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Mycobacterium tuberculosis (Mtb), the causative organism of pulmonary tuberculosis
(PTB) now infects more than half of the world population. The efficient transmission
strategy of the pathogen includes first remaining dormant inside the infected host, next
undergoing reactivation to cause post-primary tuberculosis of the lungs (PPTBL) and then
transmit via aerosol to the community. In this review, we are exploring recent findings on
the role of bone marrow (BM) stem cell niche in Mtb dormancy and reactivation that may
underlie the mechanisms of PPTBL development. We suggest that pathogen’s interaction
with the stem cell niche may be relevant in potential inflammation induced PPTBL
reactivation, which need significant research attention for the future development of
novel preventive and therapeutic strategies for PPTBL, especially in a post COVID-19
pandemic world. Finally, we put forward potential animal models to study the stem cell
basis of Mtb dormancy and reactivation.

Keywords: post-primary tuberculosis of the lungs, dormancy, reactivation, stem cell niche, bone marrow derived
stem cells, altruistic stem cells, Mycobacterium tuberculosis

INTRODUCTION

Pulmonary tuberculosis (PTB) is a major global health disease. Each year nearly 10 million new PTB
cases are reported as estimated by the world health organization (1). Then, these infected cases
spread the disease in the community via aerosol, thus the bacterial transmission is maintained (2).
Noticeably, humans are the only host in the entire animal kingdom where the bacteria can complete
its transmission cycle under natural conditions (3). Therefore, any attempt to develop an effective
policy to eradicate this pathogen from humans needs an appreciation of how the pathogen exploits
immunocompetent adults to maximize its transmission success.

Mtb enters into the human host via aerosol, initiates a primary infection in the lungs, which
generate active TB lesions including caseating granuloma formation (4-7). A vigorous cell-mediated
immune response leads to eventual calcification of the granuloma, and the infected person develops a
robust, life-long immunity against primary TB (8, 9). However, after 10-30 years of dormancy or
latency, active TB lesions reappear in the apical part of the lungs as post-primary tuberculosis of the
lungs (PPTBL) (2, 10, 11). Importantly, these PPTBL infected adults exhibit vigorous cell-mediated
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immunity (CMI) against Mtb as confirmed by a positive
tuberculin test (8, 10-13). As the PPTBL progresses, pulmonary
tissues are filled with heterogeneous types of granulomas that
include active cavities, as well as fibrotic, non-progressive, sterile
granulomas (14). These non-progressive granulomas are a highly
organized structure (14), where the dormant bacilli remain in a
standoft with the immune cells (9, 15, 16). This highly organized
non-progressive granuloma structure is unique to human TB
infection and is not present in mouse models of PTB (17-19).
The active granulomas expand into nearby bronchioles, allowing
the bacteria to enter into the sputum. Then, the infected person
spreads aerosols containing live Mtb into the community by the
process of vigorous coughing. The bacteria enter into a new host,
initiate primary TB infection in the lungs, undergo latency for
years and initiate PPTBL. Thus, the initiation of PPTBL occurs in
the lungs of an adult with latent TB infection (LTBI) (the time
period between primary infection and the clinical manifestation of
PPTBL). Hence the disease is named as post-primary TB of the
lungs or PPTBL (8, 20) and only by causing PPTBL, Mtb
maintains transmission in human (2, 21).

The source of Mtb in the adult that initiate PPTBL is not yet
clearly known, which limits our ability to target the transmission
strategy of the pathogen in the community. From the perspective
of Mtb transmission, the effective means for PPTBL development
would be to hide in dormant state intracellular to a host cell type;
which is immunosuppressed (21) and has self-renewal and
migratory ability. Such a strategic approach would then permit
the pathogen to migrate to apical part of the lungs to initiate a
pneumonia-like exudative early phase of PPTBL. Previously, we

proposed that the human adult stem cell niche in bone marrow
(BM) might serve as a protective niche for dormant Mtb (22),
and these cells would then migrate to lungs for PPTBL
development (Figure 1). Surprisingly, many clinicians had
already provided anecdotal evidence of finding Mtb in BM
including our experience in Bhutan during 1995-1998 (23, 29)
provide “bed to benchside” rationale to examine whether Mtb
may hijack the BM-stem cell niche for its transmission strategy
(22). However, skeptics will point out that hijacking of the stem
cell niche will lead to widespread hematological and other stem
cell-related disorders, often not seen in patients with PPTBL. We
demonstrated that Mtb infects a rare population of human BM-
stem cell to remain dormant (22). This may explain why
hematological disorders are not widespread in PPTBL subjects.
Following our initial findings, many laboratories not only
reproduced our findings but also added important information
about the Mtb/human BM-stem cell host-pathogen interaction
(24-26). These findings raise human bone marrow derived stem
cells as the site of Mtb latency (27). Recently, we have shown that
stem cell altruism may be involved in Mtb-reactivation (28), and
in the aerosol-induced immunity (29). These recent studies
indicate the emerging role of BM stem cell niche in the
pathogenesis and community transmission of Mtb.

