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Abstract: Growth traits are important economic traits of pigs that are controlled by several major
genes and multiple minor genes. To better understand the genetic architecture of growth traits, we
performed a weighted single-step genome-wide association study (wssGWAS) to identify genomic
regions and candidate genes that are associated with days to 100 kg (AGE), average daily gain
(ADG), backfat thickness (BF) and lean meat percentage (LMP) in a Duroc pig population. In this
study, 3945 individuals with phenotypic and genealogical information, of which 2084 pigs were
genotyped with a 50 K single-nucleotide polymorphism (SNP) array, were used for association
analyses. We found that the most significant regions explained 2.56–3.07% of genetic variance for
four traits, and the detected significant regions (>1%) explained 17.07%, 18.59%, 23.87% and 21.94%
for four traits. Finally, 21 genes that have been reported to be associated with metabolism, bone
growth, and fat deposition were treated as candidate genes for growth traits in pigs. Moreover,
gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses
implied that the identified genes took part in bone formation, the immune system, and digestion. In
conclusion, such full use of phenotypic, genotypic, and genealogical information will accelerate the
genetic improvement of growth traits in pigs.

Keywords: Duroc pigs; growth traits; weighted single-step GWAS; SNP

1. Introduction

Pork is the primary source of protein for humans, with global pork consumption
exceeding 110 metric kilotons per year [1]. Growth traits are economically important
traits in porcine breeding programs, as accelerating the genetic process of growth-related
traits can increase the supply of pork. At present, the age to 100 kg, average daily gain,
backfat thickness, and lean meat percentage for a specific stage are vital indicators to
measure the growth rate and carcass fat content of pigs due to their significant impact
on production efficiency [2]. Furthermore, both genetic and non-genetic effects can affect
growth traits, including pig breed, feeding behavior, and nutrition level. However, the
above four traits have moderate heritability [3], suggesting that they could be improved by
the genetic method.

Since the first genome-wide association study (GWAS) for age-related macular degen-
eration was published in 2005, GWAS has been widely used to identify quantitative trait
loci (QTL) and to map candidate genes for complex traits in humans [4] and domestic ani-
mals [5]. Until now, 2036 QTL for growth traits have been reported in the pig QTL database
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(https://www.animalgenome.org/cgi-bin/QTLdb/SS/summary, release 27 August
2020). These findings have provided a certain number of molecular markers to porcine
breeding for growth traits—for instance, Jiang et al. [6] performed a GWAS in a total of
2025 American and British Yorkshire pigs using PorcineSNP80 bead chip and detected five
significant SNPs for days to 100 kg and the other five significant SNPs for 10th rib backfat
thickness. Qiao et al. [7] found 14 QTL significantly associated with growth-related traits
for White Duroc × Erhualian F2 and Sutai (Chinese Taihu ×Western Duroc) populations.
Although many studies have contributed to complex quantitative traits by GWAS, the
genetic mechanisms of growth traits in pigs remain unclear. Additionally, some single
marker GWAS analyses result in a weak power for QTLs detection and low accuracy for
mapping. Moreover, most studies on GWAS for growth traits used the limited population
size of genotyped animals and neglected the pedigree relationship. To overcome the lim-
itation of the traditional GWAS approach, the weighted single-step GWAS (wssGWAS)
proposed by Wang et al. [8] is preferable for livestock breeding, for which phenotypic and
genealogical information is available for the vast majority of individuals and the small size
of individuals genotyped.

