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The routine use of genomics for disease surveillance provides the opportunity for high-resolution bacterial epidemiology.

Current whole-genome clustering and multilocus typing approaches do not fully exploit core and accessory genomic var-

iation, and they cannot both automatically identify, and subsequently expand, clusters of significantly similar isolates in

large data sets spanning entire species. Here, we describe PopPUNK (Population Partitioning Using Nucleotide K-mers),

a software implementing scalable and expandable annotation- and alignment-free methods for population analysis and clus-

tering. Variable-length k-mer comparisons are used to distinguish isolates’ divergence in shared sequence and gene content,

which we demonstrate to be accurate over multiple orders of magnitude using data from both simulations and genomic

collections representing 10 taxonomically widespread species. Connections between closely related isolates of the same

strain are robustly identified, despite interspecies variation in the pairwise distance distributions that reflects species’ diverse

evolutionary patterns. PopPUNK can process 103–104 genomes in a single batch, with minimal memory use and runtimes up

to 200-fold faster than existing model-based methods. Clusters of strains remain consistent as new batches of genomes are

added, which is achieved without needing to reanalyze all genomes de novo. This facilitates real-time surveillance with con-

sistent cluster naming between studies and allows for outbreak detection using hundreds of genomes in minutes. Interactive

visualization and online publication is streamlined through the automatic output of results to multiple platforms. PopPUNK

has been designed as a flexible platform that addresses important issues with currently used whole-genome clustering and

typing methods, and has potential uses across bacterial genetics and public health research.

[Supplemental material is available for this article.]

Determining whether a set of pathogen isolates are significantly
more genetically similar than randomly selected representatives
from the circulating population is critical in identifying transmis-
sion pairs, localized outbreaks, or global patterns of dissemination
(Croucher and Didelot 2015). For phenotypically diverse bacterial
pathogens, categorizing sets of similar isolates is particularly valu-
able, as such clusters of genotypes are often strongly associated
with variation in clinically relevant traits, including host range
(Willems et al. 2012; Reuter et al. 2014; Weinert et al. 2015), viru-
lence (Reuter et al. 2014; Weinert et al. 2015; Alikhan et al. 2018),
propensity to cause nosocomial outbreaks (Willems et al. 2012;
Aanensen et al. 2016), and antimicrobial resistance profile (Aanen-
sen et al. 2016; Kallonen et al. 2017). These subdivisions are also of
practical importance for phylodynamic studies (Croucher et al.
2013; Weinert et al. 2015; Kallonen et al. 2017; Kremer et al.
2017) or recombination identification (Croucher et al. 2013; Wei-
nert et al. 2015). Cluster identification has typically used complex

population structure analysis models, such as hierBAPS (Cheng
et al. 2013), but these computationally intensive methods are not
optimal for ongoing surveillance, as they must be rerun from
scratch when data sets expand, and low-frequency clusters tend
to be merged into a single diverse group (Croucher et al. 2013;
Grad et al. 2016;Willemse et al. 2016). This is important, as follow-
ing the temporal trends in these clusters provides critical informa-
tion on population-level changes following the emergence of new
genotypes (Kallonen et al. 2017) or resulting from interventions
such as vaccine introduction (Croucher et al. 2013). Therefore
devising efficient, extendable population structure analysis algo-
rithms represents a critical challenge as genomic pathogen surveil-
lance becomes routine.

Existing approaches to using genetic data for surveillance are
typically based on multilocus sequence typing (MLST), in which
isolates are labeled according to their set of alleles at several short
fragmentsofunlinkedhousekeepinggenes. Following its inception
in the late 1990s (Maiden et al. 1998), continually updated online
MLST databases have facilitated rapid comparisons between global
isolate sets collected over decades (Aanensen and Spratt 2005;
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Jolley et al. 2017). Clusters within the population can be defined
through grouping similar MLST sequence types using minimum-
spanning trees, such as those produced by eBURST (Feil et al.
2004). However, the fixed resolution of MLST means it struggles
to distinguish isolates of low-diversity pathogens such asMycobac-
terium tuberculosis and Salmonella enterica serovar Typhi (Achtman
2012). Similarly, distinct clusters of high-diversity pathogens can
be merged into “straggly” clonal complexes encompassing highly
divergent bacteria, owing to high recombination rates causing spu-
rious links between unrelated groups of isolates (Turner et al. 2007;
Willems et al. 2012). Whole-genome sequence data provide an op-
portunity to greatly improve the precision and resolution of bacte-
rial typing. Core genome MLST (cgMLST) schemes extend the
MLST approach across sequences common to all isolates of a sam-
ple and have demonstrated their value at scales ranging from ge-
nus-wide taxonomy to investigation of nosocomial outbreaks
in Neisseria spp. (Bratcher et al. 2014), Listeria monocytogenes (Rup-
pitschet al. 2015),Enterococcus faecium (DeBeenet al. 2015),Escher-
ichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and
Staphylococcus aureus (Mellmann et al. 2016). This combines the
speed and ease of assigning indices to alleles combinedwith the in-
creased resolution of using larger proportions of the core genome.
However, all such analyses are limited to the coding sequences
identified in the original scheme: In the species-specific schemes
listedabove, thisvariedbetween41%and84%of thegenes ina typ-
ical genome, which can be further limited if not all loci can be ex-
tracted from the query genome. Further resolution is lost if these
data are treated as a set of allele identifiers, rather than nucleotide
sequences, as this obscures the level of similarity betweennoniden-
tical alleles. Nevertheless, cgMLST is highly sensitive and can un-
cover deeper relationships between isolates than MLST. This is a
trade-off with specificity, since a minimum-spanning tree con-
structed using sequence types is fully connected, losing the simple
and intuitive splittingof thepopulation into clonal complexes (Feil
et al. 2004).

To improve on the resolution of cgMLST, whole-genome
MLST (wgMLST) schemes have been developed to incorporate ac-
cessory genes. Differences in gene content underlie much pheno-
typic variation between bacteria, and these are correlatedwith core
genome divergence inmultiple species (Croucher et al. 2014; Zhou
et al. 2014; Holt et al. 2015; Aanensen et al. 2016), motivating the
use of this information in epidemiological typing. However, incor-
porating data fromaccessory loci can be difficult, asmany aremore
difficult to align and define than core genes. Further complications
arise from the difficulty of resolving orthologous and paralogous
genes (Zhang et al. 2015) and the capacity of mobile elements to
import many genes over short timescales (Croucher et al. 2016;
Abudahab et al. 2018), potentially confounding outbreak identifi-
cation (Zhou et al. 2013). SomewgMLST schemes add further com-
plexity through continually expanding the scheme to incorporate
new loci. This necessitates extracting previously unseen loci from
query genomes and ensuring consistency across the revised
scheme, which is both computationally intensive and algorithmi-
cally complicated. Instead, wgMLST schemes may be fixed, al-
though this limits their resolution by excluding newly observed
accessory genes. These will include any newly emerged loci that
enter the population through horizontal gene transfer (Alikhan
et al. 2018), the detection of which represents a critical aspect of
pathogen surveillance.