The primary objective of this review is to discuss the
significance of the adult stem cell niche as a protective site of
TB dormancy and reactivation that allows the pathogen to
initiate PPTBL in an immunocompetent adult and
subsequently to transmit Mtb in the community. We speculate
that during early phase of PPTBL initiation, Mtb harboring BM
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FIGURE 1 | A hypothetical model of MSC mediated PPTBL development. (A) A schematic model of Mtb dormancy and reactivation showing the meaning of
different terminologies used in the review article. (B) Hypothetical model showing the role of CD271+BM-MSC in PPTBL development. The model introduces a new
self-renewing cell type, the CD271+BM-MSCs as a potential reservoir of dormant Mtb (dMtb). Following primary TB infection, dMtb hide in BM. In adults,
inflammation in the lungs mobilizes BM-MSCs. The mobilization process facilitates homing of dMtb harboring BM-MSCs into the lungs leading to PPTBL
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stem cells may mobilize, and home to lung for initiating PPTBL,
and then exporting the bacteria to the community via sputum,
thus completing the bacterial transmission cycle. Thus, in this
review, we will put forward a new model of Mtb transmission in
the community, and discuss the ways for the Mtb transmission
cycle to be blocked by modulating the process of BM stem cell
mobilization to lung. Furthermore, we put forward potential
animal models to study the interaction between pathogen and
stem cell niche so that critical mechanisms including putative
stem cell niche defense mechanism can be studied and can be
targeted to eliminate latent Mtb infection.

THE ENIGMATIC SOURCE OF DORMANT
MTB FOR THE INITIATION OF PPTBL

A potential source of PPTBL is the exogenous re-infection with a
different Mtb strain (30, 31), particularly in the geographical area
of high TB incidence (31, 32). To explain the mechanism of
PPTBL initiation in LTBI subjects, Medlar proposed the “allergic
soil” hypothesis. Medlar suggested that the primary TB infection
pre-conditions the apical part of the lungs for later migration of
exogenous, re-infecting Mtb (5). However, the “allergic soil”
hypothesis was ruled out in a guinea pig model of re-infection
(33). Recent genome-based studies showed that endogenous or
exogenous reactivation of Mtb could be evaluated by performing
genotyping and whole genome sequencing (WGS) (34-36).
However, it is not clear, how the bacteria from the exogenous
re-infection would survive and initiate PPTBL in an
immunocompetent adult host having vigorous cell mediated
immunity against Mtb (21, 37-39). In this context, PPTBL
initiation may rather be caused by endogenous Mtb strain that
remained dormant in the human host after primary infection.
It is presumed that the endogenous source of the replicating
Mtb in the PPTBL is the dormant Mtb hiding in the granulomas
of lungs, and/or in the extra-granuloma sites in the lungs (3, 11,
12, 40-42). This presumption is supported by numerous animal
models of Mtb infection, where, the dormant state is achieved as
a result of Mtb interaction with the immune cells present in the
granuloma (9, 19, 37, 43, 44) and the hypoxic microenvironment
prevailing in the granuloma (45-49). However, the site of

TABLE 1 | Proposed endogenous sites for dormant Mtb in LTBI patients.

dormant Mtb in the lungs of LTBI subjects is not clearly
known (4-6, 21, 39), although several probable sites have been
proposed based on clinical findings (Table 1).

An obvious first site to look for the dormant Mtb would be the
primary TB associated site, known as the “ghon complex”, a
fibrotic granuloma located mostly in the lower lungs pleural area,
and calcified hilar lymph nodes (2, 50). The granuloma becomes
calcified and sterile 2-5 years after development of primary TB
(2, 4,21, 38, 50, 51). The site does not show any Mtb reactivation
activity in PPTBL, which occurs 10-30 years after the primary
TB (5, 20, 39). In fact, PPTBL occurs mostly in the apical part of
the lungs (4, 21, 37, 50) instead in the primary TB infection site.
Therefore, it is most unlikely that the primary granuloma is the
site of Mtb dormancy and reactivation.

The second possible site would be the apical part of the lungs,
the most common site of PPTBL. However, during the LTBI
period, no dormant granulomas could be found at this site (4, 20,
34, 37,50, 59). The third probable site is the normal lungs tissues.
However, during LTB, no dormant granulomas containing viable
Mtb could be found in the lungs (4, 20, 37, 42, 50, 59). Instead,
human autopsy reports found a small amount of Mtb-DNA
scattered intracellular and extracellular in the normal tissues of
the lungs (21, 37, 53). Surprisingly, viable Mtb were isolated from
normal lungs tissue of LTBI subjects in one report; however
subsequent studies were not done to confirm whether the LTBI
subjects were suffering from subclinical PPTBL infection (52).
Some of the bacilli remain intracellular in alveolar macrophages
(53). Mtb has been found to re-program macrophages to remain
in a relatively non-replicative dormant state (9, 60); however, the
viability of intracellular Mtb is poor (54), and so far, no direct
isolation of viable Mtb from macrophages of LTBI subject has
been reported (22, 37). Importantly, latent or dormant Mtb are
highly immunogenic intracellular to macrophages as the bacteria
fail to arrest phagosome maturation and are mostly processed for
efficient antigen presentation to stimulate adaptive immunity
(61). Thus, in LTBI subjects having vigorous T cell mediated
immunity, it is highly unlikely that latent Mtb can persists
intracellular to macrophages, as the pathogen will be killed by
macrophage with the help of specific T cells mediated interferon
gamma response (62).

