

(Am J Pathol 2021, 191: 52—65; https://doi.org/10.1016/j.ajpath.2020.10.001)

Endothelial cells (ECs) line the inner wall of blood vessels
and form a semipermeable barrier, which regulates the flux
of fluid, proteins, and blood cells across the vascular wall
into parenchymal tissue and maintains an antithrombotic
and anti-inflammatory state of the microvascular bed.'*
Endothelial injury leads to complications associated with
inflammation, including increased vascular permeability,
transmigration of inflammatory cells, exit of erythrocytes,
tissue edema, and microthrombosis.> Endothelial barrier
dysfunction is a key initiating event of various vascular
diseases, including atherosclerosis and in-stent restenosis.’
Evidence from humans and animals has demonstrated the
central role of endothelial leakage in determining the
outcome of vascular diseases, including sepsis-induced
lung injury.” '” A better mechanistic understanding of
endothelial regeneration and vascular repair is therefore of
pivotal importance in the development of novel therapeutic

strategies to promote endothelial integrity and vascular
health.

After endothelial injury, the vascular repair process in-
volves restoration of a functional endothelial monolayer (ie,
endothelial regeneration) and reestablishment of the endo-
thelial junctions to reform a semipermeable barrier
(Figure 1). Endothelial regeneration may involve resident
ECs themselves (ie, endogenous) and/or cells other than the
resident EC population, such as the circulating stem/pro-
genitor cells (ie, exogenous). Mechanisms that regulate
endothelial barrier development and injurious junction
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Figure 1  Processes of endothelial regeneration and
vascular repair. Endothelial injury induced by inflamma-
tory or mechanical stimuli as well as risk factors are
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characterized by endothelial cell (EC) death and/or
disruption of endothelial cell-cell junctions, leading to
increases in vascular permeability. The vascular repair
process involves restoration of a functional endothelial
monolayer (ie, endothelial regeneration) and reannealing
of the endothelial junctions to restore a semipermeable
barrier. Endothelial regeneration is primarily attributable
to migration and proliferation of resident ECs. Evidence of
bone marrow—derived stem/progenitor cell engraftment
is limited (dashed line), but these cells can contribute to
endothelial regeneration in a paracrine manner through
the release of regenerative/reparative factors.

@ Stem/Progenitor Cells

leakage have been reviewed thoroughly by others.'' The
current review describes the cellular and molecular mecha-
nisms that control endothelial regeneration and recovery of
endothelial barrier function after injury. Major unanswered
research questions pertaining to endothelial regeneration
and vascular repair are identified herein, and future studies
that could improve understanding of regenerative and
reparative endothelial signaling are discussed.

Cellular Sources of Endothelial Regeneration

Circulating Cells Fail to Contribute Directly to
Endothelial Regeneration

The process of endothelial regeneration is thought to
involve resident EC migration and proliferation and/or
recruitment of circulating stem/endothelial progenitor cells
(EPCs) that differentiate to ECs. Since the identification of
circulating EPCs derived from the bone marrow (BM),]2
investigating the role of EPCs in endothelial regeneration
and vascular repair has become an active area of
research.'” "7 Studies have found that some circulating cells
express the same surface markers and exhibit some prop-
erties in vitro similar to mature ECs.'®'” These studies
indicate that circulating stem/progenitor cells may engraft
into and function to regenerate the damaged endothelium.
However, mounting evidence indicates that circulating
EPCs (most likely monocytic) do not directly contribute to
endothelial regeneration by forming part of the regenerating
endothelium. Using BM cell transplantation and an EC-
specific reporter, Ohle et al'® revealed a rare population of
BM-derived cells (CD45/CD317/CD144") in recipient
human lungs at 1 year after transplantation. However, these
cells were not found in the anatomic compartment of the
pulmonary vascular endothelium, indicating no involvement
in endothelium maintenance. Furthermore, the study found
no contribution of BM-derived cells to the endothelium of
the adult lung, heart, liver, pancreas, or kidney after
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hyperoxic injury and recovery. In a study of lipopolysac-
charide (LPS)—induced lung injury in mice, Kawasaki
et al'” found that pulmonary EC number markedly de-
creases at 1 day after LPS administration but returns to
baseline by day 7. Subsequent studies with green fluorescent
protein (GFP)—positive BM chimera mice revealed only a
limited amount (approximately 2%) of engraftment of BM-
derived ECs. However, GFP™ ECs do not proliferate with
minimal changes of total GFP™ ECs, which in fact decrease
approximately 0.5% from 2% during the recovery from
LPS-induced injury. Studies with direct GFP™ BM cell
transplantation without irradiation also found that BM
GFP™" cells hardly engrafted to pulmonary vascular endo-
thelium or proliferated during the regenerative process. The
total number of circulating EPCs (Flk1/KDR/CD133" or
FIk1/KDR"/CD347") is below the basal levels by day 7 after
lung injury, indicating no engraftment to the injured lung
endothelium.'” Hagensen et al”’ also attempted to determine
the role of circulating cells in endothelial regeneration.
Wire-injured carotid artery segments from wild-type mice
were transplanted into Tie2-GFP mice, demonstrating that
the neoendothelium was negative for GFP and suggesting
that circulating cells, including BM-derived EPCs, do not
directly engraft to the injured endothelium to form a part of
the regenerated endothelium. Using pairs of genetically
marked parabiotic mice with a shared anastomosed circu-
latory system, Purhonen et al’' also demonstrated that BM-
derived circulating endothelial precursors do not contribute
to endothelial regeneration.