The population structures identified by cgMLST (Maiden and
Harrison 2016; Henri et al. 2017; Alikhan et al. 2018), wgMLST
(Henri et al. 2017; Alikhan et al. 2018), and hierBAPS (Croucher

et al. 2013; Aanensen et al. 2016; Kallonen et al. 2017; Alikhan
et al. 2018) are highly consistent with theMLST clonal complexes,
indicating that where such clusters can be identified, they are bio-
logically meaningful. However, none of the existing genomic ap-
proaches are appropriate for defining these clusters in an easily
extendable manner from genomic surveillance data. To solve
thesemethodological difficulties in a single approach, we have de-
veloped PopPUNK (Population Partitioning Using Nucleotide
K-mers; https://poppunk.readthedocs.io/), which uses variable-
length k-mer comparisons to find genetic distances between iso-
lates, the distribution of which is then used to find clusters we
define as strains, sets of isolates significantly similar in both their
core and accessory genomes relative to the rest of the species.

Results

PopPUNK uses variable-length k-mers to accurately resolve

genetic divergence

Weproposed the probability that a k-merwillmatch between a pair
of sequences, pmatch, is the product of paccessory, the probability it
does not represent an accessory locus unique to one member of
thepair, andpcore, theprobability it representsasharedcoregenome
sequence that does not contain any mismatches. To calculate pcore
and paccessory, comparisons were run using theMinHash algorithm
(Broder 1997) as implemented inMash (Ondov et al. 2016), which
estimates the Jaccardsimilaritybetweenreducedsizek-mer“sketch-
es” of the two sequences, providing ameasure of pmatch. This is run
for a selection of k-mer lengths between kmin and kmax, the former
being determined by the minimum sequence length needed to
avoid frequent false positivematches given the size of the genomes
being compared (Methods), and the latter is limited by the require-
ment for memory-efficient MinHash processing. By determining
the probability of k-mer matching shared core sequence over this
size range, it is possible to estimate the density of single-nucleotide
polymorphisms (SNPs) distinguishing the pair across their shared
core, defined as π (Nei and Li 1979). This is because longer k-mers
are more likely to contain a SNP, and correspondingly the pro-
bability of a k-mer perfectlymatching between a pair of isolates de-
creases by a factor of (1− π) for each additional base in the k-mer:

pcore = (1− p)k.

This approach assumes a random and uniform distribution of
SNPs across the core, which is defined as those genomic regions in
which nucleotide strings at least kmin long can be matched, repre-
senting a significant level of similarity between the pair. Loci in
which there are no kmin-long matches, resulting from either ab-
sence of the sequence in onemember of the pair, or high sequence
divergence of at least one SNP per kmin bases, are classified as be-
longing to the accessorygenome;kmin therebyprovides an intrinsic
statistical distinction between the core and accessory regions in the
pairwise comparison. Hence, paccessory can be regarded as the
Jaccard similarity between a pair in terms of the extent of common
sequence they share, allowing the definition of the accessory diver-
gencebetween sequences, a, as the corresponding Jaccard distance:

paccessory = (1− a).

Unlike pcore, paccessory is independent of k, allowing both π and
a to be jointly estimated from the relationship between pmatch,k

and k (Fig. 1):

pmatch,k = (1− a)(1− p)k.
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To test whether this approach was effective in differentiating
core and accessory divergences, we performed forward-time simu-
lations of bacterial populations diversifying through point muta-
tions, large insertions and deletions (indels), and recombination
using Bacmeta (Sipola et al. 2018) using the parameters listed
in Supplemental Table S1. Those simulations in which sequences
diverged only through point mutations all correctly identified
a<5×10−3, whereas π increased according to the set pointmuta-
tion rate over multiple orders of magnitude, even in the presence
of recombination (Fig. 2A,B; Supplemental Figs. S1–S3). Further
tests found PopPUNK could resolve genomes distinguished by
only a single pointmutation,with the k-mer sketch size used deter-
mining the balance between precision and computational speed
(Supplemental Text S1; Supplemental Fig. S4). To test the accuracy

with which a could be estimated, the point mutation rate was
fixed at 5 × 10−6 bp−1 generation−1, and indels of a fixed size of
100 bp occurred at varying rates relative to point mutations to
emulate changes of gene content. The calculated a covaried with
the indel rate, without substantially affecting the inferred distribu-
tion of π (Fig. 2C; Supplemental Figs. S1, S2). When the indel rate
was fixed at 0.05, the distributions of both a and π converged to-
ward a singlemode as the rate of exchange through recombination
was increased (Fig. 2D), consistent with changes in the analogous
core and accessory genetic distances observed in a studyusing a dif-
ferent framework to study the effects of sequence exchange (Mart-
tinen et al. 2015). Hence, PopPUNK’s use of variable-length k-mers
can resolve variation in the genome content and sequence to gen-
erate a pairwise distance distribution that accurately reflects the
population-wide distribution of genetic diversity.

PopPUNK identifies divergence between bacterial genomes

across multiple species

To test whether PopPUNK could also produce accurate estimates of
a and πwhen applied to real high-throughput sequencing data, the
software was next applied to recent population genomics studies
from 10 diverse bacterial species using the default sketch size of
104. Thesewere chosen tobegenetically andecologically varied, in-
cluding enteric bacteria (Escherichia coli and Salmonella enterica),
Gram negative respiratory pathogens (Haemophilus influenzae and
Neisseria meningitidis), streptococci (Streptococcus pneumoniae and
Streptococcus pyogenes), other Firmicutes pathogens (Staphylococcus
aureus andListeriamonocytogenes), and two species inwhich limited
geneticdiversityhaspreviouslybeendetected (Neisseriagonorrhoeae
andMycobacterium tuberculosis). The pangenomes of these data sets
were defined using Roary (Page et al. 2015), from which the popu-
lation-wide core genomewas aligned and pairwise distances calcu-
lated using theTamura-Nei (tn93) distance (Tamura andNei 1993).
These pairwise distances use only loci conserved across at least 99%
of the isolates in each sample, rather than the pairwise definitionof
the core intrinsic to PopPUNK. The genome content divergence
was measured as pairwise Jaccard distances based on the presence
andabsenceof coding sequences. In all cases, therewas a strong lin-
ear correlation across the full range of both a and π (Fig. 3; Table 1).
For π, the linear relationship was close to the identity line, indicat-
ing PopPUNKwas accurately estimating the per-base probability of
sequence divergence. The exception wasM. tuberculosis, for which
the range of π was an order of magnitude lower than in other spe-
cies. To capture these differences PopPUNK needed to be run with
a sketch size of 105. Even with a 10-fold sketch size increase above
the default, the analysis remained fast and memory efficient
(Supplemental Table S2; Supplemental Fig. S5), and the estimated
π values strongly correlated with the tn93 distances.