The GWAS under the single-step genomic best linear unbiased prediction (ssGBLUP)
framework is called ssGWAS, which intermixes genotypes, pedigree, and phenotypes data
in a single analysis without creating pseudo-phenotypes [9]. However, when some traits
are affected by significant QTL in practice, it is improper to account for all SNPs to explain
the same proportion of genetic variance in ssGBLUP [10]. In that case, the wssGWAS can
be adopted, which weighs SNPs according to their effects that were calculated genomic
estimated breeding values (GEBVs) via ssGBLUP. The wssGWAS method has been suc-
cessfully applied to detect supplementary QTLs and candidate genes in domestic and
aquaculture animals, such as carcass traits in Nellore cattle [11], growth and carcass traits
in rainbow trout [12], and reproductive traits in pigs [13]. However, to our knowledge, few
wssGWASs have been performed to study growth traits in purebred Duroc pigs. Therefore,
this study aims to identify genomic regions and candidate genes associated with growth
traits such as days adjusted to 100 kg (AGE), average daily gain adjusted to 100 kg (ADG),
backfat thickness (BF) and predicted lean meat percentage (LMP) adjusted to 100 kg in
a Duroc pig population using the wssGWAS methodology. Then, gene ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis facilitate
further understanding of biological processes and functional terms of candidate genes for
growth traits.

2. Materials and Methods
2.1. Ethics Statement

All animals used in this study were used according to the guidelines for the care
and use of experimental animals established by the Ministry of Agriculture and Rural
Affairs of China. The ethics committee of South China Agricultural University (SCAU,
Guangzhou, China) approved the entire study. No experimental animals were anesthetized
or euthanized in this study.

2.2. Animals, Phenotypes, and Pedigree

The animals used in this study were raised in two core farms of the Wens Foodstuff
Group CO., Ltd. (Guangdong, China) with uniform standards. In brief, a total of 3945
Canadian Duroc pigs (1966 males and 1979 females) born between 2015 and 2017 were
used in this study. Among them, 2084 individuals had genotypes and four growth-trait
phenotypes in the pedigree, while 1843 ungenotyped individuals in the pedigree had
phenotypes of AGE and ADG, and 1825 ungenotyped individuals in the pedigree had
phenotypes of BF and LMP. Furthermore, the complete pedigree could be traced back
3 generations, with 5204 pigs in the full pedigree (2103 males and 3101 females).

https://www.animalgenome.org/cgi-bin/QTLdb/SS/summary
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Days to 100 kg and ADG were measured from 30 to 115 kg and then adjusted to 100 kg.
AGE was adjusted to 100 kg using the formula below [14]:

AGE adjusted to 100 kg = Measured age−
(

Measured weight− 100 kg
Correction f actor 1

)
(1)

where the correction factor 1 of sire and dam are different, as follows:

Sire : Correction f actor 1 =
Measured weight

Measured age
× 1.826 (2)

Dam : Correction f actor 1 =
Measured weight

Measured age
× 1.715 (3)

ADG was adjusted to 100 kg by following formula [14]:

ADG adjusted to 100 kg =
100 kg

AGE adjusted to 100 kg
(4)

Adjusting LMP to 100 kg, phenotypes of BF and loin muscle depth (LMD) was mea-
sured between the last 3rd and 4th rib of Duroc pigs at the weight of 100 ± 5 kg by an
Aloka 500 V SSD B ultrasound (Coromertics Medical Systems, USA) [15]. BF and LMD
adjusted to 100 kg were calculated as reported by the Canadian Center for Swine Im-
provement (http://www.ccsi.ca/Reports/Reports_2007/Update_of_weight_adjustment_
factors_for_fat_and_lean_depth.pdf):

BF adjusted to 100 kg = Measured BF× A
A + [B× (Measured Weight− 100)]

(5)

where A and B are different for sire and dam, as follows:

Sire : A = 13.47; B = 0.1115 (6)

Dam : A = 15.65; B = 0.1566 (7)

LMD adjusted to 100 kg was calculated by the following equation [16]:

LMD adjusted to 100 kg = Measured LMD×
[

a
a + b× (Measured Weight− 100)

]
(8)

where a and b are gender-specific, and

Sire : a = 50.52; b = 0.228 (9)

Dam : a = 52.01; b = 0.228 (10)

LMP was adjusted to 100 kg using the formula below [16]:

LMP adjusted to 100 kg = 61.21920− 0.77665× BF + 0.15239× LMD (11)

Overall, 3927 individuals were used in wssGWAS for ADG and AGE; 3909 individuals
were used in wssGWAS for BF and LMP.