Intriguingly, Singhal et al”® provided evidence of the
contribution of BM-derived circulating cells to vascular
repair in a murine hepatectomy model, but these cells did
not directly contribute to endothelial regeneration by
forming the regenerating endothelial layer. Using a partial
hepatectomy model as well as chronic liver damage models
where the liver vascular endothelium remains intact, Sin-
ghal et al’” observed no BM-derived cell incorporation into
the new vessels. After irradiation-induced EC damage,
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BM-derived mononuclear cells were recruited and incor-
porated into the vasculature, but these cells failed to
differentiate to ECs. Together, the recent studies using
genetic lineage tracing and experimental parabiosis as well
as advanced imaging techniques provide convincing evi-
dence that BM-derived cells and circulating EPCs are not
the major source of ECs that make up the regenerating
endothelium. Nevertheless, endothelial regeneration and
vascular repair seems to benefit from factors released from
circulating progenitor cells, and such factors could play a
role in these regenerative and reparative process (Figure 1).
These exogeneous paracrine mechanisms are described
later in the article.

Regeneration of the Endothelium by Tissue Resident
ECs

To gain insights into the role of tissue resident ECs in the
mechanism of endothelial regeneration, approaches such as
genetic lineage tracing have been used. Using Tie2Cre-GFP
mice, Itoh et al*® found that recovery of the EC-denuded
middle cerebral artery by photochemical injury required a
combination of resident EC elongation and migration from
both ends of the injury site and resident EC proliferation,
without observing involvement of exogenous progenitor
cells. Their findings were further supported by a mouse
model of aortic EC injury induced by compression clamping
and a genetic lineage tracing (Cdh5Cre-ERT2) approach.”
In those studies, McDonald et al** found that regenerating
ECs arose from sites immediately adjacent to the site of
injury with no contribution from circulating cells. These
authors also found that the regenerative ECs [80% of which
are Cdh5™/activating transcription factor 3 (Atf3")] altered
their transcriptional profile and acquired significant prolif-
erative potential. The process relies on activation of key
stress response genes, particularly ATF3. They also found
that the regenerative response is significantly impaired in
older mice in which levels of A#3 decrease. Regarding the
contribution of resident ECs to endothelial regeneration in
the murine liver, Singhal et al** found that regeneration was
mediated solely by resident ECs (Cdh5Cre-ERT2—mediated
labeling) when resident ECs were intact after partial hepa-
tectomy or carbon tetrachloride—induced chronic damage or
adenoviral infection. When resident ECs were damaged via
irradiation, BM-derived cells were recruited and incorpo-
rated into the injured vasculature, but these cells failed to
differentiate to ECs. A recent study”” using genetic lineage
tracing with Cre recombinase expression driven by the 5’
endothelial enhancer of the stem cell leukemia locus
(EndoSCL-CreERT2) demonstrated that the resident EC
population decreases after inflammatory lung injury in mice,
then recovers to a level similar to that found at baseline.
This study also identified an increase in lung EC prolifera-
tion during recovery from sepsis challenge. Thus, lung
endothelial regeneration is mediated by tissue-resident EC
proliferation after inflammatory vascular injury.” These
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studies together provide strong evidence that the tissue-
resident EC population is the major source of regenerating
ECs during endothelial regeneration (Figure 1), but the
specific main driving mechanisms might be distinct in large
versus small vessels and distinct in different organs, which
will be discussed below.

Specialized Tissue-Resident ECs Responsible for
Endothelial Regeneration

Heterogeneity is a characteristic feature of ECs.”>”” Recent

studies have tried to identify and define potential specialized
tissue-resident ECs responsible for endothelial regeneration.
In a study mentioned above, Kawasaki et al'® found that a
subpopulation of lung resident ECs (CD34 "/Flk-1/KDR*/c-
kit") with progenitor cell characteristics is largely respon-
sible for lung endothelial regeneration after acute lung
injury in mice. Experiments using BM chimeric mice
revealed that most of the regenerating pulmonary vascular
ECs are tissue-resident cells, whereas BM-derived cells
barely engraft as pulmonary vascular ECs. The regenerating
pulmonary vascular ECs are characterized by high colony-
forming and vasculogenic capacities with high expression
of CD34, Flk-1/KDR, and c-kit and low expression of
Prom1/CD133 on the cell surface when compared with
nonproliferating pulmonary vascular ECs. In a study by
Wakabayashi et al,”® a subpopulation of CD157-expressing
regenerative tissue-resident endothelial stem cells was
identified in the arteries and veins but not capillaries of
numerous mouse organs, including liver, lung, heart, skel-
etal muscle, skin, retina, and brain. These cells were able to
regenerate entire vasculature structures after injury and
maintain large vessels in the healthy liver for >12 months.
As discussed above, McDonald et al>* identified two sub-
populations of resident ECs that contribute to endothelial
regeneration in the injured aortic endothelium, and the
Cdh5"/Atf3" subpopulation is the dominant subpopulation
(approximately  80%) responsible for endothelial
regeneration.

These studies have defined the predominant role of
resident endothelial cell proliferation in the mechanisms of
endothelial regeneration. Genetic lineage tracing studies
have found that >95% of the regenerative ECs are derived
from resident ECs. Both BM-derived and circulating pro-
genitor cells rarely engraft and differentiate into ECs. The
relative contribution of the cells other than resident ECs
should be defined by genetic lineage tracing. In addition,
there is an interesting subpopulation called mesoangio-
blasts. These vessel-associated multipotent cells often
express endothelial and/or pericyte markers, such as
platelet-derived growth factor receptor , CD271, CD73,
EMCN, and delta-like 1 (DLK1),””*" and are able to form
vessel-like structures.”’ Although the contribution of
mesoangioblasts to cardiac regeneration has been well
studied,’**? the role of mesoangioblasts in endothelial
regeneration and vascular repair remains unclear.
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Transcription Factors That Mediate Endothelial
Regeneration

FoxM1

FoxM1 is a member of the mammalian forkhead box family
of transcription factors that share homology in the winged
helix or forkhead DNA binding domain.”” FoxM1 expres-
sion is markedly induced in lung ECs in the recovery phase
but not in the injury phase after endotoxemia.” The role of
this transcription factor in the recovery of the pulmonary
endothelium after injury has been investigated using mice
that lack endothelial FoxM1.” EC-specific FoxmI knockout
mice exhibited impaired EC proliferation and persistent in-
creases in lung vascular permeability despite a similar de-
gree of peak injury compared with that seen in wild-type
mice. Overexpression of FoxM1 enhanced endothelial pro-
liferation and thus facilitated the recovery of endothelial
barrier integrity and promoted survival.”*