The comparison of awith the pairwise gene content distances
from Roary found close agreement in the cases of H. influenzae,
L. monocytogenes, and S. enterica, but generally PopPUNK’s esti-
mates of accessory divergence were correlated with, but lower
than, Roary’s. Much of this is likely attributable to differences in
the levels of within-species divergence between orthologs, which
were not accounted for in the Roary analyses, which all used the
default BLAST identity threshold (95%). However, PopPUNK en-
forces changes to the kmin value that determines how variation is
split between π and a based on genome size. This dependence on
the method used to identify orthologs could be demonstrated us-
ing the S. pneumoniae data set, in which there is a high divergence
between the Roary and PopPUNK analyses. The smaller a estimates

Figure 1. Summary of the PopPUNK algorithm. (Step 1) For each pair-
wise comparison of sequences, the proportion of shared k-mers of different
lengths is used to calculate a core and accessory distance. Differences in
gene content cause k-mers (examples highlighted in green) to mismatch
irrespective of length, whereas point mutations distinguishing ortholo-
gous sequences cause longer k-mers to mismatch more frequently than
shorter k-mers. (Step 2) The scatterplot of these core and accessory dis-
tances is clustered to identify the set of distances representing “within-
strain” comparisons between closely related isolates. A network is then
constructed from nodes, corresponding to isolates, linked by short genetic
distances, corresponding to within-strain comparisons. Connected com-
ponents of this network define clusters. (Step 3) The threshold defining
within-strain links is then refined using a network score, ns, in order to gen-
erate a sparse but highly clustered network. (Step 4) Finally, the network is
pruned by taking one sample from each clique. The distances between
new query sequences and references are calculated, and within-strain dis-
tances used to add new edges. The clusters are then reevaluated as in Step
3, with the nomenclature being kept consistent with the original reference
cluster names.
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from PopPUNK were very similar to those estimated by an inde-
pendent annotation and analysis of gene content (Supplemental
Fig. S5) using COGtriangles (Kristensen et al. 2010; Croucher
et al. 2014) rather than Roary. PopPUNK is still likely to be more
conservative in calculating a than any ortholog-based analysis,
as it will align any segments of genes that are similar, regardless
of synteny, and the sketches it generates are nonredundant, mean-
ing a is independent of repeat copy number.

The benefits of this are evident from the discrepancy between
the distributionof a inM. tuberculosis, inferred to reach up to∼10%
by Roary but only ∼1.5% by PopPUNK (Fig. 3). M. tuberculosis ex-
hibits little diversity in gene content, but ∼10% of the genome
comprises repetitive, variable PE/PPE repeats (Cole et al. 1998).

Additional analysis of complete, reanno-
tated M. tuberculosis genomes also found
this discrepancy in a, indicating the dif-
ference was not a consequence of incon-
sistent draft assemblies (Supplemental
Fig. S6A,B). Instead, the discrepancy was
approximately halved when Roary no
longer used synteny to define orthologs
(Supplemental Fig. S6C,D) and pairwise
alignments with NUCmer (Delcher et al.
2003) identified similar proportions of
divergent sequence as PopPUNK (Supple-
mental Fig. S6E). Thiswas consistentwith
manual inspection of alignments, which
suggested the accessory variation identi-
fied by Roary was largely a consequence
of the difficulty of identifying some
orthologs, rather than genuine differenc-
es in sequence content, largely as a conse-
quence of expansion, contraction, and
rearrangement of PE/PPE repeats. Never-
theless, PopPUNK can detect potential-
ly biologically important divergence in
intergenic regions (Oren et al. 2014), as
it does not depend on genome anno-
tation. Additionally, PopPUNK was be-
tween six- and 200-fold faster than
Roary, while using between five- and 45-
fold less memory (Supplemental Table
S2). Therefore, PopPUNK is an efficient
means of accurately measuring SNP and
gene content divergence in species-wide
genomic data sets.

PopPUNK successfully resolves diverse

bacterial populations into strains

PopPUNK successfully replicated the
discontinuous distribution of a and π be-
tween all pairs of sequences in an S. pneu-
moniae population (Supplemental Fig.
S7), which was previously shown to re-
flect the sequence clusters within the
population (Croucher et al. 2014). Bacte-
rial populations can be considered as be-
ing composed of multiple strains if there
is a separation between the shorter genet-
ic distances, corresponding to within-
strain comparisons, and the larger be-

tween-strain distances, which may form one or more clusters in
the plot (Fig. 2). To test whether this also applied to other bacterial
pathogens, the pairwise a and π distributions were plotted for the
other nine species-wide collections listed in Table 1 (Fig. 4; Supple-
mental Fig. S8). Species known to exchange sequence through ho-
mologous recombination at similar frequencies to S. pneumoniae,
such as Neisseria meningitidis (Fig. 4), exhibited a similar dis-
tribution of pairwise genetic distances. The group of within-strain
pairwise distances, found near the origin of the graph, was elon-
gated, likely as a consequence of extensive diversification of
strains through transfer of genomic islands and shuffling of core
sequence through homologous recombination. The between-
strain distances were primarily concentrated within a single dense

A

B

C

D

Figure 2. Detection of genetic diversity in simulated populations by PopPUNK. Each plot shows the
deviation in gene sequence (π) and gene content (a) estimated by PopPUNK from a sample of 25 isolates
from each of 50 simulations run with the same parameters. (A,B) Deviation through point mutation only.
As the rate of point mutation (base−1 generation−1) was increased over two orders of magnitude, esti-
mates of population-wide π increased accordingly, as shownby the distribution of pairwise core distances
in the top row of histograms (A). The scatterplots below (i.e., in B) show that a measurements remained
below 5×10−3, demonstrating the specificity with which divergence was measured. (C) Deviation
through insertions and deletions. To test the estimation of a in a clonally evolving population, simulations
included insertions and deletions of 100-bp segments occurring at a rate defined relative to the fixed
point mutation rate of 5 × 10−6 base−1 generation−1. Estimates of a increased proportionately with this
rate, without affecting the observed range of π. (D) Effects of recombination on the distribution of genet-
ic diversity. With the insertion and deletion rate fixed at 0.05 relative to the point mutation rate of 5 ×
10−6 base−1 generation−1, the rate of recombination relative to point mutations was then varied. This
resulted in a concentration of the estimated distances into a single mode, representing the changing
population structure as frequent exchange between isolates homogenizes the divergence between
them in both gene sequence and content.
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modal cluster, consistentwith the simulations involvinghigh level
of recombination in Figure 2. In S. pneumoniae, inclusion of a
distances clearly identified a third component comprising compar-
isons with atypical unencapsulated isolates (Croucher et al. 2014).