The fourth potential site of dormancy is the putative alternate
form of Mtb that includes endospores. However, such a

Host cell type Recovery of Mtb DNA Recovery of viable Mtb References
Pulmonary Host cell free, sterile granuloma Yes No 2, 4, 21, 38, 50, 51)
Lung tissue from subclinical cases Yes Yes (52)
Alveolar macrophages Yes No (22, 37, 53, 54)
Alveolar epithelial cells Yes No (53)
Extra-pulmonary Host cell free adipose tissue Yes No (8, 21, 55)
Adipcytes Yes No (3, 21, 55)
Macrophages Yes No (21, 37, 55)
Fibroblast Yes No (21, 37, 55)
°CD271+BM-MSCs Yes Yes (22, 56, 57)
°CD34+HSCs (Peripheral blood) Yes Yes (22, 58)

We suggest that the finding imply early phase of dMtb mobilization to lungs and release of viable Mtb as explained in Figure 2.%Subclinical cases implies early pneumonia-like exudative
early phase of PPTBL. "CD271+BM-MSCs: CD271+bone marrow mesenchymal stem cells. °CD34+HSCs: CD34+hematopoietic stem cells.
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phenotype of Mtb has not yet been identified, despite a century of
research (37, 63).

The fifth potential source of PPTBL is the extra-pulmonary
host cell types including adipocytes, fibroblasts and
macrophages, where Mtb-DNA has been found (21, 37, 55).
However, viable and dormant Mtb have not been recovered from
these cell types. Furthermore, it is not clear how would Mtb
migrate from these sites to the apical part of the lungs (59),
because these cell types are differentiated and resident cells
(22, 37).

BONE MARROW (BM) STEM CELL NICHE
AS THE SITE OF DORMANT MTB

BM is an important site of the adult stem cell niche, where
hematopoietic, mesenchymal and endothelial stem cells reside in
their quiescent state (64). The BM stem cell niche is
immunopriviledged (65, 66). These stem cells have the
potential to self-renew (64, 67-70) and expand in the hypoxia/
oxidative stress microenvironment (71-75), prevalent in the area
of inflammation. The hypoxic microenvironment of stem cell
niche may favor Mtb dormancy (76, 77) and resistance against
anti TB drugs (56, 57). All these reasons unite to make BM stem
cells a potential niche for Mtb during LTBI (27). Interestingly,
stem cell’s self-renewal property is utilized by other bacteria,
including Mycobacterium leprae (78) and Wolbachia (79) for
effective transmission. Thus, it is presumed that BM stem cells’
self-renewal property could be utilized by dormant Mtb for
initiation and transmission of PPTBL.

To investigate BM-stem cells as the potential host cells for
dormant Mtb, we first focused on developing an in vitro model of
Mtb and human BM-stem cell host pathogen interaction. We
used a serum free media to culture CD133+BM cells (22, 73). The
CD133+BM cells are enriched in HSCs, endothelial stem cells
(22, 58, 80, 81) and naive CD271+MSCs (22, 73). We found that
Mtb infect CD271+BM-MSCs and CD34+BM-HSCs but
maintain a non-replicating dormant status mainly in the
CD271+BM-MSCs for 2 weeks. These preliminary in vitro
results helped us to focus on the CD271+ BM-MSC as a
possible Mtb target for dormancy (22).

CD271+BM-MSC is a type of multipotent mesenchymal stem
cell (66, 82-84) that is very rare, comprising only 0.0017-
0.0201% of BM mononuclear cell compartment (85). The cell
type has potent immunosuppressive activity (84) and resides in
the immunoprivileged and hypoxic niche in BM (65, 66). The
CD271+ BM-MSCs are highly heterogeneous, and co-express
two hematopoietic stem cell markers, CD133 and CD34 (22, 66,
86). Several recent studies have demonstrated the potential in
vivo self-renewal property of CD271+ BM-MSCs. In these
studies, the CD271+ BM-MSCs were directly isolated from
human BM by flow cytometry or magnetic sorting technique,
and their multipotent differentiation capacity was confirmed (22,
66, 86). The in vivo BM niche of this cell type was also identified,
where they remain in a quiescent state (66, 87), and then self-
renew during mobilization in response to tissue damage (86).

We speculated that the stemness state (the stem cell state of
undifferentiating and self-renewal) of stem cell could be one of
the key mechanisms of Mtb dormancy in stem cells. The CD271
+BM-MSCs, when grown in vitro in high serum media or with
adipogenic agents, differentiate to mesenchymal stromal cells,
including the loss of stemness markers CD271, CD133, ABCG2
and HIF-2alpha expression (22, 73). It also significantly reduces
the viability of intracellular dormant Mtb (dMtb) (22). These
findings confirm the maintenance of the stemness state of stem
cells is essential for Mtb dormancy.

