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Abstract: Cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC)
have shown poor effectiveness in treating peritoneal carcinomatosis (PC) of gastric origin with a
high tumor burden (high peritoneal cancer index), though there are scarce therapy alternatives that
are able to improve survival. In experimental studies, chimeric antigen receptor-T (CAR-T) cell
therapy has shown encouraging results in gastric cancer and is currently being evaluated in several
clinical trials. Regarding PC, CAR-T cell therapy has also proven useful in experimental studies,
especially when administered intraperitoneally, as this route improves cell distribution and lifespan.
Although these results need to be supported by ongoing clinical trials, CAR-T cells are a promising
new therapeutic approach to peritoneal metastases from gastric cancer. In this review, we summarize
the current evidence of the use of CAR-T cells in gastric cancer and PC of gastric origin.

Keywords: gastric adenocarcinoma; peritoneal carcinomatosis; intraperitoneal chemotherapy; cy-
toreductive surgery; immunotherapy; cell therapy

1. Introduction

Gastric cancer (GC) is the fifth most frequently diagnosed cancer and the third leading
cause of cancer-related death. More than one million new cases are diagnosed every year
worldwide [1]. The worldwide 5-year overall survival rate is between 20% and 40%, and
the median overall survival rarely reaches 12 months [2–4]. Despite recent advances in
treatment, more than 50% of patients who undergo surgery for GC relapse locally or
develop systemic metastases. Moreover, one half of patients are diagnosed with synchronic
systemic metastases associated with a 5-year survival rate below 10% [4].

The peritoneum is a common site of metastasis, and peritoneal metastases are as-
sociated with low rates of patient survival [4]. Following complete cytoreduction, the
5-year overall survival rate in patients with gastric peritoneal carcinomatosis (PC) is 13%
to 23% [5]. Half of the patients with GC will develop PC, and PC will be present in up to
20% of patients with a potential resectable tumor. Furthermore, after surgical treatment,
the peritoneum can be the only site of recurrence in up to 34% of cases [6].

Conventional treatment with chemotherapy, radiotherapy, or surgery is the therapy of
choice in most cancer patients [7]. However, the efficacy of these strategies is limited in
advanced GC due to its genetic complexity and heterogeneity [8]; thus, there is an urgent
need to develop precise, personalized therapeutic approaches [9]. This need is even more
pressing in patients with PC from GC. The current treatment, consisting of cytoreductive
surgery combined with hyperthermic intraperitoneal chemotherapy (HIPEC), offers a
median overall survival of 18 to 21 months [10–12].

Currently, advances in immunotherapy have enabled the clinical use of monoclonal
antibodies. Human epidermal growth factor receptor 2 (HER2) is commonly used as a
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target in immunotherapy, as it is overexpressed in 10% to 20% of GC cases. Trastuzumab is
a monoclonal antibody that targets this receptor and is mainly used in breast and gastric
cancer, improving patient survival [13,14].

The use of chimeric antigen receptor-T (CAR-T) cells is a new type of immunotherapy
developed over recent decades and consists of modifying patients’ own T-lymphocytes to
attack a specific target. By means of genetic engineering using viral vectors, the CAR is
introduced into the T cell, which enables the cell to recognize a selected tumor-associated
antigen (TAA) in a major histocompatibility class-independent manner [15].

Over the last 5 years, four types of CAR-T cells targeting CD19 have shown promis-
ing results in hematological malignancies and have since been approved by the FDA:
axicabtagene ciloleucel (trade name, Yescarta), tisagenlecleucel (trade name, Kymriah),
lisocabtagene maraleucel (trade name, Breyanzi), and brexucabtagene autoleucel (trade
name, Tecartus) [16–19].

1.1. Chimeric Antigen Receptor-T (CAR-T) Cell Therapy

The development of CAR-T cells began in the late 1980s. Early investigations re-
sulted in the first generation of cells which had a structure that consisted of a single
chain variable fragment (ScFv) region and the CD3ζ intracellular domain. These cells
were unsuccessful in clinical trials as they were able to activate but did not proliferate,
which indicated low efficacy [20–23]. The second and third generation of CAR-T cells
included one or two costimulatory molecules, respectively, in their intracellular domain
(Figure 1) [24,25]. These costimulatory molecules improved the efficacy and persistence of
CAR-T cells [23,24,26–29].
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Figure 1. The CAR-T structure is composed of ScFv: This region enables the T cell to recognize the
target antigen; hinge or spacer: binds the ScFv to the transmembrane domain and contributes to ScFv
flexibility; transmembrane domain: the link between the extracellular and intracellular regions; CD3z:
an intracellular signaling domain that activates the T cell; and costimulatory molecules: involved in
improving CAR-T proliferation and persistence.