HIF-1o

Hypoxia-inducible factors (HIFs) are critical mediators of the
adaptive response to hypoxia and ischemia. These hetero-
dimeric proteins consist of a constitutively expressed 3-sub-
unit and an oxygen-labile o-subunit that has three isoforms
(HIF-10, HIF-20, and HIF-3¢).”-*° Huang et al’’ found that
HIF-1o but not HIF-2¢ is rapidly induced and stabilized in
murine pulmonary vascular ECs after sepsis challenge. Mice
with EC-specific disruption of Hifla exhibited impaired lung
endothelial regeneration and vascular repair in contrast to
wild-type mice, despite similar levels of peak lung injury.
Forced expression of FoxM1 in lung ECs of conditional Hifla
knockout mice normalized EC proliferation and vascular
repair, indicating that endothelial HIF-1a is required for
endothelial regeneration and vascular repair via FoxMI1-
mediated EC proliferation after sepsis-induced lung injury.

Sox17

Sox17 is a member of the Sry-related high-mobility group
domain family F (SoxF) transcription factors and a key
developmental regulator of endothelial and hematopoietic
lineages.”® After sepsis challenge in mice, Sox17 is markedly
induced in pulmonary vascular ECs in as little as 6 hours.”
EC-specific deletion of Sox!7 resulted in decreased EC pro-
liferation and a persistent increase in pulmonary vascular
permeability in response to endotoxemia. Conversely, over-
expression of Sox17 in lung ECs enhanced lung EC prolif-
eration and regeneration and promoted survival. Promoter
analysis identified Sox 17 as a transcriptional target of HIF-1a..

Atf3

In the regenerating endothelium of large murine blood
vessels, the stress-inducible transcription factor, ATF3, is a
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key transcription factor.”* ATF3 is a member of the ATF/
CREB family of transcription factors involved in many
human diseases, including cancer and atherosclerosis.>***’
ATF3 is highly expressed in proliferating ECs after me-
chanical pressure injury of the murine aortic endothelium
imposed by a clamp.”* Global A7f3 knockout mice have a
significant reduction in EC proliferative capacity and
defective endothelial regeneration, resulting in impaired
wound closure after mechanical pressure—induced injury of
the aortic endothelium.

Signaling Pathways Responsible for Endothelial
Regeneration and Vascular Repair

P110+yPI3K Signaling

Huang et al'” found that endothelial FoxM1 induction after
sepsis-induced lung injury in mice was mediated by the G-
coupled protein receptor (GPCR)—dependent p110y iso-
form of phosphoinositide 3-kinase (PI3K). Global Pik3cg
knockout mice had defective pulmonary endothelial prolif-
eration and persistent inflammatory injury after sepsis
challenge despite similar levels of peak lung injury. Resto-
ration of EC-specific FoxM1 expression in Pik3cg global
knockout mice promoted EC regeneration and normalized
the repair process. Furthermore, Huang et al'’ observed
diminished expression of p110y in pulmonary vascular ECs
taken from patients with acute respiratory distress syndrome
(ARDS). The authors also found that this regenerative
pathway is not limited to the pulmonary vasculature but is
also operative in the systemic vasculature. Defective
vascular repair was also observed in the cremaster muscle
venules in Pik3cg-null mice, which was normalized in
Pik3cg-null mice with transgenic expression of FoxMI.
Mechanistically, p1 10y induced FoxO phosphorylation and
translocation out of the nucleus, which resulted in FoxM1
induction. The study by Huang et al'’ further found evi-
dence that stromal cell—derived factor 1 is a possible up-
stream GPCR-mediated ligand responsible for pl10y
activation after sepsis challenge. These studies found the
crucial role of the endogenous EC-specific pl10yPI3K-
FoxM1 signaling axis in endothelial regeneration and
vascular repair afer inflammatory injury.

miRNA-126 Signaling

The autocrine and paracrine roles of miRNAs in EC
regeneration by resident ECs have also been studied.
Schober et al*' found that EC recovery after denudation was
impaired by lack of miRNA-126-5p in global knockout
mice, which reduced EC proliferation through activation of
the Notchl inhibitor, DIkl homolog. Down-regulation of
miR-126-5p by disturbed flow abrogated EC proliferation at
athero-prone sites in response to hyperlipidemic stress
through up-regulation of DIkl expression, whedreas
administration of miR-126-5p rescued EC proliferation at
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athero-prone sites and limited atherosclerosis. On the other
hand, Jansen et al*® found that coronary artery ECs can
promote EC repair in mice through microparticle-mediated
transfer of miRNA-126, which increases EC migration and
proliferation. The miR-126 from damaged ECs was ac-
quired by recipient human coronary artery ECs via endo-
thelial microparticles and functionally regulated the
expression of the target protein sprout-related EVHI
domain-containing protein 1 (SPREDI). Knockdown of
miR-126 in EC microparticles abrogated the EC
microparticle—mediated effects on human coronary artery
EC migration and proliferation. Intriguingly, miR-126
expression was reduced in circulating microparticles from
patients with diabetes.”” In a separate study, miR-126
enhanced the angiogenic actions of vascular endothelial
growth factor (VEGF) and fibroblast growth factor and
promoted neovessel formation by suppressing the expres-
sion of SPREDI in mice, which reduces EC migration and
proliferation by inhibiting Ras/mitogen-activated protein
kinase signaling in vitro."