In contrast, Streptococcus pyogenes strains exhibit little evi-
dence of recent diversification through homologous recombina-
tion (Nasser et al. 2014), hence, the within-strain distances were
tightly clustered near the origin of the graph (Supplemental Fig.

S8). Nevertheless, between-straindistances remained concentrated
in a single node, consistentwith themuchhigher level of recombi-
nation inferred across broader samples (Didelot andMaiden2010).
A different pattern was evident in other species in which homolo-
gous recombination is infrequently observed, such as Escherichia
coli, Salmonella enterica, and Staphylococcus aureus (Fig. 4; Supple-
mental Fig. S5). These exhibited much stronger evidence of deep
population structure, characterized by multimodal between-strain

Figure 3. Comparison of core and accessory distances from PopPUNK (x-axis) and pan-genome construction with Roary (y-axis). For each species, the
core distance was calculated as the Tamura-Nei (tn93) distance from the core genome alignment; the accessory distance was calculated as the Jaccard
distance between binary strings representing gene presence/absence. In each panel, the line of identity (red line) and a linear regression (blue line) are
also plotted. Sketch sizes were 104, except for M. tuberculosis which used a sketch size of 105.
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distance distributions that likely reflect ancestral divergences that
have not been overwritten by sequence exchange. The distribution
of within-strain distances had high variance in the accessory direc-
tion, which is likely to reflect rapid diversification in gene content
through movement of mobile genetic elements in the absence of
core genome diversification through homologous recombination
(Zhou et al. 2014; Aanensen et al. 2016; Kallonen et al. 2017). A
more extreme version of this pattern was clear in Listeria monocyto-
genes and Haemophilus influenzae, which are composed of deep-
branching lineages that result in small, tight clusters being formed
in the π-a distance space. Although π and awere generally correlat-
ed, the inclusion of accessory distances helped further resolve clus-
ters of pairwise comparisons into separate components, both
permitting easy identification of atypical samples likely represent-
ing contaminated or low-quality assemblies, and providing a clear
overview of sequence distribution in the species. Hence, PopPUNK
can identify evidence ofmultistrain populations across a taxonom-
ically diverse set of species with varied ecologies and rates of hori-
zontal sequence exchange.

PopPUNK can exploit network properties to refine strain

definitions

In order to identify clusters in π-a space, two alternative approach-
es were implemented within PopPUNK: two-dimensional
Gaussian mixture models (2D GMMs), which split the points
into a user-specified maximum of K two-dimensional Gaussian
distributions; or HDBSCAN, which is run iteratively to identify
fewer than a user-specified maximum number of clusters D
(Methods). The results of the application of both methods to the
genomic data sets listed in Table 1 are shown in Figure 4 and
Supplemental Figure S8: In each case, both methods were success-

fully able to resolve the pairwise distances into discrete clusters, of
which the closest to the origin represent within-strain relation-
ships. The bacterial population can then be represented as a net-
work in which each node corresponds to an isolate, and each
within-strain relationship to an edge between these nodes (Fig.
1). This network has the property that strains can be defined as
the separate connected components (Fig. 5).

Neither the 2D GMM or HDBSCAN methods alone could
satisfactorily resolve the recombinogenic populations into strains,
primarilydue to thediffusenatureof thewithin-straindistribution,
which likely reflects the heterogenous rates of diversification
observed in different strains (Croucher et al. 2013; Didelot et al.
2013). For the 2DGMMs, this wasmanifested as insufficiently spe-
cific, elongated within-strain distributions, which incorrectly
includedbetween-strain links as edges. ForHDBSCAN, the expecta-
tion of a background noise in the distributionmeant somewithin-
strain points were omitted from the appropriate cluster. Only a few
spurious connections can have a dramatic effect on strain defini-
tions, as previously observed for MLST clonal complexes (Turner
et al. 2007). For strain definitions to be robust, networks should
haveanonoverlappingcommunity structure,withdistinct compo-
nents that are highly internally connected. To achieve this, a linear
threshold in π-a spacewas used to define the genetic divergence be-
lowwhich edgeswould link isolates (Fig. 1). Varying this identified
a transition point at which there was a rapid increase in the transi-
tivityof edges in thenetwork, and acorrespondingdecrease in edge
density (Fig. 5A), as spurious high-stress edges linking highly con-
nected components are eliminated (Supplemental Figs. S9, S10).
Therefore, a network score statistic ns ranging between zero and
one was defined:

ns = transitivity× (1− density).

Table 1. Adjusted R2 between PopPUNK-inferred core and accessory distances, and core and accessory distances inferred from a core genome
alignment produced using Roary

Species
Publication
reference

Adjusted R2 Number of clusters
Average Silhouette index

(best = 1, worst =−1)

Adjusted
Rand indexCore Accessory PopPUNK

RhierBAPS (level
1/level 2) PopPUNK

RhierBAPS
(level 1)

Staphylococcus aureus
(N=284)

(Aanensen et al.
2016)

0.96 0.69 27 9/29 0.58 0.53 0.852

Escherichia coli
(N=1508)

(Kallonen et al.
2017)

0.98 0.97 130 24/101 0.40 0.41 0.965

Salmonella enterica
(N=847)

(Alikhan et al.
2018)

0.91 0.97 12 10/32 0.54 0.53 0.999

Listeria monocytogenes
(N=128)a

(Kremer et al.
2017)

1.00 0.96 31 3/18 0.60 0.55 0.924

Haemophilus influenzae
(N=75)

(Koelman et al.
2017)

0.98 0.95 27 7/24 0.69 0.41 0.478

Neisseria meningitidis
(N=882)

(Lees et al. 2017) 0.99 0.96 45 15/66 0.61 0.40 0.775

Neisseria gonorrhoeae
(N=1102)

(Grad et al. 2016) 0.94 0.72 132 15/58 0.21 0.36 0.921

Streptococcus pyogenes
(N=675)

(Lees et al. 2016) 0.84 0.78 167 17/61 0.76 0.18 0.102

Streptococcus
pneumoniae (N=616)