To investigate if the CD271+BM-MSCs are the dormancy site
for Mtb in PPTBL cases, we recruited patients through our
KaviKrishna Telemedicine care (22, 29) located in NE India.
These were successfully treated subjects for PPTBL, who donated
6-7 ml of BM for immunomagnetic separation of CD271+BM-
MSCs. In the CD271+BM-MSCs from 9/11 subjects, Mtb-DNA
was recovered, and two of these samples showed the presence of
viable Mtb (22) (Table 1). Later, Tornack et al. also recovered
Mtb-DNA from CD271+BM-MSCs of LTBI subjects (24). Thus,
recovery of viable Mtb from CD271+BM-MSCs of PPTBL
subjects successfully treated with anti-TB drugs indicates that
BM stem cells may serve as a protective niche for Mtb against
antibiotic treatment (22). Indeed, in a Cornell model of
dormancy/reactivation, we recovered viable Mtb from the
ABCG2+ expressing CD271+BM-MSCs despite prolonged
anti-TB drug therapy (22, 56, 57). The MSCs expressing drug
efflux pump, e.g. ABCG2 (22, 88, 89) might help intracellular
Mtb to escape drug toxicity. Subsequently, we found that the
Mtb-DNA harboring CD271+BM-MSCs of post-PPTBL subjects
exhibited high expression of hypoxia inducible factor 1 alpha
(HIFlalpha) and low expression of CD146 (a hypoxia down
regulated cell surface marker) (56), suggesting that these Mtb
infected BM-MSCs resided in the hypoxic niche of BM (56).
Moreover, the hypoxic localization of these Mtb-harboring stem
cells in the BM niche might make these Mtb unreachable by the
current anti-TB therapy (56). Interestingly, hypoxia is known to
induce dormancy in Mtb (45), and researchers found that Mtb
intracellular to BM-stem cells of LTBI subjects express hypoxia
induced dormancy genes DosR, hspX and c-lat (24). Overall,
these findings suggest hypoxic niche of human BM-stem cells
could be an important mechanism for Mtb dormancy.

Like human BM-MSCs, mouse BM-MSCs has also been
found to contain dormant Mtb (22, 25). In a mouse model of
Mtb dormancy, we recovered non-replicating dormant Mtb
intracellular to CD271+BM-MSCs even after 6 months of
primary TB infection. To confirm the long-term viability and
re-infection capacity of these dormant Mtb, we performed the in
vivo serial transplantation assay, where non-replicating Mtb
harboring CD271+BM-MSCs from primary infected mice were
injected into the secondary recipient mice. We showed that only
a few of recovered dormant Mtb-m18b (~40) harboring CD271
+BM-MSCs were enough to cause tubercular lesions in the lungs
of secondary recipient mice (22), thus confirming the re-
infection potential of dormant Mtb intracellular to CD271
+BM-MSCs (22). Another study performed the expression of
dormancy related genes in the Mtb recovered from CD45-Scal
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+BM-MSCs; these cells were recovered from Mtb infected mice.
The study found that recovered Mtb expresses dormancy related
genes; thus confirming the dormancy status of the pathogen
intracellular to Sca-1+BM-MSCs (25). However, in vivo
transplantation assay was not performed to demonstrate the
long-term viability of these dormant Mtb intracellular to Scal
+BM-MSCs.

The mechanism of Mtb dormancy intracellular to MSCs is
now the subject of intense research. Using human and mouse
mesenchymal stromal cells grown in the high serum media,
several laboratories studied mechanisms of survival, adaptation
and dormancy of Mtb intracellular to MSCs (24-26, 90). One of
these studies found that Mtb remains in the lipid droplets inside
the cytosolic fraction of MSCs induce lipid synthesis (25).
Another study found that the cytosolic localization provides
resistance capacity to Mtb against host cellular autophagy (91).
Yet, another study found that virulent but not avirulent Mtb may
reprogram BM-MSCs and remain viable inside them to escape
cytotoxicity of antimicrobial peptide cathelicidin (90). A recent
study found Mtb intracellular to BM-MSC exhibit increased
expression of dormancy gene hspX with simultaneous increase
in tolerance to anti TB therapy (26). Various studies showed that
nitric oxide synthase 2 Kkills intracellular Mtb of MSCs by nitric
oxide production (92-94), confirming the innate defense
mechanism of MSC that may play important role in immune
response against Mtb (95). In a model of human adipose tissue
derived MSCs, virulent Mtb strain H37Rv exhibit a drug and
inflammatory cytokine tolerant phenotype by modulating PGE2
signaling (96). These studies indicate the emerging significance
of MSCs as a host cell for Mtb and also other pathogens (95, 97).
Further studies using the in vivo naive MSCs will be needed to
determine the mechanism of Mtb dormancy intracellular to
naive human MSCs (73).

In addition to MSCs, HSCs may also be a potential niche for
dormant Mtb (22, 24). Studies also showed that nitric oxide
synthase 2 (Nos2) could play an important role in Mtb dormancy
intracellular to HSCs (98). HSCs are the multipotent, self-
renewing progenitor cells that reside in the BM niche in their
quiescent state like MSCs (64, 65). In an invitro assay, we found
that Mtb can infect CD34+HSCs (22). Furthermore, we found
that HSCs of some of the previously treated PPTBL subjects
contain dormant Mtb (22) (Table 1). Our finding was confirmed
by Tornack et al. who recovered dormant Mtb in HSCs of LTBI
human peripheral blood (24) (Table 1). When these human
CD34+HSCs and mouse CD150+HSCs containing non-
replicating Mtb were administered intratracheally to recipient
immune-deficient mice, animals formed lesions in the lungs (24)
suggesting that these dormant Mtb retained viability and re-
infection capability. However, in mouse model of Mtb infection,
HSCs has been found to resist internalization during acute
infection (99).

Thus, we and others have identified MSCs and HSCs
harboring dormant Mtb, and confirm their infectious and re-
activating potential in a very limited number of subjects.
However, a detailed study encompassing a larger group of
individuals is required to test the hypothesis (22) that viable

bacteria could be recovered from the BM-MSCs and HSCs of
subjects with an early sub-clinical case of PPTBL.