Notch1 Signaling

As described above, miRNAI26-regulated DIkl inhibits
endothelial proliferation and regeneration.’' Recent studies
have also revealed that discrete types of non-ECs can drive
EC regeneration. In a study using smooth muscle cell
(SMC)—EC co-cultures, researchers have found that SMC-
EC contact is required for the activation of Notchl by bone
morphogenic protein receptor 2 (BMPR2) in both ECs and
SMCs and for EC regeneration after wire-induced carotid
artery injury in mice.”* BMPR2 is necessary to produce
collagen IV, which in turn activates integrin-linked kinase
directing phospho-c-Jun N-terminal kinase to the EC
membrane, which stabilizes presenilinl and releases notchl
intracellular domain(NICD1). NICD1 increased mitochon-
drial mass and induced expression of 6-phosphofructo-2-
kinase/fructose-2,6-biphosphatase 3 (a key metabolism
regulator), which itself is necessary for citrate-dependent
acetylation of H3K27. Thus, BMPR2-mediated activation
of Notchl coordinates EC metabolism with histone acety-
lation to induce expression of the Notchl target Myc, and in
turn, Myc-regulated genes, such as apelin and heme oxy-
genase 1, ultimately leading to EC proliferation and
regeneration.

Apelin Signaling

A recent study by Masoud et al*” found that apelin directs EC
differentiation and vascular repair after immune-mediated
injury. They also found that human and mouse heart allo-
grafts with alloimmune-mediated vasculopathy had increased
expression of apelin in arteries and myocardial microvessels.
Loss of apelin expression in the donor heart promoted graft
immune cell infiltration, impaired vascular repair, and
increased occlusive vasculopathy in mice. In contrast, an
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apelin receptor agonist induced endothelial nitric oxide syn-
thase activation, promoted endothelial monolayer wound
repair, and reduced immune cell adhesion. Treatment with the
apelin receptor agonist also reduced progression of arterial
occlusion in mice. A separate study found that hypoxia-
induced expression of apelin modulates EC proliferation
and regeneration in zebrafish.”® These authors found that
apelin is induced by hypoxia in human pulmonary vascular
lung ECs and SMCs. Furthermore, miRNA against apelin or
APJ receptor knockdown inhibited hypoxia-induced EC
proliferation in vitro and vessel regeneration in zebrafish.
Together, these data identify apelin as a key regulator of
vascular endothelial regeneration.

VEGF Signaling

In rat models of nephritis, Ostendorf et al*’ found that VEGF
inhibition reduced glomerular endothelial regeneration and
increased EC death without altering proteinuria. In a model of
balloon angioplasty—induced endothelial denudation of the
rabbit carotid artery, VEGF treatment increased endothelial
regeneration.”® In a coronary stent implantation model in
minipigs, overexpression of VEGF receptor reduced neo-
intimal proliferation, suggesting that VEGF signaling pro-
motes endothelial regeneration after coronary injury.”
Similarly, in a mouse model of arterial endothelial denuda-
tion, adenoviral VEGF treatment increased luminal EC pro-
liferation and accelerated endothelial repair, whereas VEGF
inhibition had the opposite effects.’” These studies identify
VEGF as an important factor for EC proliferation and
regeneration and vascular repair.

Other Signaling Molecules

Endothelial-specific overexpression of insulin-like growth
factor (IGF)-1 receptor (IGF1R) in transgenic mice promotes
endothelial regeneration in a wire injury model of the femoral
artery but reduces nitric oxide bioavailability, whereas Igflr
heterozygous knockout mice have reduced endothelial
regeneration.”' EC isolated from lungs of the transgenic mice
exhibit enhanced migration in vitro compared with wild-type
ECs. Dimethylaminohydrolases degrade asymmetric dime-
thylarginine, which is an endogenous nitric oxide synthase
inhibitor. Konishi et al’* found that overexpression of dime-
thylaminohydrolase 1 promotes endothelial regeneration in
the murine femoral artery after wire injury.

The studies summarized in the two sections above have
identified the molecular mechanisms (transcriptional factors
and signaling pathways) of endothelial regeneration and
vascular repair in the systemic vasculature (Figure 2) and
pulmonary vasculature (Figure 3). It appears that different
vascular beds use different molecular mechanisms for
endothelial regeneration. These differences may be ascribed
to different injury models as well as different sizes of ves-
sels (endothelial denudation in large arteries in the systemic
vasculature versus inflammatory endothelial injury in
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Molecular and signaling mechanisms of endothelial regeneration and vascular repair in systemic arterial vessels after endothelial injury induced

by mechanical or electrical denudation. Several studies that used carotid artery injury models have found an important role of endothelial Notch1 activation in
the mechanism of endothelial proliferation. Microparticle-released miR-126 also plays an important role in endothelial proliferation and migration through
inhibition of the Notch inhibitor delta-like 1 (Dlk1) and sprout-related EVH1 domain-containing protein 1 (SPRED1), Ras, and mitogen-activated protein kinase
(MAPK) signaling. Smooth muscle cell (SMC) interaction with endothelial cells (ECs) promotes Notch1 activation through bone morphogenic protein receptor 2
(BMPR2) signaling, leading to EC proliferation. SMCs also release various factors (eg, CXCL7) to activate CCR2 signaling in the neighboring ECs and promote
their migration for reendothelialization. Injured ECs and other cells, such as stem/progenitor cells, release microparticles and angiogenic and migratory factors
and therefore promote endothelial regeneration. In an aorta mechanical pressure injury model, the stress response gene ATF3 plays an important role in
mediating endothelial regeneration and vascular repair. NICD1, notch1 intracellular domain; PFKFB3, phosphofructo-2-kinase/fructose-2,6-biphosphatase 3;

pINK, phospho-c-Jun N-terminal kinase; PKC-3, protein kinase (3.

microvessels in the pulmonary vasculature). Zhao et al’
identified the important role of endothelial FoxM1 in
mediating endothelial regeneration in mouse lungs after
inflammatory injury induced by endotoxiemia, whereas
McDonald et al** found that loss of endothelial FoxM1 has
only delayed endothelial wound closure without affecting
endothelial proliferation in injured aortic endothelium by
mechanical pressure. However, in another study,
pl10yPI3K signaling is required for FoxMI-depedent
endothelial regeneration and vascular repair in the pulmo-
nary vasculature and cremaster muscle venules (systemic
vasculature) in the same inflammatory injury model.'’
Future studies are warranted to determine whether
different vascular beds and different sizes of vessels share
some of the molecular mechanisms for regeneration of the
endothelium using the same injury model.