2.3. Genotyping and Quality Control (QC)

DNA was extracted from ear tissue of 2084 Duroc pigs following the standard phe-
nol/chloroform method, then quantified and diluted to 50 ng/µL. All DNA samples were
genotyped by GeneSeek porcine 50 K SNP chip from Illumina (Neogen, Lincoln, NE, USA),
including 50,649 SNPs mapped to Sus scrofa11.1 (https://www.ensembl.org/biomart) in
total. Quality control was performed by PLINK v1.09 (Boston, MA, USA) [17] in which

http://www.ccsi.ca/Reports/Reports_2007/Update_of_weight_adjustment_factors_for_fat_and_lean_depth.pdf
http://www.ccsi.ca/Reports/Reports_2007/Update_of_weight_adjustment_factors_for_fat_and_lean_depth.pdf
https://www.ensembl.org/biomart
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SNPs were excluded when individuals call rate was <90%, SNPs call rate was <90%, Hardy–
Weinberg equilibrium p-value was <10−6, minor allele frequency was <0.01, and SNPs were
located in sex chromosomes and unmapped. After QC, a final set of 35,851 high-quality
SNPs for 2084 Duroc pigs remained for subsequent analyses.

2.4. Statistical Analyses

Variance components for AGE, ADG, BF, and LMP traits were estimated with two
methods using the average information restricted maximum-likelihood (AIREML), includ-
ing pedigree-based Best Linear Unbiased Prediction (BLUP) and ssGBLUP. The four traits
were analyzed using the same single-trait animal model, as described below:

Y = Xb + Za + e (12)

where Y was the vector of phenotypic values; X was the incidence matrix of fix effect for
relating phenotypes; b was the vector of fixed effect, including birth year, sex, and farm;
Z was the incidence matrix of random effect; a was the vector of additive genetic effects,

and e was the vector of residuals. Narrow sense heritability was estimated as h2 = σ2
a

σ2
a +σ2

e
,

where σ2
a and σ2

e were additive genetic variance and residual variance, respectively.
Additionally, the GEBVs of all individuals were estimated via the same single-trait

model as described previously using the ssGBLUP [18] approach, and marker effects
were calculated from the GEBVs. Comparing with the regular BLUP approach, ssGBLUP
replaces the inverse of the pedigree relationship matrix (A−1) with the matrix H−1, for
which the matrix H combined the pedigree and the genomic relationship matrices [19].
The inverse of matrix H was represented as follows:

H−1 = A−1 +

[
0 0
0 G−1 − A−1

22

]
(13)

where A−1
22 was the inverse matrix of the numerator relationship matrix considering geno-

typed animals and G−1 was the inverse matrix of the genomic relationship matrix [20]. The
genomic matrix G can be created as follows [21]:

G =
ZDZ′

∑N
i=1 2pi(1− pi)

(14)

where Z was a centered matrix of SNP genotypes (aa = 0, Aa = 1 and AA = 2), D was a
matrix of weights for SNP variances, n was the number of SNPs and pi was the minor allele
frequency of the i-th SNP [8].

The wssGWAS of SNP effects and weights were calculated following by Wang et al. [8]:

1. Initially, set t = 1, D(1) = I;
2. Calculate G(t) = λZD(t)Z′, where λ = ∑N

i=1 2pi(1− pi);
3. Calculate GEBVs for whole data set by ssGBLUP method;
4. Calculate SNPs effects: û(t) = λD(t)Z′G

−1
(t) ĝ, where ĝ was the GEBV of animals

genotyped;
5. Calculate the weight of each SNP:

di(t) = 2û2
i(t)pi(1− pi) (15)

where i was the i-th SNP;
6. Normalize SNP weights to keep total genetic variance constant via

D(t+1) =
tr
(

D(t)

)
× D(t+1)

tr
(

D(t+1)

) (16)
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7. Set t = t + 1, then loop to step 2.