BONE MARROW DERIVED STEM CELLS’
POTENTIAL ROLE IN PPTBL: A TESTABLE
HYPOTHESIS

The development of PPTBL occurs in adult LTBI subjects
positive for IGRA (Interferon-Gamma Release Assays) or TST
(tuberculin skin test). The clinical presentation of PPTBL occurs
in seemingly healthy adults who had an episode of acute
respiratory tract infection (ARI) for more than 2 weeks.
Medlar tried to explain the development of PPTBL by the
“allergic soil” hypothesis (4, 5). Accordingly, primary TB
infection pre-condition the apical part of the lungs for
migration and homing of bacteria (4, 5). Medlar hypothesis
resembles the site-specific homing and niche to niche migration
of MSCs (64, 67, 100-102) and HSCs (103-105). Accordingly,
the primary TB infection may pre-condition the apical part of the
lungs for migration and homing of Mtb infected MSCs and or
HSCs in appropriate conditions. Such a possibility is gaining
significance as our understanding of BM-stem cells migration
and homing to distant organs is growing.

Recent advances in stem cell research suggest that BM-
derived stem cells migrate to the area of inflammation,
including lungs (106-109). The CD271+ BM-MSCs’ migration
from BM niche into the circulation (104, 108, 109) following
tissue damage/inflammation associated with acute myocardial
infarction (86) and acute Ischemic Stroke (110) suggesting the
mobilizations of these cells to the site of inflammation/injury.
Additionally, BM-stem cells exhibit age-specific mobilization to
specific tissues (104, 111). Moreover, CD271+ BM-MSCs are
significantly mobilized in adult/elderly versus children (86).
Interestingly, this is the age group of PPTBL development.

Hence, based on these stem cells’ sites and age specific
migration/homing potential, we have proposed a model of
PPTBL development in an immunocompetent adult subject
(22) (Figure 1). In this model, BM-stem cells harboring
dormant Mtb may migrate to lungs in response to tissue
inflammation likely due to ARI. These migratory stem cells
will localize to the apical part of the lungs as per the site
specific migration of CD271+ BM-MSCs and thus transfer Mtb
to resident alveolar macrophages, as well as resident lung MSCs
(Figure 1). As described in Figure 2A, periodic bouts of ARI may
send signals from lungs to BM for stem cell mobilization as a part
of BM-pulmonary niche to niche interaction. We hypothesize
that dMtb harboring MSCs will migrate to area of inflammation
in the lung, and reprogram to the “enhanced stemness” a
transient phenotype of stem cells characterized by ability to
maintain stemness, as well as secret cytoprotective agents in
the microenvironment of extreme oxidative stress/inflammation
(72, 112). Stem cells that reprogram to “enhanced stemness”
phenotype activate a HIF-2alpha stemness pathway, and exhibit
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FIGURE 2 | The emerging role of stem cell altruism in PPTBL development. (A) Inflammation such as acute respiratory tract infection (ARI) in lungs causes

PPTBL

mobilization and homing of dMtb harboring BM-MSCs to the lungs. (B) Inside the lungs, dMtb-BM-MSCs self-renew and reprogram from MSCs to altruistic stem
cells (ASCs) by the process of stem cell altruism (73, 112, 113). These ASCs undergo clonal proliferation and become permissible for intracellular replication of dMitb.
Replicating Mtb exit ASCs into extracellular space to infect alveolar macrophages. During this phase, patient exhibit subclinical exudative, focal pneumonia like phase
of PPTBL as shown in chest X-ray of a patient with sub-clinical PPTBL (arrow). (C) A host immune response surrounds the infected alveolar macrophages, and

eventually leads to granuloma and cavity formation, thus developing clinical PPTBL as shown in chest X-ray of a PPTBL patient (arrow).

altruistic behavior (112) ie. sacrificing self-fitness to enhance
group fitness during stress, and therefore, these transient stem
cells can be termed as altruistic stem cells (ASCs) (73, 112) in
contrast to competitive stem cells that eliminate weak neighbors
during stress (114). ES cell derived ASCs exhibited intrinsic
stemness (niche independent stemness i.e. autocrine regulation
of stemness) having an altruistic component i.e. ability to
modulate the niche to enhance group fitness in the
microenvironment of hypoxia/oxidative stress (Figure 3) (112).

Thus, ASCs exhibit niche modulatory or altruistic stemness in
the microenvironment of hypoxia/oxidative stress, and therefore
serve as niche defense mechanism (73). We suggest that
pathogen may exploit stem cell altruism (112) to enhance their
fitness in the hostile microenvironment of lung. Thus,
intracellular dMtb may facilitate ASC reprograming of MSCs
in the ARI lung. The reprogrammed ASCs may then stimulate
replicating of dMtb and their subsequent release to neighboring
MSCs and or macrophages. This process will lead to PPTBL
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FIGURE 3 | An experimental mouse model of stem cell mediated development of PPTBL. (A) Mouse model of streptomycin dependent mutant 18b-Mtb strain
dormancy intracellular to BM-MSCs (22). (B) After 6 months of streptomycin starvation, streptomycin is re-introduced and mice are infected with MHV-1 intranasally
to cause acute respiratory tract infection (ARI) inducing BM-MSC mobilization to lungs. (C) The dMtb harboring BM-MSCs in MHV-1 infected lungs expands and
reprogram to altruistic stem cells (ASCs; see text) that permit Mib replication and exit to extracellular space. The reactivated Mtb then infect nearby alveolar
macrophages, leading to PPTBL development.
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development (Figures 2B, C). This model depicted in Figure 2
can explain the clinical presentation of PPTBL in seemingly
healthy adults who had an episode of ARI for more than 2 weeks
before being diagnosed as a case of either sputum positive or
negative PPTBL. The model can also explain the reactivation of
dormant Mtb in immunocompetent adult despite having strong
Mtb specific IFN-gamma producing CD4+/CD8+ T cells. We
and others found that dMtb harboring MSCs are cytoprotective
(56) and can resist IFN-gamma mediated toxicity (96), which
may protect the reactivating Mtb from immune onslaught.