However, tumors can escape from CAR-T cell activity due to their immunosuppressive
microenvironment, which inhibits CAR-T function. As a consequence, the fourth genera-
tion of CAR-T cells, or TRUCKs (T cells redirected for universal cytokine-mediated killing),
are currently being designed. These are capable of secreting proinflammatory cytokines
that can block the inhibitory effect of the tumor microenvironment, thereby enhancing their
antitumoral activity in an immunosuppressive microenvironment (Figure 2) [23–25].
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Selecting an optimal target is essential to the success of CAR-T therapy. The right
target must meet two requirements: Firstly, the target should be expressed in all tumor
cells; if not, antigen-negative tumor cells can escape the action of CAR-T cells and result in
tumor recurrence. Secondly, the target should be present only in tumor cells and be absent
from healthy cells in order to avoid an on-target, off-tumor response in which CAR-T cells
attack non-tumor cells [30].

CD19 in hematologic malignancies (e.g., B-cell lymphoma, childhood acute lym-
phoblastic leukemia, adult-onset ALL) meets these criteria. CAR-T cells targeting CD19
have achieved a complete response in 70% to 90% of patients [31–34]. These encouraging
results led to research into the application of this type of immunotherapy in solid tumors
with the hope of reproducing the same result as in hematologic malignancies.

However, solid tumors have some peculiarities that hematologic malignancies do not.
Firstly, TAAs are more heterogeneous in solid tumors, and finding an antigen that fits with
the target selection criteria is difficult [35]. Secondly, it is difficult for CAR-T cells to migrate
and penetrate the tumor [36]. Lastly, CAR-T cells encounter a hostile tumor microenviron-
ment that averts the action of these cells; this physical barrier consists of stroma and an
immunologic barrier composed of immunosuppressive cells and metabolites [30,37].

1.2. Adverse Effects Associated with CAR-T Cell Therapy

Cytokine-release syndrome is the most common side effect in patients undergoing
CAR-T cell therapy and is sometimes associated with fatal outcomes. Between 50% and
90% of patients who receive anti-CD19 CAR-T cell therapy could develop cytokine-release
syndrome during the first week after infusion. This effect is related to treatment response
and tumor burden. Cytokine-release syndrome results from immunologic over-activation
caused by CAR-T cells, which receive an exaggerated signal owing to receptor stimula-
tion. This produces cytokine release, activating myeloid cells (mainly monocytes and
macrophages) that generate a systemic inflammatory response mediated by IL-6 and IL-1.
The symptoms of cytokine-release syndrome vary widely. General malaise and nausea are
the most frequent symptoms, though the first symptom to present is often fever. Nonethe-
less, the disease may progress clinically to acute respiratory distress, acute renal failure,
disseminated intravascular coagulation, cardiomyopathy, or even arrhythmia [9].

CAR-T cell-related encephalopathy or immune effector cell-associated neurotoxicity
syndrome (ICANS): Between 30% and 90% of patients who receive anti-CD19 CAR-T cell
therapy develop neurotoxicity manifesting as mild confusion or, in severe cases, cerebral
edema [9]. This syndrome is related to a systemic inflammatory response induced by
myeloid cells that activate endothelial cells producing von Willebrand factor and Ang-2
that promote blood–brain barrier dysfunction.
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On-target, off-tumor response: Caused by the reaction of the immune system, this
response triggers the activation of CAR-T cells against healthy tissues expressing the target
antigen. This response is more common in solid tumors. The intensity and frequency of
this response vary according to the target and route of administration used. To avoid it, a
highly specific receptor for the tumor target must be selected, CAR-T cells must have high
affinity and specificity for the receptor chosen, and the CAR-T cells must be administered
at an appropriate dose [30].