(Croucher et al.
2013, 2015)

0.83 0.75 62 19/63 0.76 0.59 0.766

Mycobacterium
tuberculosis (N=219)

(Cohen et al.
2015)

0.95 0.72 54 7/20 0.41 0.61 0.914

We calculated the average Silhouette index over all samples using the PopPUNK core and accessory distances and the clustering method indicated in
the table header. The adjusted Rand index representing overlap between PopPUNK clusters and RhierBAPS clusters is shown, where identical clustering
is one, and completely different clustering is zero.
aFor Listeria monocytogenes, the second level RhierBAPS clusters are analyzed, as the first level represents the deep split between lineages.
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Figure 4. PopPUNKmodel fitting output for five archetypal examples (other species shown in Supplemental Fig. S8). Each row is a species, with each plot
showing the distribution of core and accessory distances. In each plot, points are colored by their predicted cluster, and the cluster closest to the origin is the
within-strain cluster. The two-dimensional Gaussianmixturemodel (2DGMM) is in the left column, which also shows ellipses with themean and covariance
of the fitted mixture components. The HDBSCAN plot in the center column shows unclassified noise points in black. The right column shows the fits when
maximizing the network score to refine the 2D GMM fit. Listeria monocytogenes has clearly separated clusters, which were well-predicted by all methods.
Although there is more complex structure on the plots, Escherichia coli and Neisseria meningitidis have a within-strain cluster also well captured by all ap-
proaches. In Streptococcus pneumoniae, recombination makes the boundary between clusters less distinct, and the mixture model includes too many links
(Fig. 5A). HDBSCAN is more accurate, but the refinement of the initial fit provides the most accurate and intuitive demarcation of the within-strain links.
Streptococcus pyogenes exhibits lowwithin-strain recombination; hence, it has a dense cluster of points near the origin of the graph, but high between-strain
divergence, resulting in the single, broad between-strain set of points. Network score fit refinement is required for an accurate model fit in this case.
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For each data set, nswas first calculated by using a linear boun-
dary to separate the within and between-strain distances, based on
the 2D GMM of HDBSCAN results. This boundary’s position was
then optimized to maximize ns (Methods). This provided an intu-
itive threshold defining within-strain distances (Fig. 4) and tended
to be consistent whether initialized from either a 2D GMM or
HDBSCAN (Supplemental Fig. S7). Inspection of the network be-
fore and after this refinement showed that small numbers of spu-
rious edges between high frequency clusters were removed, and
low-frequency clusters were kept distinct (Fig. 5B), increasing the
robustness of strain definitions.

Comparison of PopPUNK with alternative typing methods

For the populations listed in Table 1 the strain definitions resulting
frommodel refinementwere evaluated relative to the top level clus-
ters identified from the core genome alignment using RhierBAPS
(Tonkin-Hill et al. 2018). PopPUNKused15- to74-fold lessmemory

and ran between 10- and 100-fold faster than RhierBAPS (Supple-
mental Table S2). The biggest differences in performance were ob-
served in relatively small collections containing extensive core
genome divergence (Fig. 3), presumably representing the complex-
ityof fitting theRhierBAPSmodel to suchdata. Thenumberof clus-
ters estimated by each method was similar (Table 1). The adjusted
Rand index canbeused to compare the clustering results. This rang-
es from zero (different clusters) to one (the same clusters) while ad-
justing for chance cluster overlap (Rand 1971; Hubert and Arabie
1985); the average adjusted Rand index of 0.852 indicated a high
level of overlap between the methods. Based on the Silhouette
distance calculated from the π and a distances, the clustering
identified by PopPUNK was typically of similar, or better, quality
than that of RhierBAPS. For instance, in the case of S. enterica, the
clusters identified agreed perfectly with a recent reappraisal of spe-
cies and subspecies definitions (Alikhan et al. 2018), whereas using
RhierBAPS leads to two cases of subspecies being merged, and a
cluster with a singlemember being added to another larger cluster.

D

C

A B

E

Figure 5. Network and query assignment for S. pneumoniae and E. coli. (A) Cytoscape view of the network for the Massachusetts S. pneumoniae data set
using the 2D GMM fit. Nodes (colored dots) are samples and edges (lines) are those pairwise distances classified as within-strain. The nodes are colored by
clusters according to the refined fit in B, showingwhich clusters are incorrectlymerged in themixturemodel fit. (B) As in A, but showing the network after fit
refinement. High-stress edges causing clusters to bemerged have been removed after maximizing the network score. (C) Box plots showing the similarities
between cluster assignment when running PopPUNK in different modes. The different model types (2D GMM or HDBSCAN) implemented in PopPUNK
were each fitted to either the Massachusetts or Maela S. pneumoniae population defined in Corander et al. (2017), then refined. The three nonreference
populations were then added in successive batches, either through comparisons to the full data set or a representative set of reference sequences selected
based on network structure, in all possible permutations. The Rand indexwas used to quantify clustering similarity between all those permutations in which
the final population to be integrated was the same; only those isolates in the most recent extension of the network were used. These values are shown
separated according to the starting reference population (Massachusetts or Maela), initial model (2D GMM or HDBSCAN), and comparison method
(bar color; full database or references only). (D,E) Simulating surveillance of the E. coli BSAC population. A five-component 2D GMMwas fitted to the pair-
wise distances between the 2001 isolates, and batches of isolates from successive years added sequentially either retaining the full database throughout
(D) or identifying references after each addition (E). The stacked bar charts show the prevalence of strains in the population in each year, with the black
component representing isolates of the multidrug-resistance-associated ST131 lineage, which emerged from 2002 onward. The full output of this analysis
is provided in Supplemental Table S3.
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Notably, RhierBAPS produced a superior clustering for
N. gonorrhoeae and M. tuberculosis, which lack the assumed strain
structure (Supplemental Fig. S8). For the analyses of such species,
or individual strains within multistrain species, PopPUNK allows
for models to be refined separately for the π and a distances
(Supplemental Text S1). Using this approach to analyze both the
S. pneumoniae multidrug-resistant lineage PMEN14 and N. gonor-
rhoeae found these core and accessory clusterings to be highly dis-
crepant. For PMEN14, this was consistent with the frequent
infection by phage previously identified using PANINI (Abudahab
et al. 2018),whereas forN.gonorrhoeae, pairs separatedbyhighabut
low πwere found to be distinguished by the Gonococcal Genomic
Island through association analysis using pyseer (Supplemental
Fig. S11; Lees et al. 2018a).