The procedure was run for three iterations, as suggested by Wang et al. [8], which
reached a high accuracy of GEBVs. In this study, SNPs located within 0.8 Mb (according
to the linkage disequilibrium decay of this population [22]) were grouped in a window,
and the percentage of genetic variance explained by each 0.8 Mb window was calculated
following as below [8]:

Var(ai)

σ2
a
× 100% =

Var(∑x
j=1 Zjgj)

σ2
a

(17)

where ai was the genetic value of the i-th region consisting of x = 0.8 Mb.
The procedures mentioned above were run with BLUPF90 software family programs [23]

iteratively. The RENUMF90 module was used to obtain the required parameter file formats;
the AIREMLF90 module was used for variance components estimation, the BLUPF90 module
for GEBVs calculation, and the postGSF90 module for association analysis.

2.5. Identification of Candidate Genes and Functional Enrichment Analysis

Genomic windows that explained higher than 1.0% of the total genetic variance were
selected as candidate QTL regions associated with growth traits in this study, which was
also used in previous studies [8,13]. Since the 0.8 Mb window explained on–average
0.0473% (100% divided by 2115 genomic regions) of the genetic variance, the 1% threshold
is over 20 times the expected average genetic variance explained by the 0.8 Mb window.
The first three windows that explained the largest proportion of genetic variance for each
trait were extended to 0.4 Mb flanking on either side of the regions. For the identified QTL
regions, genes were searched using the Ensemble Sus scrofa 11.1 (https://www.ensembl.
org/biomart) database within significant windows. To better understand the biological
processes, GO and KEGG analyses were performed based on genes within significant
regions using the database for annotation, visualization, and integrated discovery (DAVID
v6.8, https://david.ncifcrf.gov/). A p-value of <0.05 was the threshold for significantly
enriched GO terms and KEGG pathways.

3. Results and Discussion
3.1. Descriptive Statistics and Heritability for the Growth Traits

Descriptive statistics of the phenotypes are presented in Table 1. Previous studies re-
ported that the average AGE phenotype of Duroc and other western commercial pig breeds
was between 150 and 162 days, ADG was between 610 and 820 g/day, BF was between 11.69
and 18.19 mm, and LMP was between 56% and 62% [6,14,24–26]. The phenotypic averages
for AGE, ADG, BF, and LMP in this study were similar to previous studies. The coefficients
of variation (CV) for AGE, ADG, BF, and LMP were 7.30%, 7.25%, 17.86%, and 2.83%,
respectively. The results indicated substantial phenotypic variation in these traits, except
LMP. Since Duroc pigs are the terminal male parent of the Duroc × (Landrace × Yorkshire)
pigs (DLY), the LMP of Duroc pigs receives long-term positive selection [27]. In other
words, the lower CV of LMP indicates that the selection prior to the LMP was effective in
this core Duroc population.

Table 1. Descriptive statistics of growth traits in the Duroc pig population.

Traits a n Mean SD b Min Max CV (%) c

AGE 3927 163.41 11.93 125.98 206.32 7.30
ADG 3927 604.31 43.81 478.73 779.49 7.25

BF 3909 9.52 1.70 5.10 17.31 17.86
LMP 3909 61.08 1.39 54.93 65.06 2.28

a AGE, days to 100 kg, ADG: average daily gain adjusted to 100 kg, BF, backfat thickness adjusted to 100 kg; LMP,
predicted lean meat percentage adjusted to 100 kg; b SD, standard deviation; c CV, coefficient of variation.

https://www.ensembl.org/biomart
https://www.ensembl.org/biomart
https://david.ncifcrf.gov/
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To better understand the genetic background of growth traits, we estimated the
genetic variance (σ2

a ), residual variance (σ2
e ), and heritability (h2) by different methods,

including BLUP and ssGBLUP. The heritability estimated by BLUP and ssGBLUP were
0.507 and 0.343, 0.508 and 0.333, 0.512 and 0.315, and 0.554 and 0.332 for AGE, ADG, BF,
and LMP, respectively (Table 2). There were differences in the heritability estimated by the
two methods in this study, and the previous study showed that common environmental
components lead to a possible overestimation of genetic variance in the pedigree-based
BLUP method of estimating heritability [28]. Compared with the BLUP method, the
ssGBLUP method has a lower standard error. The ssGBLUP method uses both pedigrees
and genotyped information, and the estimated genetic parameters are theoretically more
accurate [29]. Furthermore, the results from the two methods indicated that these traits
were moderate heritability traits and could be genetically improved by genetic techniques.