Re-Annealing of Endothelial Junctions to
Restore Endothelial Barrier Integrity

Healing of the injured endothelium involves reestablishment
of endothelial junctions to restore endothelial barrier integ-
rity. Interendothelial junctions include adherens junctions
(AJs), tight junctions, and gap junctions.'' AlJs and tight
junctions form molecular connections between adjacent
ECs, promoting a strong seal along the EC perimeters. In
contrast, gap junctions do not contribute to homotypic
attachment but instead form intracellular channels, allowing
for chemical and electrical communication between neigh-
boring ECs. Interendothelial junctions that connect the
continuous monolayer of ECs impose restrictions in the
movement of fluid, proteins, and blood cells across the
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endothelium and constitute a semipermeable barrier.
Weakening or loss of interendothelial junctions results in
transport of proteinaceous fluid into the perivascular space,
which in turn leads to tissue edema, a common characteristic
of a broad range of pathologic findings. Endothelial barrier
permeability is largely regulated by AlJs, which respond to
mechanical and chemical stimuli under physiologic and
pathologic conditions.''* The AJ complex is composed of
vascular endothelial cadherin (VE-cadherin), B-catenin or
plakoglobin, o-catenin, and pl20-catenin. Homotypic
interaction between the extracellular domains of VE-
cadherin adheres two neighboring ECs together to form
the junctions, whereas its cytoplasmic domains bind to
p120-catenin and B-catenin or plakoglobin. In turn, B-cat-
enin binds with the actin-associated protein o-catenin.
Transcriptional and posttranslational modifications of these
junctional proteins, as well as cellular and molecular
signaling pathways, mediate the plasticity of the endothelial
junctions and, in doing so, regulate endothelial perme-
ability.'">* ECs also express N-cadherin, which regulates
VE-cadherin expression and recruitment to the AJs and thus
endothelial barrier integrity.”* Although mechanisms that
regulate endothelial barrier development and injurious
junction leakage have been reviewed thoroughly by
others,'">® this section summarizes the mechanisms
involved in the reannealing of endothelial junctions and
restoration of endothelial barrier integrity after injury.

B-Catenin Requlated by FoxM1 and SHP2

Using EC-restricted disruption of Foxml in mice and
primary human lung microvascular ECs, Mirza et al’
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found that FoxM1 is required for endothelial AJ recovery
via its transcriptional control of B-catenin. In mouse lungs
and human lung microvascular ECs, conditional FoxMI
deletion resulted in persistent increases of vascular
leakage and defective endothelial barrier recovery after
thrombin-induced disruption of the endothelial barrier.
However, loss of endothelial FoxMI did not affect the
extent of vascular leakiness during the injury phase.
Restoration of B-catenin expression in Foxml-null ECs
inhibited the defective barrier recovery in Foxml EC-
specific knockout mice and cultured human lung ECs.
In a separate study, Timmerman et al’> found that B-
catenin is a substrate of the Src homology 2 (SHP2)
domain that contains tyrosine phosphatase. SHP2 regu-
lates the recovery of disrupted EC junctions by dephos-
phorylating B-catenin associated with VE-cadherin and
thus stimulating VE-cadherin mobilization at the plasma
membrane. These studies emphasize the important role of
B-catenin as a junctional protein in mediating reannealing

of the endothelial AJs and driving the recovery of endo-
thelial barrier integrity.

GBy, Fyn, and FAK Signaling

The heterotrimeric G-protein complex is composed of the
Ga and GPy subunits. On stimulation with the inflamma-
tory mediator thrombin, the Got subunit is dissociated from
the GBy subunit, which signals the increase in endothelial
permeability. The released GBy subunit is reported to play
an important role in reannealing of the endothelial AJs.”
Defective GBy function prevents reestablishment of the
Als and thus persistent vascular leaking, although it does
not affect the permeability increase after thrombin treatment.
Thrombin induces Gf dissociation from RACK1 and sub-
sequent interaction with Fyn. Fyn-dependent phosphoryla-
tion of focal adhesion kinase (FAK) induces association of
FAK with the endothelial AJs and mediates endothelial
barrier recovery. Global Fyn knockout mice exhibit
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Molecular and signaling mechanisms of endothelial regeneration and vascular repair in pulmonary vasculature after inflammatory injury. Studies

have found a critical role of the transcriptional factor FoxM1 in mediating endothelial cell (EC) proliferation and endothelial regeneration after inflammatory
vascular injury. FoxM1 is induced in lung vascular ECs only in the recovery phase after injury in a p110y isoform of phosphoinositide 3-kinase (p110yPI3K)—
dependent manner. Recent studies have further found that hypoxia-inducible factor (HIF)-1a mediates expression of FoxM1 and Sox17 to promote endothelial
regeneration. Transplanted exogenous stem/progenitor cells act in a paracrine mechanism by releasing various growth factors, including stromal cell—derived
factor 1 (SDF1) and insulin-like growth factor (IGF) as well as miRNA. Endothelial FoxM1 is one of the endogenous mediators of the paracrine effects. Vascular
repair also involves reannealing of endothelial cell-cell junctions to reform a semipermeable barrier. One study found that B-catenin is the transcriptional
target of FoxM1. Endothelial FoxM1 deficiency impairs endothelial barrier recovery though defective B-catenin expression. Other studies also found a role of
Src homology 2 (SHP2) dephosphorylation of vascular endothelial cadherin (VE-cadherin)—associated B-catenin and phospholipase D2 (PLD2)/protein tyrosine
phosphatase nonreceptor type 14 (PTPN14) dephosphorylation of VE-cadherin, AMP-activated protein kinase (AMPK)-o.;/N-cadherin, and miR-150/Erg2/
angiopoietin-2 (Ang2) signaling as well as stem/progenitor cell—released reparative factors, such as sphingosine-1 phosphate (S1P), in re-annealing the
endothelial cell-cell junctions and restoring the endothelial barrier after injury. bFGF, basic fibroblast growth factor; EPCs, endothelial progenitor cells; GPCR,
G-coupled protein receptor; KGF, keratinocyte growth factor; MSCs, mesenchymal stem cells.
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impaired vascular repair, and endothelial expression of the
FAK phosphorylation mutant results in FAK activation and
normalization of vascular repair in Fyn ™~ mice. These data
indicate that GPBy-mediated Fyn activation integrates FAK
with the endothelial AJs and mediates vascular repair.