To further evaluate the clusters generated by PopPUNK using
the models refined jointly on π and a, they were compared to SNP
distances calculated from the Roary core genome alignments
(Supplemental Table S4; Supplemental Fig. S12) and the corre-
sponding maximum likelihood phylogenies (Supplemental Table
S5). In general, both the PopPUNK and RhierBAPS clusterings cor-
responded to clades in the phylogenies, indicating PopPUNK
strains are typically related by common descent. Calculating the
within-strain SNP distances, which approximates the SNP distance
cutoff that could be used to define sequence clusters, varied by
more than two orders of magnitude between species. This demon-
strates the flexibility of PopPUNK’s approach, which can adapt to
the varied distance distributions across species, rather than favor-
ing a particular threshold.

The PopPUNK clusters were also compared to MLST and
cgMLST schemes for two taxonomically diverse species with
good quality typing schemes, L. monocytogenes and E. coli (Supple-
mental Tables S6, S7). The methods used, stringMLST (Gupta et al.
2017) and chewBBACA (Silva et al. 2018), were bothmore resource
intensive than the PopPUNK analyses. For direct comparison with
the PopPUNK strains, clonal complexes were defined using differ-
ent threshold numbers of allele differences. In both species, the
PopPUNK clusters were highly similar (adjusted Rand index above
0.98) to MLST clonal complexes defined by linking only single lo-
cus variants. For the cgMLST schemes, the PopPUNK clusters were
highly similar to clustering samples with up to 100 allele differ-
ences in the 1701 core genes of L. monocytogenes (adjusted Rand
index=0.974) and up to 1000 allele differences in the 2360 core
genes of E. coli (adjusted Rand index=0.997). Hence, PopPUNK ef-
ficiently identifies similar relationships to cgMLSTapproaches, but
can automatically adapt its clustering threshold according to the
studied population, generating better average Silhouette distances
in π-a space than gene-by-gene methods.

PopPUNK rapidly integrates new genomic data into clusters

By first generating a reference database and defining a model by
which a and π distances can be assigned as being within- or be-
tween-strain, PopPUNKallows thenetworkbywhich strains are de-
fined to be extended. New batches of genomes can then be
included without needing to refit the model or recalculate all pair-
wise distances. This can result in existing strains expanding in
number, merging with others, or new strains not previously repre-
sented in the database being founded. By automatically rebuilding
anupdated database, PopPUNKallows iterative expansion through
addition of successive batches of genomes. The accuracy of this ap-
proach was tested using a data set of 4107 draft S. pneumoniae
genomes resulting from the combination of four different popula-

tions, known tohavedivergent strain compositions (Supplemental
Fig. S13), sampled from Massachusetts (USA), Southampton (UK),
Nijmegen (Netherlands), and Maela (Thailand) (Corander et al.
2017). Both the 2D GMM and HDBSCAN models were fitted and
subsequently refined based on network properties using either
the Massachusetts or Maela collections as the initial reference set.
The three nonreference populations were then added as individual
batches in every possible permutation to test the consistency of
clusters from different starting points. The final clusterings of the
isolates in the last population to be added were compared using
the Rand index (Fig. 5C) and the adjusted Rand index (Supplemen-
tal Fig. S14). Using the same referencepopulation and refinedmod-
el,when the strains of the final populationwere comparedwith the
middle two populations having been included in different orders,
the Rand indices were all above 0.9997 (Fig. 5C). Comparisons
were alsomade between successive queries assigned using different
initial reference populations (Massachusetts orMaela) ormodel fits
(GMMorHDBSCAN). The consistencyof the π-a distributions, and
refinedmodel fits, meant there was only a slight decrease in the re-
producibility of the clustering, with the median Rand index still
greater than 0.99 (Fig. 5C). These were all highly similar to the re-
sults obtained when all 4107 isolates were clustered in a single
step, regardless of whichmodel fitting approach was used (Supple-
mental Fig. S15). The clustering observed after successive additions
ofquery sequences to thenetworkof genomes therefore exhibits re-
assuringly little sensitivity to the original choice of population and
model fit.

The addition of batches by calculating the distance to every
sample in the original clustering is inefficient, as the tight clusters
of isolates within the same strain will each be separated from a giv-
en query by similar π and a distances. By default, PopPUNK reduces
a full database to a set of reference genomes, which includes just
one representative from each clique (i.e., a fully connected compo-
nent) within the network (Fig. 1). This selects at least one isolate
from each strain cluster to use as a reference and will include mul-
tiple representatives of clusters that are not fully transitive, such
that any new within-strain query will have at least one edge con-
necting it to the correct cluster. This allows for faster and more
efficient analysis of new batches of data, fromwhich new referenc-
es can be extracted. To test whether this approach caused any
decrease in clustering reproducibility, itwas used to successively in-
tegrate the four testpopulationsof S. pneumoniae as before (Fig. 5C).
No decline in the accuracy of isolate assignment to strains was de-
tected compared to using the full databases, nor was there a
decrease in similarity to the global clustering of all populations
(Supplemental Fig. S15). The final networks of all four combined
populations contained a median of 281.5 references (range: 111–
477): This almost 15-fold reduction in the database size resulted
in amedian 4.6-fold decrease inCPU time required for the addition
of the final batch.

To test how this worked in a surveillance setting, the BSAC
E. coli collected between 2001 and 2011 (Kallonen et al. 2017)
were analyzed in batches, according to their year of isolation. A re-
fined GMM model was fitted to the 2001 data set, and later years
added either using the full database, or a reference set updated after
each batch addition. This approach found similar population
trends to the published analysis (Fig. 5D). The multidrug-resis-
tance-associated ST131 lineage identified as a new strain by
PopPUNK as soon as it was first detected in 2002, with all later rep-
resentatives assigned to this cluster. Results using the full and ref-
erence-only approaches were always similar, and often identical,
despite the latter approach reducing CPU and memory use by
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∼50% (Fig. 5E). There was no trend toward greater divergence over
time, as the addition of data allowed some closely related strains to
be merged (Supplemental Table S3). Hence, using this network-
based design, PopPUNK can efficiently expand an accurate data-
base as new data become available.