A potential solution for decreasing the severity of the adverse effect is the local admin-
istration of CAR-T cells, i.e intratumoral or intraperitoneal. The peritoneal route increases
the local concentration of effector cells, which triggers a local immune response in the
peritoneal cavity and minimizes the adverse systemic effects. This lower systemic toxicity
is related to the binding of CAR-T cells and tumor cells on the peritoneal surface (extravas-
cular tissue) which involves limited cytokine release into the bloodstream. Furthermore, we
hypothesize that the systemic release of cytokines is hindered by the existence of a fibrous
stroma with a collagen-rich extracellular matrix, characteristic of peritoneal metastases.

2. Rationale

The peritoneal surface is a frequent site of involvement in GC, conferring poor prog-
nosis. Therapeutic approaches in patients with peritoneal metastases of gastric origin and
high tumor burden have shown poor results [38].

Multiple studies have explored the role of CAR-T in gastrointestinal cancers, obtaining
promising results regarding their capacity to eliminate tumor cells and their metastases.
However, most are preclinical studies in animal models. The choice of an experimental
in vivo model of peritoneal carcinomatosis to evaluate the efficacy and potential side
effects of CAR-T therapy is critical before initiating a phase I/II clinical trial. Xenograft,
humanized, syngeneic or transgenic are available murine in vivo models for CAR-T cell
therapy research.

CAR-T cell therapies designed for a number of different targets in GC have proven
useful in experimental studies and currently are being evaluated in registered clinical trials
with advanced GC patients.

2.1. Safety and Efficacy of CAR-T Therapy for Advanced Gastric Cancer: Ongoing Clinical Trials

The main trials related to CAR-T cell therapies in GC with available data are shown in
Table 1.
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Table 1. Ongoing clinical trials with CAR-T cell therapy in gastric cancer (source: clinicaltrials.gov (accessed on 25 October 2021)).

Target Antigen Identifier Gastric Cancer Condition Trial Phase CAR-T Infusion
Route

Start-Completion
Date Study Status Country

EpCAM

NCT02725125
EpCAM-positive relapsed

or refractory advanced
gastric adenocarcinoma

I/II Intravenous November
2015–November 2019 Unknown China

NCT03013712
EpCAM-positive relapsed

or refractory advanced
gastric adenocarcinoma

I/II Intravenous January
2017–December 2020 Unknown China

Claudin18.2

NCT04467853
Claudin18.2-positive

advanced gastric
adenocarcinoma

I Intravenous September
2020–November 2024 Recruiting China

NCT03890198
Claudin18.2-positive

advanced gastric
adenocarcinoma

I Intravenous April 2019–March
2020 Early discontinuation China

NCT04404595
Claudin18.2-positive

advanced gastric
adenocarcinoma

I Intravenous October
2020–September 2035 Recruiting United States

NCT04581473
Claudin18.2-positive

advanced gastric
adenocarcinoma

I/II Intravenous October
2020–December 2022 Recruiting China

HER2

NCT04650451
HER2-positive advanced

or metastatic gastric
adenocarcinoma

I/II Intravenous December
2020–January 2025 Recruiting United States

NCT04511871
HER2-positive relapsed or

refractory advanced
gastric adenocarcinoma

I Intravenous July 2020–January
2023 Recruiting China

NCT02713984
HER2-positive relapsed or

refractory advanced
gastric adenocarcinoma

I/II Intravenous March 2019–July
2019 Withdrawn China

NCT03740256
HER2-positive advanced

or metastatic gastric
adenocarcinoma

I

Intravenousin
combination with

intratumorCAdVEC
(oncolytic

adenovirus)

June 2021–December
2038 Recruiting United States
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Table 1. Cont.