Table 2. Variance components and heritability estimates of growth traits.

Traits a Models σ2
a * σ2

e * σ2
p * h2 (SE) *

AGE BLUP 68.667 66.879 135.546 0.507 (0.0454)
ssGBLUP 44.932 85.981 130.913 0.343 (0.0314)

ADG BLUP 926.290 895.570 1821.860 0.508 (0.0453)
ssGBLUP 581.4 1166.3 1747.7 0.333 (0.0308)

BF BLUP 1.516 1.445 2.961 0.512 (0.0449)
ssGBLUP 0.877 1.903 2.780 0.315 (0.0289)

LMP BLUP 1.142 0.918 2.060 0.554 (0.0444)
ssGBLUP 0.639 1.283 1.922 0.332 (0.0289)

a AGE, days to 100 kg, ADG: average daily gain adjusted to 100 kg, BF, backfat thickness adjusted to 100 kg; LMP,
predicted lean meat percentage adjusted to 100 kg; * σ2

a , genetic variance, σ2
e , residual variance, σ2

p , phenotypic
variance, h2, heritability; SE, standard error.

3.2. Summary of wssGWAS

Most important economic traits of livestock are quantitative traits with complicated
genetic architectures. Therefore, uncovering the candidate genes underlying these traits
has been a crucial goal in livestock breeding programs. In particular, growth rate and
carcass fat content comprise the essential measuring basis of production performance in
pigs, influencing the economic benefit directly. In this study, genetic variance explained by
0.8 Mb windows for each trait was achieved by wssGWAS. The first three most important
QTL regions and the candidate genes are shown in Table 3. Overall, the first three QTL
regions totally explained 5.96%–7.25% of the genetic variance of these traits under study.
For each trait, the most significant windows explained approximately 2.56%–3.07% of
the total genetic variance. Additionally, the identified windows (>1%) explained 17.07%,
18.59%, 23.87%, and 21.94% for AGE, ADG, BF, and LMP, respectively (Supplementary File,
Tables S1–S5). Previous GWAS research reported that the candidate QTL regions of ADG
on Sus scrofa chromosome (SSC) 1, 3, 6, 8, 13 and the candidate QTL regions of AGE on SSC
1, 3, 6, 8, 10, explaining a total of 8,09% and 4.08% of genetic variance [14], respectively. Due
to LD, the wssGWAS method using the SNP window for analysis probably better identifies
unknown QTL than the traditional GWAS, avoiding overestimation of the detected QTL
number and false-positives [30,31]. Moreover, iterative weighting for SNPs could highlight
QTL with larger effects [8]. Comparing with the results of the ssGWAS in ADG and BF
by Matteo et al. [32], and our results identify the most significant QTL regions explaining
greater genetic variance. Figure 1 shows the proportion of variance explained by each
0.8 Mb window for the studied traits, suggesting the polygenic genetic architecture of
these traits.
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Table 3. First three most important quantitative trait loci (QTL) regions and candidate genes for
growth traits.