The stem cell model of PPTBL may also help us to gain
insight about sputum negative (Mtb negative for Acid Fast Bacilli
stain and culture) PPTBL, where the lungs contain fibrotic, and
non-progressive granulomas (14). These granulomas may
contain mostly dead or deep-dormant Mtb that fails to stain
for acid fast bacilli (AFB) (115), probably due to hypoxia/
oxidative stress prevalent in the granuloma. These deep
dormant Mtb are viable but non-culturable and require
resuscitation factors (116). Clinical subjects of PPTBL
harboring these granulomas may present in the clinic as
sputum negative but Chest X-ray positive pulmonary TB
(PTB) (117). Eventually, as the disease progress, the deep
dormant bacteria in the granuloma in these patients may
undergo resuscitation and therefore, patients turn into smear
positive PTB. Thus, PPTBL progression and maintenance may
involve a mechanism of resuscitating deep dormant bacteria. In
this context, sputum of smear negative subjects contains viable
but non-culturable (VBNC) Mtb (118); the source of this VBNC-
Mtb may be lung granuloma as bacteria in sputum reflect active
pulmonary lesions (119). Our preliminary study indicates that
CD271+BM-MSCs may resuscitate VBNC deep dormant Mtb
(29), suggesting the ability of stem cells to contribute to
resuscitating dying granulomas. Recently, CD73+ cells
containing Mtb antigen Ag85B has been detected in human
lung granulomas (96), suggesting the potential presence of Mtb
infected MSCs in active granuloma lesions of PTB, although
further testing is required to confirm the MSC phenotype of the
cells by direct sorting, as well as the viability of the intracellular
Mtb. Thus, we propose that studying stem cell mediated
resuscitation of deep dormant Mtb may contribute in
understanding the pathogenesis of smear negative PTB.

DEVELOPING MOUSE MODELS OF STEM
CELL MEDIATED INITIATION/
MAINTENANCE OF PPTBL

Animal models are essential to gain insight about the role of BM
stem cells in the endogenous reactivation of dMtb leading to
PPTBL. Guinea pigs, monkey, pigs, mice and rabbit are used to
model TB infection. Among these animals, only in mice, the BM
stem cell niche and resident lungs stem cells have been
extensively studied. Hence, mice could be an appropriate
animal model to study stem cells’ contribution to PPTBL
initiation. Indeed, mouse model has been extensively used to

study the immune equilibrium of lung granuloma (120), where
MSC may contribute to favor Mtb growth (121). However, Mtb
infected mice succumb to primary infection (22); therefore,
PPTBL cannot be studied in this animal type. Additionally,
Cornel model of dormancy is not considered as an appropriate
model for PPTBL, as unlike in human, where immune cells
induces dormancy, in the Cornell model, dormancy is achieved
by treating animals with anti-TB drugs.

Nevertheless, we have used a streptomycin mutant strain of
18b (m18b) (122) infected mouse model to study PPTBL
initiation. In this model, Mtb-m18b remains in viable and
non-replicating state for 6 months intracellular to CD271+
BM-MSC population (22), mainly in the hypoxic niche (27).
This mouse model is suitable to study stem cell mediated
endogenous PPTBL, as the animal’s lungs become Mtb free
after 6 months of streptomycin starvation; only a few Mtb in
dormant state can be detected intracellular to lungs and BM
CD271+MSCs (22), a situation similar to human spectrum of
latent TB. Additionally, in this mouse model, we have fully
characterized dormant Mtb harboring naive MSCs in the lung
and confirmed their stemness (self-renewal and differentiation).
Therefore, in this mouse model, BM and lung MSC interaction
can be evaluated during PPTBL development and maintenance.
We have further improved this model by testing the idea of ARI
mediated MSC to ASC reprograming and consequent Mtb
reactivation as depicted in Figures 2 to 3. To investigate this
possibility, dormant Mtb-m18b harboring mice were infected
with an ARI causing corona virus, the MHV-1 (murine hepatitis
virus strain-1) (123), to mimic oxidative/inflammatory stress in
the lung. MHV-1 infection led to the ASC reprogramming
of Mtb harboring CD271+MSCs. Importantly, ASC
reprogramming led to Mtb reactivation/replication was
reactivated in the lungs of 9/10 MHV-1 infected mice versus 1/
10-control mice (28). Notably, the virus infected animal
exhibited circulatory CD271+MSCs that contain Mtb (28)
(Figure 3). We suggest that this MHV-1 infected mouse model
of Mtb-m18b can be further improved as a putative mouse model
of PPTBL. However, further studies are needed to confirm the
usefulness of the mouse model to decipher the cellular and
molecular mechanisms of Mtb dormancy in BM stem cells.
Another approach would be to develop humanized mouse
model that contains human immune system, so that dormant
Mtb containing BM- stem cells of latent subjects can be injected
to these animals. However, our last few years of attempt to
develop this model were not successful as the humanized mouse
model succumbs to Mtb infection within 2-3 months
of infection.