PopPUNK outputs can be used directly for interactive

browser-based analysis

PopPUNK can combine input epidemiological datawith the genet-
ic analysis results to generate files for visualization and analysis
with the online visualization software Phandango (Hadfield et al.
2018), the browser-based viewer GrapeTree (Zhou et al. 2018), net-
work analysis tool Cytoscape (Shannon et al. 2003), and the online
epidemiology platform Microreact (Argimón et al. 2016). Micro-
react allows interactive views of a neighbor joining tree of core dis-
tances on the left and a t-SNE projection of accessory distances on
the right, usingMicroreact’s network interface developed for PANI-
NI (Abudahab et al. 2018),withnodes in both coloredby PopPUNK
strain assignment. Links anddescriptions of examples of suchanal-
yses are provided in Supplemental Table S8, including examples of
howPopPUNKcanhighlightnewly addeddata relative to the exist-
ing strains. As these platforms allow visualization at a resolution
finer than that of overall clusters,within-strain structure canbedis-
cerned, such as the three clades of the E. coli ST131 lineage (https://
microreact.org/project/rJGAHaPtm) (Petty et al. 2014), and the ac-
cessory variation in S. pneumoniae PMEN14 (Supplemental Text S1;
Supplemental Fig. S16; Abudahab et al. 2018). This also allows out-
break data to be analyzed, visualized, and shared online in a few
minutes (Supplemental Text S1). PopPUNK therebyprovides a sim-
ple and efficient means to intuitively and interactively analyze
complex data using a platform that facilitates online collaboration
and publication.

Discussion

The complexity and scale of bacterial genomic epidemiology data
sets necessitates new approaches for population-wide analyses.
PopPUNK responds to these needs by providing a comprehensive
suite of algorithms for analyzing large bacterial population geno-
mic data sets, from species-wide collections to outbreak studies,
overcoming the technical and computational limitations of previ-
ous approaches. Themethod’s speed results from thememory- and
CPU-efficient estimation of core and accessory pairwise distances
between isolates using MinHash-optimized k-mer comparisons.
The strains identified by PopPUNK are highly consistent with
the clusterings generated by RhierBAPS, MLST, and cgMLST, as
well as the clades in maximum likelihood core genome phyloge-
nies. The annotation- and alignment-free approach means run-
ning PopPUNK on draft assemblies is up to 200-fold faster than
Roary, which starts from annotations; up to 100-fold faster than
RhierBAPS, which starts from a core genome alignment; and up
to threefold faster than cgMLST, which starts from a predefined
scheme. The use of k-mer comparisons also fully exploits the infor-
mation available in the entire genome assembly, without being
limited to the core or a predefined set of common loci, allowing
variation in the accessory genome to be quantified simultane-
ously. Unlike gene-by-gene methods, PopPUNK can be run on a
new species or collection without necessitating careful definition
and evaluation of a typing scheme. The software can also adapt
to using different genome sizes, through altering kmin, and differ-
ent levels of sample-wide diversity, by altering theMinHash sketch

sizes. Additionally, there is flexibility in its application of machine
learning techniques for defining strains, making it applicable
across a wide variety of population structures and collection sizes,
and providing the opportunity to expand the implemented reper-
toire of these techniques used by the software.

Model refinement can also be adapted to the observed π-a dis-
tributions. The concordance of PopPUNK’s default strain defini-
tion with clusters identified by other methods is consistent with
them representing coherent natural populations (Alikhan et al.
2018), validating their critical use epidemiologically both for fol-
lowing longitudinal trends and understanding the distribution
of clinically important traits in cross-sectional samples. The clus-
ters are typically comparable to single MLST allele differences, al-
though with the advantage that the boundary to merge clusters
is automatically found through network refinement, and core
and accessory distances are immediately available for more de-
tailed within-strain investigation. Where multistrain structures
are not evident in a sample, PopPUNK can divide collections
into sequence clusters, using the divergence in the core genome
(Palys et al. 1997), or genomotypes, defined as being similar in
the accessory loci they harbor (Doolittle 2002). In each mode,
PopPUNK applies a stringent threshold that minimizes the proba-
bility of spurious links, which connect nodes with high stress, and
eventually lead to “straggly” clusters indirectly linking distantly re-
lated isolates. This approach also avoids the problem of clusters
arising from diverse sets of rare genotypes, rather than lineages de-
scended from a recent common ancestor (Croucher et al. 2013;
Grad et al. 2016;Willemse et al. 2016). PopPUNK instead separates
these into multiple small, distinct groupings, allowing emerging
genotypes to be identified rapidly, emulating one of the most de-
sirable properties of a high-quality MLST scheme.

The stringency of the within-strain threshold also ensures
strain definitions are persistent, and therefore robust to the addi-
tion of further batches of data, as demonstrated for both S. pneumo-
niae and E. coli. PopPUNK is therefore ideally suited to addressing
the current limitations of k-mer-based epidemiological methods,
which suffer from the absence of an appropriate curated database
or a stable strain nomenclature (Nadon et al. 2017), while retaining
the benefit of being scalable to tens of thousands of genomes.
Furthermore, by exploiting network properties to identify a re-
duced set of informative references, PopPUNK is much faster
than naive k-mer comparison approaches when data are added
in batches, as in epidemiological surveillance applications. Such
functionality is further enhanced through outputs that can be
readily shared using online visualization and analysis tools.
Hence PopPUNK can be used as a pipeline to rapidly perform the
most important tasks in bacterial epidemiology: analyzing popula-
tion structure, identifying strains, finding substructure within
these clusters, and integrating new data. Alternatively, its modu-
larity means individual components may be used standalone, for
example, when opting to use traditional read mapping to perform
detailed analysis of variation with a cluster, or using allelic instead
of core distances to construct clusters through the network.
PopPUNK therefore greatly expands our capacity to conduct geno-
mic surveillance of bacterial pathogens.

Methods

Rapid calculation of core and accessory divergences

PopPUNK uses pairwise comparisons through k-mer matching be-
tween two sequences (s1 and s2) atmultiple k lengths to distinguish
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divergence in shared sequences, π (Nei and Li 1979), from diver-
gence in accessory locus content, here defined as a, the Jaccard dis-
tance between the sequence content:

a(s1, s2) = 1− (s1 > s2)
(s1 < s2)

.

For any given k, aMinHash algorithm can efficiently estimate
a, albeit with confounding by divergence due to π that prevents
matching between k-mers in the core genome common to (s1,s2).
Assuming that such sequence mismatches are distributed evenly
throughout the genome, a can be estimated independently of
k and π by calculating a function for each (s1,s2) pair that relates
the proportion of shared k-mers pmatch, π, and a over a series of
k-mer lengths k:

pmatch,k = (1− a)(1− p)k,

whichwe fit as a linear relationship in log space byminimizing the
least squares divergence, and constraining a> 0; π>0:

log( pmatch,k) = log(1− a)+ k log(1− p).