AMPK and N-Cadherin

AMP-activated protein kinase (AMPK) is a molecular
sensor triggered by stimuli that disrupt the vascular endo-
thelium and subsequently mediates the recovery of the
endothelial barrier. In pulmonary microvascular ECs, the
a1-subunit of AMPK is required for the reformation of cell-
cell networks and for the repair of EC monolayers after
in vitro wounding.”” AMPK-a, co-localizes with the AJ
protein, N-cadherin, and in isolated lungs, AMPK activation
contributes to EC barrier recovery. In a subsequent study on
AMPK-a;, Jian et al®® found that AMPK stimulation by
metformin treatment decreased the LPS-induced increase in
lung vascular permeability in rats and resolved pulmonary
edema in vivo. In ex vivo perfused rat lungs and isolated
pulmonary microvascular ECs, AMPK-a,; was responsible
for endothelial barrier recovery after EC injury, a process
coordinated by N-cadherin. Disruption of N-cadherin’s
intracellular domain causes translocation of AMPK away
from the membrane and attenuates AMPK-mediated resto-
ration of barrier function in LPS-treated endothelium. In-
hibition of N-cadherin impaired AMPK-mediated vascular
repair in murine lungs after LPS challenge.’

(D31, SHP, and Metabolic Reprogramming

CD31 is expressed at high density at the lateral borders of
ECs. CD31 deficiency has been associated with excessive
vascular leakage after endothelial injury induced by hista-
mine, thrombin, and LPS-induced endotoxemia. Using the
major histocompatibility complex activation—induced
endothelial barrier disruption model, Cheung et al® found
that endothelial barrier recovery requires a CD31-induced
glycolytic response that sustains endothelial AJ reassem-
bly. The metabolic reprogramming requires SHP1/2 acti-
vation, leading to Akt-mediated nuclear exclusion of FoxO1
and concomitant B-catenin translocation to the nucleus, thus
inducing cMyc transcription. Pharmacologic Akt or AMPK
activation normalizes vascular repair and inhibits pathologic
vascular leakage in CD31 " mice via augmented glycolytic
flux in ECs. These studies indicate the requirement of
glycolysis-produced ATP in reestablishing endothelial AJs
and repairing the leaking vessels.

Phospholipase D2/PTPN14

VE-cadherin recycling to AJs and dephosphorylation of
tyrosine phosphorylated VE-cadherin promotes junctional
reassembly and restoration of endothelial barrier function.
Fu et al®' found that inhibition of phospholipase D2 (PLD2)
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activity resulted in prolonged phosphorylation of Tyr-658 in
VE-cadherin in human lung microvascular ECs during the
recovery phase after thrombin challenge and thus impaired
endothelial barrier recovery via inhibition of protein tyro-
sine phosphatase nonreceptor type 14 (PTPN14). After
thrombin challenge, PLD2, PTPN14, and VE-cadherin form
a complex to facilitate PTPN14 dephosphorylation of VE-
cadherin. PTPNI14 depletion impaired reannealing of
endothelial AJs and barrier recovery in human lung micro-
vascular ECs. In Pld2~"~ mice, lung vascular permeability
failed to recover from PAR-1—activating peptide-induced
injury. Together, these studies indicate that PLD2 pro-
motes PTPN14-mediated dephosphorylation of VE-
cadherin, which leads to recycling of VE-cadherin at the
AlJs for recovery of endothelial barrier function.

Ang2 and miRNA-150

Rajput et al®® found that miRNA-150 expression was
elevated only during the recovery phase after murine lung
injury. Deletion of miRNA-150 in mice resulted in a sus-
tained increase in angiopoietin-2 (Ang2) levels, blocked
repair of AJs after injury, increased vascular permeability,
and promoted rapid postsepsis mortality. In contrast, resto-
ration of miRNA-150 expression in ECs of global miRNA-
150 knockout mice inhibited Ang2 production via targeting
of the transcription factor early growth response 2(Egr2),
which restored endothelial barrier function. Deletion of
Egr2 or Ang?2 in miR-150~"~ ECs restored junctional rean-
nealing and reinstated endothelial barrier function.®” Over-
all, these studies found that restoring endothelial junctional
integrity provides a therapeutic avenue for diseases char-
acterized by vascular leakage.

Regulation of Endothelial Regeneration by
Paracrine Factors from Other Cells

Although evidence reviewed earlier in the article suggests
that nonresident/circulating cells are not a major source of
regenerating endothelium, the numbers of circulating EPCs
are correlated with disease risk, severity, or outcome in
conditions that are characterized by vascular injury, such as
cerebrovascular disease and sepsis.”** Exogenous admin-
istration of mesenchymal stem cells (MSCs) or BM-derived
progenitor cells can inhibit inflammatory lung injury and
promote survival after sepsis challenge.”” > Importantly,
MSC therapy shows promise for the treatment of patients
with ARDS.”*"* It is now thought that BM-derived cells as
well as exogenously administered adult stem cells (eg,
MSCs) could promote endothelial regeneration and vascular
repair through paracrine mechanisms, particularly given the
studies described above that found that these cell types
rarely engraft into the vasculature.