FUTURE DIRECTION

Numerous studies suggest that source of PPTBL initiation is the
endogenous reactivation (34-36) although the source has not
been clearly known. Recent studies suggest that human BM-stem
cells may serve as a protective niche for dormant Mtb having
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reactivation potential (22, 24). Hence, future studies should be
directed to confirm the role of BM-stem cells in endogenous
reactivation of dormant Mtb. For clinical context, endogenous
reactivation can be confirmed by collecting Mtb in stem cells of
LTBI patients, and the Mtb obtained from sputum of the same
patient following PPTBL, and then subjecting these Mtb to
genotyping and WGS (34-36). This approach will confirm
either the PPTBL is due to endogenous Mtb reactivation or
exogenous Mtb strain. Such an approach may also be helpful to
screen potential HSC transplantation donors. Reports showing
Mtb infection after allogeneic HSC transplantation (124) suggest
that it is necessary to confirm intracellular Mtb dormancy status
of the donor to avoid risk of future dMtb reactivation in the
acceptor. In this context, we suggest that genotyping and WGS
approaches may help to confirm the reactivation potential of
dormant Mtb residing in donor’s BM-stem cells.

Future clinical studies should also be directed to examine if a
dynamic interaction between the BM stem cell niche and lungs
granulomas may contribute to PTB progression and drug-
resistance. Stem cell model of Mtb dormancy/reactivation
predicts that PPTBL mediated inflammation in the lungs will
sustain the dynamic niche-to-niche interaction between BM-
stem cells and lungs (Figures 1 to 2), thereby keeping
granulomas alive. Pulmonary inflammation, especially in
chronic obstructive pulmonary disease (COPD) and viral
infection induced ARI may enhance the dynamic niche-to-
niche interaction of BM stem cells and lungs niche thereby
initiating and sustaining Mtb reactivation (28). Epidemiological
data indicate that both smoking and COPD are two important
risk factors for PPTBL initiation and relapse (125). Urban air
pollution increases the incidence of COPD (126, 127), as well as
pandemic such as COVID-19 related ARI (128). Importantly,
both COPD and ARI may sustain and or aggravate the
pulmonary inflammation. Hence, it is important to address the
inflammatory aspect of PTB. Unfortunately, the inflammatory
aspects of PTB are not well addressed clinically, and patients are
left with inflammation, that may aid in COPD even after
successful anti-TB therapy (125, 129, 130). In fact, millions of
TB patients are suffering in their impoverished state in the
developing world, mostly suffering from chronic lungs diseases
including COPD related inflammation (126, 127) and ARI. Our
two and half-decades of anecdotal experience in managing
PPTBL subjects in Bhutan and India (23) through KaviKrishna
telemedicine care (22, 29) (https://www.kavikrishnalab.org/ktc/)
suggest that managing inflammation and improving the overall
nutrition can reduce PPTBL development and relapse, consistent
with published studies (131). Interestingly, a recent finding
shows that anti-inflammatory drug celecoxib reduces the
survival of Mtb intracellular to CD73+/Sca-1+ MSCs in the
lung of INH treated mice with PTB (96) suggesting the
potential benefit of managing inflammation to treat PPTBL.
Whether such affordable intervention of anti-inflammatory
agents reduces the dynamic interaction between stem cell niche
and lungs granulomas is now under active investigation.

Further advance in the stem cell field is required to gain insight
in to the mechanism of stem cell mediated Mtb dormancy and