Target Antigen Identifier Gastric Cancer Condition Trial Phase CAR-T Infusion
Route

Start-Completion
Date Study Status Country

Mesothelin

NCT03941626

Mesothelin-positive
advanced gastric
adenocarcinoma,

unresectable or refractory
to chemoradiotherapy

I/II intravenous September
2019–December 2021 Recruiting China

NCT03638206

Mesothelin-positive
relapsed or refractory

advanced gastric
adenocarcinoma

I/II intravenous Marah 2018–March
2023 Recruiting China

NCT04348643
CEA-positive relapsed or

refractory advanced
gastric adenocarcinoma

I/II intravenous February 2020–April
2023 Recruiting China

CEA NCT02349724
CEA-positive relapsed or

refractory advanced
gastric adenocarcinoma

I intravenous December
2014–December 2019 Unknown China

MUC1 NCT02617134
MUC1-positive relapsed or

refractory advanced
gastric adenocarcinoma

I/II intravenous November
2015–November 2018 Unknown China

CD276 NCT04864821 CD276-positive advanced
gastric adenocarcinoma I Intravenous and

intratumor May 2021–May 2023 Recruitment not begun China

ROR2 NCT03960060
ROR2-positive relapsed or

refractory advanced
gastric adenocarcinoma

I intravenous May 2019–June 2023 Recruitment closed China

CD44v6 NCT04427449 CD44v6-positive advanced
gastric adenocarcinoma I/II Intravenous June 2020–December

2023 Recruiting China
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2.2. Carcinoembryonic Antigen (CEA)

Carcinoembryonic antigen (CEA) is a glycoprotein related to GC and other gastroin-
testinal tumors. In clinical practice it is used to estimate the severity of gastrointestinal
cancer and to detect recurrence among patients in follow-up. This antigen is an attractive
target for CAR-T cell therapy as it is not detected in healthy adult tissues and is only
expressed on the luminal face of gastrointestinal and lung cells. However, tumor cells lose
this polarity and express CEA on their entire surface. Since normal cells express CEA on
the luminal side of the cell, they remain invisible to immune cells. This attribute enables
CAR-T cells to distinguish normal cells from tumor cells [39]. When administered in the
hepatic artery, CAR-T cells that target CEA have been found to be safe in patients with
liver metastases, causing no severe adverse effects [40].

Another phase I clinical trial studied the efficacy of second-generation anti-CEA CAR-
T cells administered systemically in escalating doses to treat colorectal liver metastasis. The
authors of the study demonstrated that these cells are well-tolerated, even at high dose
levels, with no toxic effects [41].

Although the clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-
specific CAR-T cells was limited due to respiratory toxicity and short persistence [20], new
generations of CEA CAR-T cells are currently being evaluated in GC patients.

2.3. HER2 (Human Epidermal Growth Factor Receptor 2)

HER2, or ERBB2, is an antigen present on the cell surface. When activated, this antigen
promotes cell proliferation and inhibits apoptosis. Amplification or overexpression of HER2
has been associated with several cancers, including GC. Approximately 10% to 30% of GCs
have HER2 amplification; however, this characteristic confers a poor prognosis in terms of
tumor growth, lymph-node involvement, and metastases [42,43]. Thus, targeting HER2 in
patients with HER2 amplification could be an optimal therapeutic approach. Trastuzumab
is a monoclonal antibody used in GC, and when used in combination with chemotherapy in
patients with HER2 overexpression, it has a demonstrated benefit for overall survival [44].
Nevertheless, as some patients develop resistance to this drug, new strategies are needed,
such as CAR-T cells that target HER2.

A preclinical study in a murine model by Han et al. demonstrated that systemic HER2
CAR-T cell therapy was effective in treating HER2-positive GC and did not affect tissues
expressing low levels of HER2, thus suggesting no on-target, off-tumor effect. Furthermore,
the authors observed Tcell persistence suggestive of protection against recurrence [45].

2.4. ICAM (Intercellular Adhesion Molecule 1)

ICAM, another cell surface glycoprotein, is involved in cell—-cell and cell–extracellular
matrix adhesion. ICAM is overexpressed in 40% of GC patients and is related to a worse
prognosis. ICAM is found more frequently in advanced stages, such as lymph-node
metastases and systemic metastases [46]. In mice, the use of ICAM in CAR-T cell therapy
has shown a strong capacity for tumor elimination and can also act on distant tumors [47].

2.5. Claudin 18.2 (CLDN18.2)

CLDN18.2 is a stomach-specific isoform of claudin-18, and plays an important role in
cell junctions. It is highly expressed in healthy gastric cells, but only within the differenti-
ated epithelial cells of gastric mucosa, and is also expressed in gastric tumor cells, their
metastases, and in pancreatic and in esophageal adenocarcinoma [48].