One such study clearly found the paracrine function of
these stem/progenitor cells in promoting endothelial
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Table 1  Molecules That Regulate Endothelial Regeneration and Barrier Recovery
Source Impact Molecule(s) Model Tissue(s) References
Endogenous + ER Apelin/APJ Allograft Mu heart 45
Activating transcription Allograft Hu heart 46
factor 3 Caudal fin Zebrafish 24
dihydrodiol Clamping Mu aorta 52
dehydrogenase 1 Wire Mu femoral artery
FoxM1 LPS Mu lung and ECs 9
Hu ECs
CLP Mu lung 34
Hypoxia-inducible CLP/LPS Mu lung 37
factor-1a
miRNA-126-5p Wire Mu carotid artery 41
miRNA-126 PCL Mu carotid artery 42
Myc Atherosclerosis Hu carotid artery 24
Notch1/notchl ED Mu carotid artery 44
intracellular domain Stable CAD Hu plasma
+/- diabetes Hu ECs
Clamping Mu aorta
Wire Mu carotid artery
Hypoxia Mu pulmonary artery
Hu EC
p110y isoform of LPS/CLP Mu lung 10
phosphoinositide 3- ARDS Hu ECs
kinase Hu lung
Sox17 LPS Mu lung 25
Vascular endothelial Wire Hu ECs 50
growth factor Balloon Mu femoral artery 48
Stent Rabbit carotid artery 49
Nephritis Minipig coron. artery 47
Rat glomerular
Vessel
— ER Delta-like 1 Wire Mu carotid artery 41
Sprout-related EVH1 ED Hu EC 43
domain-containing Mu carotid artery
protein 1 Hu ECs
+ JR AMP-activated protein LPS Rat lung 57
kinase a/N-cadherin Scratch Rat ECs 59
FoxM1/B-catenin PAR1 agonist Mu lung 7
Thrombin Hu ECs
miRNA-150 LPS/CLP Mu lung and ECs 62
Src homology 2/B- Thrombin Hu ECs 55
catenin Thrombin Hu EC, Mu lung 56
GBy/Fyn/FAK Major histocompatibility Mu EC, Mu skin 60
CD31/Src homology 2 complex trigger Hu EC, Mu lung 61
Phospholipase D2 Thrombin
/PTPN14
—JR Erg and angiopoetin-2 LPS Mu lung and ECs 62
Exogenous + ER Bone morphogenic Wire Mu carotid artery 44
protein receptor 2 Coculture Hu ECs/smooth muscle 42
Microparticles ED cell
Mu carotid artery
miRNA-126 ED Mu carotid artery 42
+JR Protein kinase C3 /CXCL7 Wire Mu femoral artery 83
Sphingosine-1 Angioplasty Rat carotid artery 75
phosphate Coculture Hu ECs

Molecules that have either a beneficial (+) or inhibitory (—) effect on ER or JR have been identified by experimental studies of isolated ECs and multiple

organs and species.

CLP, cecal ligation and puncture; EC, endothelial cell; ED, electric denudation; ER, endothelial regeneration; Hu, human; JR, junction reannealing; LPS,
lipopolysaccharide; Mu, mouse; PCL, partial carotid ligation.
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regeneration and vascular repair.”” The study found that
induction of endogenous FoxMI1 expression in ECs is
required for the reparative effects of transplanted BM pro-
genitor cells in mice. Transplantation of cultured BM pro-
genitor cells induced resolution of inflammatory lung injury
and survival in wild-type mice, but these effects were
abrogated in FoxM1-EC knockout mice after inflammatory
injury. This study found that progenitor cell treatment failed
to induce pulmonary EC proliferation and thereby endo-
thelial regeneration and vascular repair in FoxMI-EC
knockouts. Intriguingly, Foxml deletion in ECs did not
affect the early protective effects of exogenous progenitor
cells, consistent with the selective role of endothelial
FoxM1 in mediating endothelial regeneration and vascular
repair. Furthermore, this study found that treatment of wild-
type but not FoxMI-deficient EC monolayers with BM-
derived progenitor cells resulted in enhanced endothelial
barrier function, whereas restoration of B-catenin in Foxml-
null ECs reenabled progenitor cell—induced enhancement of
endothelial barrier function. Thus, transplantation of exog-
enous adult progenitor cells promoted endothelial regener-
ation and reannealing of endothelial AJs for restoration of
endothelial barrier integrity through paracrine activation of
endothelial expression of FoxMI.

One of the potential key paracrine factors from the adult
stem/progenitor cells is sphingosine-1 phosphate, which
promotes FoxMI1-dependent endothelial junction recov-
ery.”” Furthermore, adult stem/progenitor cells can release
several proangiogenic factors, such as keratinocyte growth
factor, IGF-1, basic fibroblast growth factor, and
VEGF.”® * Future studies should investigate the individual
role of these angiogenic factors in activating endothelial
regeneration and vascular repair.

Recent studies also found that adult stem/progenitor cells
(as well as ECs themselves) can release microparticles or
microvesicles that induce endothelial regeneration by pro-
moting proliferation of tissue-resident ECs.””~ " Micropar-
ticles are small membrane fragments released from cells and
may contain DNA, RNA, or miRNA. These microparticles
can, in turn, be uptaken by resident ECs to activate the
endothelial regeneration program.™ Jansen et al** found that
injected endothelial microparticles promote endothelial
regeneration after electric endothelial denudation of carotid
artery in mouse via transfer of miRNA-126, which increases
EC migration and proliferation. In their study, miR-126
functionally regulated the target protein SPRED1. Further-
more, knockdown of miR-126 in endothelial microparticles
abrogated their effects on human coronary artery EC
migration and proliferation in vitro and reendothelialization
in vivo.

Other studies have revealed that SMCs can also drive EC
regeneration. As described above, Miyagawa et al** recently
found that SMC-EC contacts promote EC regeneration after
wire-induced carotid artery injury in mice. BMPR2 was
required by both cell types to produce collagen IV, which
activates integrin-linked kinase and directs phospho-c-Jun
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N-terminal kinase to the EC membrane, where it stabilizes
presenilinl to activate Notchlto promote EC proliferation.