reactivation. It will be important to find out how the pathogen
modulates stemness to maintain the immunosuppressive
phenotype. Interestingly, Mtb infected adipose tissue derived
MSCs has shown the activation of the autocrine pathway of
PGE2 (96), which was earlier found to be involved in the
stemness of MSCs. PGE2 may enhance the niche independent
stemness of immunosuppressive MSCs (73), thus benefiting
intracellular pathogen. BM stem cell niche may exert innate
defense against pathogens by modulating the niche (73). Indeed,
HSCs and endothelial progenitor cells modulate BM niche to
prevent pathogen infection (132). We found that after
intravenous injection of Mtb to mice, only a small fraction of
BM-MSCs harbor the pathogen, suggesting that the stem cell may
resist pathogen’s invasion. Indeed, in vitro studies found that
intracellular Mtb are killed by autophagy and phagocytosis
mechanism of MSCs (92). Also, Mtb infected MSCs secret nitric
oxide (92) that kills the intracellular Mtb (93). Another in vitro
study showed that rapamycin addition reduces the dormant Mtb
load inside MSCs by inducing autophagy (25). These emerging data
indicate a potential MSC mediated defense against Mtb invasion.
Interestingly, pathogen including Mycobacterium avium may
exhaust quiescence HSCs in BM niche by IFN-gamma mediated
proliferation (133). Additionally, BCG or Mtb-H37Rv infection in
mice BM causes HSC expansion (99, 134). These works suggest that
pathogen may disturb the long-term self-renewal capacity of HSCs.
In this context, we speculate that BM-stem cell niche has evolved
niche defense mechanism to resist pathogen mediated HSC
exhaustion. Mtb-H37Rv infection in BM causes the expansion of
hypoxic MSCs (56), indicating the potential existence of a stem cell
niche defense (73). However, in our Cornell model of dormancy
study, Mtb seems to escape these mechanisms of stem cell niche
defense to successfully reside inside BM-MSCs, while maintaining
the long-term health of the animal (56), suggesting that HSCs were
not exhausted. Thus, it appears that BM niche defense may have the
ability to maintain HSC self-renewal despite pathogen invasion.
Understanding the mechanism of stem cell mediated defense
against Mtb invasion will facilitate vaccine development against
dormant Mtb (135). Our ongoing work on stem cell altruism (72,
73, 112) may help us to further gain insight about the putative
ASC based stem cell niche defense and its role in Mtb dormancy
and reactivation. First, we found that MHV-1 viral infection (a
model of ARI) activates an innate ASC defense mechanism
against the virus, and in the process, reactivation of dMtb
occur (Figure 3). Interestingly, MHV-1 infection serve as a
mouse model of clinically relevant human infecting severe
acute respiratory syndrome corona virus 1 (SARS-CoV-1)
strain (123) and possibly SARS-CoV-2 mediated COVID-19.
Thus, MHV-1 mouse model may be useful to study whether
SARS-CoV-2 infection would reactivate dormant TB infection
(28). Second, ASC reprograming mechanism may be of relevance
in the resuscitation of deep dormant Mtb (29), which are VBNC
(118). Importantly, we showed that VBNC obtained from Mtb-
ml18b strain present in the sputum of smear negative PTB
subjects could be resuscitated by BM-MSCs and during the
resuscitation process, MSCs reprogram to ASCs (29). Third, in
a mouse model of Mtb infection, we found that VBNC harboring
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ASCs in the lung were identified and found to export
extracellular vesicle (EV) into the broncho-alveolar (BAL)
fluid. The EVs are rich in ESAT-6 antigen and therefore, may
serve as natural aerosol based vaccine. Fourth, we also isolated
such ESAT-6 rich EVs in the aerosol of subjects with smear-
negative PTB. Notably, the EVs rich aerosols did not contain live
Mtb. These findings indicate that aerosols of PTB subjects may
transmit antigens into the community without spreading the
pathogen, a potential natural vaccination process of herd
immunity (29). We propose that studying ASC reprogramming
may reveal an already existed natural immunity mechanism in
the community against Mtb, which may further be utilized to
develop an improved control program for TB or other
pathogens (29).

We speculate that the work on Mtb/BM-stem cell host/
pathogen interaction may also provide insight about the
memory component of BM-stem cell niche defense. It is
conceivable that stem cell niche has evolved sophisticated
mechanism to defend their niche, including the retention of
specific memory of a given pathogen. It has been known that
innate defense mechanism is capable of specific memory (136)
even in a thymic mice (137), and this type of innate immune
memory is now known as trained immunity (138), and the
mechanisms include the imprinting of pathogen specific
epigenetic signature in innate immune cells and resident stem
cells (138). Trained immunity has been largely characterized in
BCG-vaccinated mouse model of memory macrophages (139)
and memory NK cells (140). Importantly, in a stem cell model of
trained immunity, BCG trained HSCs in BM may differentiate to
monocyte and contribute to lung-alveolar macrophages defense
against the invasion of virulent Mtb strain H37Rv (134). This
indicates the role of trained immunity in the interaction between
BM-stem cell niche and alveolar-macrophage compartment.
Notably, virulent Mtb strain H37Rv modulates trained
immunity of HSCs (99) and also modulate the hypoxic
microenvironment of BM niche (56). Thus, virulent Mtb may
have evolved mechanisms to evade trained immunity to remain
dormant intracellular to MSCs or HSCs. Studying the
mechanisms of Mtb mediated evasion of trained immunity to
persist intracellular to HSC/MSCs may help to develop
innovative vaccine strategies against tuberculosis. In this
context, it will be interesting to study potential of Mtb-induced
ASCs (28, 29) as a part of trained immunity.

The pathogenesis and the immune response in PPTBL is
complex with multiple players often having double roles of
pathology versus protection (141, 142). It is possible that stem
cells may have double role: on one hand, stem cells may protect a
community by spreading herd immunity (29), and on the other
hand, stem cells may serve as a protective niche for dormant Mtb.
To decipher the complex role of stem cells in pathogenesis and
the immune response to PPTBL, future studies of BM-stem cell
biology need to further address the i) stem cell niche based
defense mechanism ii) stem cells’ niche to niche interaction
between bone marrow and lungs iii) the role of stem cell niche
defense in trained immunity.

DISCUSSION

In summary, emerging laboratory and clinical results now
provide a conceptual framework of the potential role of adult
stem cell niche in the dormant Mtb infection. Failure to eradicate
TB, despite decades of TB control programs (143) may be due to
dormant Mtb infection. The recent identification of CD271+
BM-MSCs, its localization in the hypoxic BM-niche (5, 66, 89),
mobilization in response to tissue damage (88), and its ability to
harbor dormant Mtb (9, 22) provide experimental support to this
hypothesis. Importantly, our initial observations have been
reproduced in many laboratories, which further strengthen our
hypothesis. These findings suggest a deep evolutionary
interaction between stem cells and Mtb, where the pathogen
exploits self-renewal mechanism of stem cells to remain dormant
and then induce PPTBL in healthy and immunocompetent hosts
for their robust transmission in the human community.
Advances in basic and translational biology research in stem
cell and Mtb host/pathogen interaction is necessary in order to
develop effective courses to eliminate this pathogen from
human host.
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