As both distance estimates are symmetrical, only a single
comparison is calculated between each (s1,s2) pair, corresponding
to the upper triangle of a square distance matrix, or (n-1) × n/2
comparisons. The calculation of all pairwise pmatch are further
optimized for speed in our implementation (Supplemental
Methods). Supplying each input sequence as a FASTA-formatted
assembly, we use Mash (Ondov et al. 2016) with a default sketch
size of 104 to efficiently calculate pmatch for every second k-mer
size from k= kmin to k= kmax (29, by default). We constrain kmin

such that the probability of a random k-mer match prandom is less
than 5% (Supplemental Methods):

kmin = log (L)+ log (1− prandom)− log (prandom)
log (4)

,

where L is the genome length and log(4) enters due to the alphabet
size (assumingminimal gaps or unspecified bases). For typical bac-
terial genomes with L between 1 and 8 Mb, this corresponds to a
kmin of either 12 or 13.

Creating clusters using core and accessory divergences

To create clusters of strains from the distance pairs (π, a), we first
perform spatial clustering on all pairwise distances within the sam-
ple set to attempt to find the within-strain component nearest the
origin. This is achieved using either a Gaussian mixture model
(GMM) with a set maximum number of components K, or
HDBSCAN with a set maximum number of clusters D.

The distances defined as being within-strain are those in the
component or cluster nearest the origin. We then create an undi-
rected, unweighted network consisting of samples as nodes, linked
by edges when the distance was classified as within-strain. We
define PopPUNK clusters as the connected components of this net-
work (Figs. 1, 5). New query samples are added by calculating the
distances to samples in the reference network and adding in those
edges predicted to be within-strain. Clusters are updated to reflect
the connected components.

This network is also used to select representative references,
comprising one or more samples from each cluster, by retaining
only one sample from each clique in the network (where every
node in a clique is mutually connected to every other node), there-
by reducing its overall size with negligible loss of information (Fig.
5C; Supplemental Fig. S15). Finally, theGMMorHDBSCANmodel
fit can be improved bymoving the within-strain boundary and us-
ing the resulting network’s properties to calculate and maximize

the network score ns. Full details of the PopPUNK clustering meth-
od and its implementation can be found in the Supplemental
Materials.

Output and visualization

Although a neighbor joining tree constructed using pairwise Jac-
card distances directly has been shown to be reasonably accurate,
using core genome divergence gives a more accurate tree topology
(Lees et al. 2018b). We therefore use dendropy or RapidNJ to pro-
duce a midpoint-rooted neighbor joining tree from the core dis-
tances (Sukumaran and Holder 2010; Simonsen et al. 2011), and
an implementation of t-SNE in the sklearn package (Pedregosa
et al. 2011) to generate a projection of isolates based on the pair-
wise amatrix (Abudahab et al. 2018). To enable interactive visual-
ization of these outputs, PopPUNK can write files formatted for
Microreact (Argimón et al. 2016), Phandango (Hadfield et al.
2018), and GrapeTree (Zhou et al. 2018). Each of these can be au-
tomatically joined with other user-provided metadata for visuali-
zation. We also produce output for Cytoscape (Shannon et al.
2003) for inspection and analysis of the network.

Comparison with other methods using both simulated

and real data

To determine the specificity of PopPUNK in distinguishing core se-
quence divergence from differences in gene content, forward-time
simulations were run using Bacmeta (Sipola et al. 2018). A popula-
tion of 1000 bacteria, each represented by 100 loci each 1 kb long,
was simulated for 1000 generations. Insertions and deletions were
fixed at a length of 100 bp. Recombinations always exchanged a
complete locus and were independent of sequence divergence be-
tween donor and recipient. A sample of 25 genomes was output
from the final generation of each simulation, whichwere analyzed
using PopPUNK using default settings. Pairwise distance estimates
from50 independent simulationswere thencombinedforplotting.

To compare PopPUNK with other clustering methods, we se-
lected a range of previously published data sets on 10 different bac-
terial species (Croucher et al. 2013, 2015; Cohen et al. 2015;
Aanensen et al. 2016; Grad et al. 2016; Lees et al. 2016, 2017;
Kallonen et al. 2017; Koelman et al. 2017; Kremer et al. 2017;
Alikhan et al. 2018). For each data set, as well as PopPUNK, we
ran Roary (Page et al. 2015) to construct a pan-genome, using a
BLAST sequence identity cutoff of 95%. We calculated core dis-
tances using the Tamura-Nei (tn93) distances (Tamura and Nei
1993) in the core genome alignment. For accessory distance, we
used the Jaccard distance between the accessory gene presence/ab-
sence vectors. For comparison with another high-performance
clustering algorithm, we ran RhierBAPS using between 8 and 16
cores depending on data set size (Tonkin-Hill et al. 2018). We esti-
mated themaximumcluster size by data set, using the output from
Roary and information from published analyses of these data sets.

For each species, we generated a maximum-likelihood tree
from the Roary core genome alignment SNPs using IQ-TREE
v1.6.3 with a GTR+ I +G+ASC model (Nguyen et al. 2015). For
each of these trees, we also counted polyphyly for each nonsingle-
ton cluster. We identified all pairs of isolates from the same cluster
that shared amost recent commonancestorwith any isolate froma
different cluster. Toquantify diversitywithin andbetween clusters,
we calculated the SNP distance matrices from each core align-
ment using pairsnp (https://github.com/gtonkinhill/pairsnp).
We selected and pruned the entries in the upper triangle, which
correspond to within-cluster sample comparisons, leaving the
remaining entries in the upper triangle corresponding to the be-
tween-cluster distances. For E. coli and L. monocytogenes, we also
performed MLST and cgMLST assignment using stringMLST
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(Gupta et al. 2017) and chewBBACA (Silva et al. 2018), respectively.
We used the database from EnteroBase for E. coli (Alikhan et al.
2018), and from Ridom for L. monocytogenes (Ruppitsch et al.
2015). We calculated the square symmetric matrix of pairwise alle-
lic distances foreach species andeach schemewhich, after applying
an integer allelic distance cutoff, was then used as the input to
PopPUNK to produce a network in the same way as with a π-a
cutoff from network refinement.

Software availability

Code is available on GitHub (https://github.com/johnlees/
PopPUNK; Apache 2.0 license), through the Python package
index (https://pypi.org/project/poppunk/), on Bioconda (https://
anaconda.org/bioconda/poppunk) and as a tarball (Supplemental
Data S1). Documentation can be found on readthedocs (http://
poppunk.readthedocs.io/). Code used to performadditional analy-
sis are also available on GitHub (https://github.com/johnlees/
PopPUNK-scripts) and as a tarball (Supplemental Data S1). Online
and interactiveMicroreact instances produced for each data set are
listed in Supplemental Table S8. PopPUNK databases with the best
model fits for each species canbedownloaded fromhttps://doi.org/
10.6084/m9.figshare.6683624.
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