Jiang et al. showed that CLDN18.2 CAR-T could produce a complete response in a
xenograft murine model. Furthermore, despite the fact that healthy cells express CLDN18.2,
no obvious toxicities were found [49]. Note that patients with GC undergo total gastrectomy
as part of their treatment, thus on-target, off-tumor responses should be avoided by
removing the stomach.

A phase I pilot study used CAR-T anti-CLDN18.2 in seven patients with gastric cancer
and five with pancreatic cancer. One gastric patient achieved a complete response, and



J. Clin. Med. 2021, 10, 5050 8 of 13

there were two partial responses. No severe adverse effects were observed, indicating that
this treatment is safe and well-tolerated [50].

2.6. EpCAM

Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein ex-
pressed on epithelial cells and is involved in cell–cell adhesion as well as signaling, migra-
tion, proliferation, and cell differentiation. EpCAM is overexpressed in more than 90% of
GCs and is associated with a poor prognosis. Clinical trials with EpCAM as a target for
CAR-T cell therapy in advanced gastric cancer are currently underway [51].

Meanwhile, other targets for CAR-T therapy in gastric cancer studied in clinical trials
include mesothelin, MUC1, CD276, CD44v6 (transmembrane glycoproteins), and ROR2
(tyrosine-protein kinase transmembrane receptor) (Table 1).

2.7. CAR-T in Peritoneal Carcinomatosis of Gastric Origin

The peritoneal surface is frequently involved in GC, conferring a poor prognosis, and
peritoneal disease will develop in up to 50% of patients with advanced GC [6]. Currently,
the most studied and validated prognostic factor is the peritoneal carcinomatosis index
(PCI). The PCI quantifies the extent of tumor spread on the peritoneal surface. A PCI of
less than 7 is an independent prognostic factor associated with higher overall survival in
peritoneal carcinomatosis of gastric origin [52,53].

The discovery and development of new biomarkers, such as exosomes produced by
tumor cells which are detectable in ascitic fluid or circulating blood, can help us to choose
the appropriate therapeutic strategy for each patient. New nanotechnologies, such as
templated plasmonic exosomes (TPEX), make it possible to detect exosomes in patients’
body fluids [54]. Measurement of exosomes in the ascitic fluid of patients with gastric
peritoneal carcinomatosis may be useful in identifying patients who are non-responders to
intraperitoneal chemotherapy [55].

These patients would be suitable candidates for new target therapies such as CAR-T
cells. As mentioned previously, multiple studies have explored the role of CAR-T in GC,
obtaining promising results in terms of their capacity to eliminate tumor cells and their
metastases. Currently, there is an urgent need for new therapeutic approaches to treat
gastric PC, and CAR-T cells could be a potential treatment.

3. Experimental Works and Clinical Applications
3.1. Route of CAR-T Administration Cells in PC

Treatment of PC using CAR-T was first described by Katz et al., who used CAR-T
cells targeting CEA to treat colorectal PC in an animal model. The authors observed that
intraperitoneal delivery was superior to systemic administration.

Intraperitoneal infusion was associated with higher tumor reduction and a more
durable effect compared to systemic administration, thus suggesting a protection against
recurrence and against other distant metastases [56].

Another group designed a second-generation CAR-T cell strategy targeting TAG72 in a
murine model with ovarian PC. Intraperitoneal administration was superior to intravenous
administration, showing increased antitumor activity and better overall survival, which
was further enhanced with repeated infusions [57].

Ang et al. created a murine model of PC and developed CAR-T cells against EpCAM
by means of mRNA transfection. This type of transfection resulted in temporary action,
which offers a higher safety in case of adverse effects. Due to the transient effect, repeated
infusions are needed for an optimal effect [58].

Therefore, these results suggest that local administration allows better CAR-T cell traf-
ficking and infiltration, greater antitumor activity, and added protection against recurrence
and extraperitoneal antitumor effect while decreasing systemic adverse effects. However,
there are still challenges inherent to solid tumors and PC that must be overcome. The
most important hurdle is the tumor microenvironment, which confers a physical barrier
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and an immunosuppressive microenvironment. One of the physical barrier compounds is
the tumor stroma, which contain high levels of collagen in the extracellular matrix. This
stroma prevents systemic and local treatments from reaching the tumor cells. However, this
collagen can be destroyed using collagenase, therefore facilitating drug penetration [59].