Traits a Chr b Position (Mb) nSNPs gVar (%) c Candidate Genes

AGE 4 4.38–5.98 43 3.07 FAM135B
4 6.75–8.35 43 1.84 ZFAT

14 1.63–3.23 22 1.57 NFIL3, ROR2
ADG 4 4.38–5.98 43 2.56 FAM135B

2 130.75–132.35 20 1.91 SLC27A6
2 149.94–151.54 29 1.49 ADRB2

BF 7 29.34–30.94 26 2.97 DAXX, ITPR3, IP6K3, PACSIN1
3 117.76–119.36 19 1.94 SDC1

10 55.95–57.55 29 1.85 NRP1
LMP 2 8.11–9.71 26 2.68 NAA40, LGALS12

3 117.76–119.36 39 2.08 SDC1
10 38.67–40.27 15 2.00 MOB3B, RAB18, MPP7

a AGE, days to 100 kg, ADG: average daily gain adjusted to 100 kg, BF, backfat thickness adjusted to 100 kg; LMP,
predicted lean meat percentage adjusted to 100 kg; b Chr, chromosome; c gVar (%) represents the proportion of
genetic variance explained by 0.8 Mb. For each trait, the genomic regions are sorted in descending order according
to the proportion of genetic variance explained.
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3.3. wssGWAS for AGE and ADG

For AGE, 11 relevant QTL regions located on SSC 1, 2, 3, 4, 5, 9, 11, and 14 were
identified (Supplementary Materials, Tables S1–S3). These regions explained 1.13–3.07% of
total genetic variance for AGE, and 73 genes were annotated in these genomic regions. For
ADG, 13 relevant QTL regions located on SSC1, 2, 3, 4, 5, 9, 11, 12, and 14 were identified,
where 104 genes are located in these genomic regions (Supplementary Material, Tables
S1 and S3). These regions explained total genetic variance ranged from 1.06% to 2.56%
for ADG.

For the identified significant regions, there were 10 overlapped windows for AGE
and ADG, which explained different proportions of genetic variance in these two traits.
For complex quantitative traits, it was assumed that the linear effects of genes fitted the
average of traits completely. However, the effects of genes are not always linear for the
traits in practice, and the nonlinear assumption is more appropriate [14], which means
that genes contributed differently and pleiotropic effects of the QTL between traits. QTLs
with pleiotropic effects are common in the pig genome. For instance, Yang et al. [33]
reported that a pleiotropic QTL on SSC 7 was associated with the vertebral number, carcass
length, and teat number. In the present study, the region with the largest explained genetic
variance for AGE and ADG, located in the region of 4.38–5.98 Mb on SSC4, seemingly
had pleiotropic effects on meat and carcass traits in pigs [34]. Considering the duplication
of identified windows and the strong genetic relationship of AGE and ADG, the genes
identified by these two traits as common candidate genes are acceptable.

Among the significant windows of these two traits, the most important region
(4.38–5.98 Mb on SSC4) harbored the Family with Sequence Similarity 135 Member B (FAM135B).
The expression of FAM135B promotes granulin (GRN) secretion, and GRN is a secreted
growth factor with high expression in epithelial, immune, chondrocytes, and neuronal
cells [35]. Furthermore, FAM135B was reported as a candidate gene related to growth traits
in beef cattle [36] and reproductive traits in Duroc pigs [37]. The Zinc Finger And AT-Hook
Domain Containing (ZFAT) located in the region of 6.75–8.35 Mb on SSC4, and its mutation
would lead to abnormal human body development and thyroid hormone secretion that
played a key role in growth and metabolism [38].

The Nuclear Factor, Interleukin 3 Regulated (NFIL3) and the Receptor Tyrosine Kinase-
Like Orphan Receptor 2 (ROR2) were located in the regions of 1.63–3.23 Mb on SSC14.
Wang et al. [39] reported that NFIL3 affected the circadian lipid metabolism program,
lipid–absorption, and export of intestinal epithelial through mouse experiments. The mice
knocked out ROR2 resulted in shortened or deformed bones and neurodevelopmental
dysplasia [40].

The Solute Carrier Family 27 Member 6 (SLC27A6) gene is located in the region of
130.75–132.35 Mb on SSC9. The SLC27A6 gene had high expression in fat and muscle
tissue and worked on lipid metabolism in pigs [41]. The Adrenoceptor β 2 (ADRB2) gene,
located in the region of 149.94–151.54 Mb on SSC2, encoded the β-adrenergic receptor that
played an essential role in regulating metabolic level [42]. Furthermore, Bachman et al. [43]
found that the knockout mice ADRBs have a reduced metabolic rate and accelerated fat
deposition. The members of the Tumor Necrosis Factor Receptor Superfamily (TNFS), among
which TNFS11 was identified in the region of 24.24–25.04 Mb on SSC11, were responsible
for bone growth in mice [44], and the variation of TNFS11 led to the low level of serum
insulin-like growth factor 1 (IGF1) influencing growth rate [45].