Ren et al*’ also recently investigated whether SMCs can
modulate EC regeneration in a paracrine manner. Using a
mouse model of wire-induced arterial injury and a rat model
of carotid angioplasty, the authors found that inactivation of
protein kinase C (PKC)-3 in SMCs impairs EC regeneration,
whereas gene transfer of PKC-6 to the SMCs of these ani-
mals promoted EC regeneration. Conditioned medium taken
from SMCs infected with PKC-8 adenoviruses could be
used to induce EC migration but not proliferation. CXCL7
was expressed in SMCs in a PKC-3/STAT3—dependent
manner. Blockade of CXCL7 or its receptor (CXCR2)
attenuated EC migration and inhibited endothelial wound
closure. Thus, SMCs stimulate EC regeneration via PKC-
d—dependent expression of CXCL7, which likely leads to
recruitment of ECs from uninjured endothelium for vascular
repair. Taken together, it seems that although circulating
cells are not a major source of regenerating ECs, these cells
may regulate EC regeneration and vascular repair through
the release of reparative paracrine factors that act on the
vascular endothelium.

Future Perspectives

Improved understanding of the cellular and molecular
mechanisms that control the intrinsic endothelial regenera-
tive and reparative processes could lead to the development
of novel and effective treatments for diseases characterized
by EC injury and dysfunction. As described in this review,
multiple transcription factors and signaling pathways that
control the intrinsic endothelial regeneration and vascular
repair process have been identified (Figures 2 and 3 and
Table 1). Although intuitive, it has been convincingly
demonstrated that endothelial regeneration is significantly
impaired with aging, at least in large vessels.”* Additional
studies that aim to further dissect the mechanisms of aging-
impaired endothelial regeneration and vascular repair and
elucidation of potential organ-specific regulation would be
of high value. It would be interesting to see which of the
reparative factors/pathways summarized in this review are
impaired by aging and other risk factors for EC dysfunction
and to study whether restoration of their functions could
reactivate the intrinsic regenerative process in aged animals
and elderly patients after vascular injury. Given the drastic
increases in severity and mortality of elderly patients with
sepsis and ARDS derived from pneumonia, flu, and coro-
navirus 19 (COVID-19), this line of research is of high
relevance.”" ®" Future development of small molecule
drugs that target regenerative and reparative pathways, such
as the GPCR-dependent pl10yPI3K pathway, and/or
development of cell-based gene therapy to activate the
regenerative and reparative mechanisms for treatment of
vascular diseases is warranted. Indeed, it is important to
know whether vadadustat, a HIF prolyl hydroxylase
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inhibitor, is effective to promote recovery and survival of
patients with severe COVID-19 (NCT04478071) because it
may activate HIF-lo—dependent endothelial regeneration
and vascular repair.

The metabolism of ECs in diseased vasculature is mark-
edly aberrant, given that cell proliferation and endothelial
junction reannealing are metabolically demanding processes
that require substantial energy and biomass.””*® Charac-
terization of EC metabolism in regenerating endothelium is
appealing, which could reveal novel reparative pathways
and facilitate the targeting of endothelial metabolism in
endothelial regeneration and vascular repair.”” The potential
of modulating epigenetic enzyme activities to accelerate EC
recovery and vascular repair remains to be fully explored.
The metabolic and epigenetic control of endothelial regen-
eration and vascular repair after injury therefore represents
another area of research that warrants further attention.

Studies could also aim to identify the discrete EC sub-
population(s) with the greatest proliferative potential, for
instance, by comparing venous and arterial ECs”” and by
studying ECs across different tissue types.”'"”* One poten-
tially productive approach would be to use single-cell RNA-
sequencing analysis to define the subpopulations of regen-
erative ECs or putative tissue-resident vascular endothelial
stem/progenitor cells.'””®”® Genetic lineage tracing and
genetic depletion approaches could be used to define the
roles of specific EC subpopulations in mediating endothelial
regeneration. Defining such a regenerative subpopulation of
ECs would be a crucial first step for their isolation, expan-
sion, and use in regenerative medicine.

In future studies, the effect of different types of non-ECs,
including adult stem/progenitor cells (eg, MSCs), on EC
regeneration and vascular repair could also be investigated.
Adult stem cells release various paracrine factors, including
microparticles/microvesicles and miRNAs, to stimulate
endothelial regeneration and vascular repair.’”’® SMCs
also release multiple reparative factors, such as CXCL1 and
CXCL7, that stimulate EC migration®** or activate
regenerative signaling pathways in ECs.** Future studies
should aim to elucidate the mechanisms by which exoge-
nous progenitor cells activate the intrinsic regenerative and
reparative programs, which could lead to the exploitation of
cell-based gene therapy to activate the intrinsic endothelial
regeneration and vascular repair processes.

It also remains to be seen whether other vascular cell
types, including fibroblasts, could be directly converted into
endothelial progenitors or even ECs at the injury sites for in
situ endothelial regeneration. The direct conversion of fi-
broblasts into functional ECs could hold great promise for
the inhibition of atherosclerosis and restenosis after endo-
thelial denudation by angioplasty treatment. Although adult
stem cells, including MSCs and BM-derived progenitor
cells, are rarely engrafted into the damaged vasculature,
recent studies have found that induced ECs or EPCs
differentiated from embryonic or induced pluripotent stem
cells or directly reprogrammed from fibroblasts and other
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cell types can engraft into local neovasculature of ischemic
tissue to improve tissue perfusion.”” °” Thus, it would be
interesting to determine whether and under what conditions
transplantation of induced ECs or EPCs can engraft into
injured endothelium for endothelial regeneration and
vascular repair. Finally, future studies of the EC response to
changes in mechanical flow could be of interest,”” given that
decreased flow can impair endothelial repair’” and that the
injury and repair phases of vascular conditions, such as
restenosis, atherosclerosis, and thrombosis, are character-
ized by changes in flow forces.

Conclusions

Endothelial regeneration and vascular repair after vascular
injury is predominantly dependent on tissue-resident ECs
through migration and proliferation. Future studies should
aim to characterize the regenerative EC subpopulation(s),
identify intrinsic regenerative and reparative signaling
pathways, and develop pharmacologic and/or cell-based
gene therapies. These strategies would enable harnessing the
intrinsic regenerative and reparative processes for the
treatment of vascular disorders characterized by endothelial
injury, such as atherosclerosis, restenosis, sepsis, and
ARDS, including severe COVID-19.
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