Furthermore, intraperitoneal administration of CAR-T cells has shown antitumor
activity at distant sites such as subcutaneous nodules. This is not a result of the direct
action of CAR-T cells; rather, it is the consequence of an effect similar to the abscopal effect
that occurs in radiotherapy [60]. This mechanism is triggered by the release of multiple
tumor antigens after being destroyed by CAR-T cells, allowing them to be recognized by
dendritic cells and creating an immune response against antigens other than the CAR-T
target [60].

3.2. CAR-T in Gastric PC

Though there are several studies investigating the usefulness of CAR-T in PC, studies
focused on peritoneal carcinomatosis from GC are scarce.

Third-generation CAR-T cells targeting mesothelin as treatment for GC and PC in a
murine model showed that intravenous administration could produce tumor regression
and even elimination, and reports have shown persistence of CAR-T cells in peripheral
blood after 2 weeks. This resulted in prolonged survival in mice treated with CAR-T
compared with no CAR-T. The researchers also observed that peritumoral injection in
subcutaneous implants significantly reduced tumor growth compared with intravenous
administration [61]. Likewise, intraperitoneal HER2 CAR-T cells in PC from GC demon-
strated higher efficacy with prolonged mice survival and significantly delayed tumor
growth compared to administrating untransduced T cells intraperitoneally [45]. Another
group targeted ICAM-1 and compared intraperitoneal injection versus tail vein injection.
They observed a significantly higher tumor response with intraperitoneal delivery [47].

The CAR-T cell therapy approach in PC originating from GC is being evaluated in
two phase I clinical trials (Table 2). The targets used in these trials are CEA and EpCAM,
which are suitable receptors for intraperitoneal administration because both are specifically
expressed on the entire surface of peritoneal tumor cells, which facilitates direct contact
with CAR-T cells.

Table 2. Clinical trials with CAR-T cell therapy in peritoneal carcinomatosis of gastric origin (source: ClinicalTrials.gov
(accessed on 25 October 2021)).

Identifier Trial
Phase

Target
Antigen Gastric Cancer Condition CAR-T Infusion Route Start-Completion Date Study

Status Country

NCT03563326 I EpCAM Peritoneal metastasis Intraperitoneal Aug 2018-Dec 2022 Recruiting China

NCT03682744 I CEA Peritoneal metastases or
malignant ascites Intraperitoneal Sep 2018-Mar 2021

Active,
recruitment

closed

United
States

4. Conclusions

CAR-T cell therapies have been widely investigated and have achieved extraordinary
results in hematological malignancies. However, the application of this approach in solid
tumors has fallen short of expectations, and its efficacy is still unclear. Solid tumors
contain certain hurdles not present in hematological malignancies, which explains the
lack of efficacy of CAR-T cell therapy in these tumors. The main obstacle is related to the
tumor microenvironment, which provides the tumor with a physical barrier and plays
an immunosuppressive role. Many studies are evaluating new types of CAR-T cells and
optimizing them for greater efficacy, persistence, and migration. In addition to modifying
CAR-T cells to improve their action, these cells are also being combined with other therapies
such as monoclonal antibodies, chemotherapy, collagenase, or surgery, which may improve
their results.

The use of CAR-T cells in GC and PC appears to be safe and feasible. The results
of preclinical studies with these cells are promising and several targets may be used.



J. Clin. Med. 2021, 10, 5050 10 of 13

Additionally, since patients with GC undergo gastrectomy, specific antigens present in
healthy gastric cells can be used as targets without an on-target, off-tumor response, thereby
expanding the number of potential targets.

Intraperitoneal delivery of CAR-T cells is the best route of administration as it pro-
motes migration to, and infiltration of, the tumor cells, as well as averting the systemic
toxicity of the microenvironment. Despite the existence of ongoing clinical trials needed to
confirm the results of preclinical studies, regional CAR-T cell therapy for the treatment of
PC provides promising evidence for its use and a new hope in the search for a treatment for
this lethal disease. The possible selection of patients with gastric peritoneal carcinomatosis
for CAR-T cell therapy is shown in a flowchart (Figure 3).
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