3.4. wssGWAS for BF

A total of 17 relevant QTL regions on SSC2, 3, 4, 6, 7, 10, 12, 13, 14, and 15 were
identified for BF (Supplementary Material, Tables S1 and S4), where 99 genes were targeted
in these genomic regions. These genomic regions explained 1.02–2.97% of the total genetic
variance for BF.

The most significant window was located in the region of 29.34–30.94 Mb on SSC7,
where four genes were targeted and were related to BF. In previous studies, Death Domain
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Associated Protein (DAXX) was reported to affect fat deposition and fatty acid synthesis
via regulating the transcriptional activity of the androgen receptor negatively [46,47].
For Inositol 1,4,5-Trisphosphate Receptor Type 3 (ITPR3), another gene located in the most
important window, it was confirmed that mutations could cause taste disorders in mice [48].
Nonetheless, the Inositol Hexakisphosphate Kinase 3 (IP6K3) gene was located in the same
region. The mice without this gene resulted in a lower growth rate and metabolism and a
shorter lifespan [49]. Protein–Kinase C and Casein Kinase–Substrate In Neurons 1 (PACSIN1),
a fourth gene located in the region of 29.34–30.94 Mb, was identified concerning the
bodyweight [50] and loin muscle area [51] in pigs.

CYP7A1, a member of Cytochrome P450 Family 7 Subfamily A, was identified in
the region of 74.12–74.92 Mb on SSC4. The CYP7A1 gene-encoded enzyme cholesterol
7α-hydroxylase mainly catalyzes the decomposition of cholesterol and synthesis of cholic
acid [52]. The SECIS-Binding Protein 2 (SECISBP2) was located in the region of 0.43–1.22
Mb on SSC14, and its mutation brought about abnormal thyroid hormone metabolism in
humans [53].

3.5. wssGWAS for LMP

Altogether, 15 relevant regions on SSC2, 3, 4, 5, 6, 10, 11, 12, 17 and 18 were identified
for LMP. These regions explained 1.00–2.68% of total genetic variance for LMP and 115
genes located in these genomic regions (Supplementary Materials, Tables S1 and S5). The
N-α-Acetyltransferase 40 (NAA40) gene and Galectin 12 (LGALS12) gene were located in
the region of 8.11–9.71 Mb on SSC2 with the highest percentage of total genetic variance.
Liu et al. [54] demonstrated that knockout male rats of the NAA40 gene exhibited abnormal
lipid metabolism and reduced fat mass. In addition, NAA40 was identified to be associated
with the metabolism/transport of fatty acids or lipids in pigs [55]. For LGALS12, this gene
was preferentially expressed in adipocytes, and mice lacking LGALS12 resulted in increased
mitochondrial respiration, reduced adiposity and decreased insulin resistance/glucose tol-
erance [56]. Furthermore, LGALS12 has been identified to be associated with intramuscular
and subcutaneous fat in pigs [57].

The Corticotropin-Releasing Hormone Receptor 2 (CRHR2) gene, located in the region of
42.05–42.83 Mb on 18, was highly expressed in adipose tissue, which was involved in the
regulation of energy homeostasis and the anorexia effect of fat levels in the corticotropin-
releasing hormone (CRH) system [58]. For the region of 41.40–42.12 Mb on SSC2, Perox-
isomal Biogenesis Factor 16 (PEX16) and Cryptochrome Circadian Regulator 2 (CRY2) were
associated with LMP. Hofer et al. [59] found that the silence of PEX6 affects adipocyte
differentiation and increases peroxisomal fatty acid oxidation–reduction. For the CRY2
gene, Mármol-Sánchez et al. [60] reported that the polymorphism of CRY2 was significantly
associated with stearic acid content in the longissimus dorsi muscle in Duroc pigs. The Acyl-
CoA Thioesterase 8 (ACOT8) gene is located in the region of 47.67–48.83 Mb on SSC17. The
protein encoded by this gene is an acyl-CoA thioesterase enzyme that influences the thyroid
hormone to regulate lipid storage and utilization according to metabolic demands [61].

3.6. BF and LMP Overlap Regions

In the present study, six genomic regions were found to be associated with both BF
and LMP, including 41.40–42.12 Mb on SSC2,117.76–119.36 Mb on SSC3, 67.38–68.18 Mb,
and 155.99–156.71 Mb on SSC6, and 38.67–40.27 Mb and 55.95–57.55 Mb on SSC10. Notably,
BF and LMP were used as an important indicator of carcass fat content in production.
Moreover, the genetic correlation of lipid deposition with growth rate and feed efficiency
traits were positively high and negatively moderate, respectively [62]. Therefore, these
overlap and pleiotropic regions were valuable for growth traits in pigs.

Potassium Inwardly Rectifying Channel Subfamily J Member 11 (KCNJ11), located in the
region of 41.40–42.12 Mb on SSC2, was associated with type 2 diabetes in humans [63]. The
region of 117.76–119.36 Mb on SSC3 was the second most important window for BF and
LMP, which explained 1.94% and 2.08% of the additive genetic variance, respectively, and
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the Syndecan 1 (SDC1) gene was detected. The SDC1 gene has been proved to consume the
intradermal fat layer, improve glucose tolerance, and significantly reduce body fat content
in knockout mice [64]. Two genomic regions stood out on SSC6, which explained 1.05%
and 1.42% of additive genetic variance for BF, and 1.26% and 1.19% of additive genetic
variance for LMP, respectively. However, the annotated genes in one of these regions are
not reported to be associated with growth traits, and no genes are described in the other
region on SSC6, pending further studies.

The Neuropilin 1 (NRP1) gene is located in the region of 55.95–57.55 Mb on SCC10, and
several studies have exhibited its function in regulating fat cell–activity [65] and reducing
dietary insulin resistance [66]. For the region of 38.67–40.27 Mb on SSC10, three genes were
identified to be associated with BF and LMP. The MOB Kinase Activator 3B (MOB3B) gene
was significantly associated with intramuscular fat and residual feed intake in cattle [67].
Ras-Related Protein Rab-18 (RAB18), another gene located in the region of 38.67–40.27 Mb
on SSC10, encoded a crucial Rab guanosine triphosphatase that controls the growth and
maturation of lipid droplet, which lipid droplet was an intracellular organelle to stores
triglycerides and cholesterol [68]. Still, in the same region, the Membrane Palmitoylated
Protein 7 (MPP7) gene was detected, and Bhoj et al. [69] reported that differences in MPP7
gene expression affected glucose metabolism in the body.

3.7. GO and KEGG Analysis

In the current study, gene set enrichment analyses revealed that several terms might be
related to growth traits. Among them, seven biological processes, two cellular components,
one molecular function, and four KEGG pathways were targeted significantly (Table 4).

Table 4. Significant gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated
with growth traits in Duroc pigs (p < 0.05).

Term a Count p-Value Genes

GO:0003727—single-stranded RNA binding 4 0.004495 SNRPC, NXF1, JMJD6, POLR2G
GO:0032435—negative regulation of

proteasomal ubiquitin-dependent protein
catabolic process

3 0.020544 WAC, UBXN1, SDCBP

GO:0002924—negative regulation of humoral
immune response mediated by circulating

immunoglobulin
2 0.029686 PTPN6, FOXJ1

GO:0030335—positive regulation of
cell migration 5 0.031742 ROR2, SEMA4D, CSF1R, SDCBP, SPHK1

GO:0008076—voltage-gated potassium
channel complex 4 0.035714 KCNC1, KCNJ11, KCNJ2, ABCC8

GO:0005783—endoplasmic reticulum 11 0.038199
GPC2, CREB3L1, VWF, P3H3, BRINP1,

ATL3, PLAAT3, EEF1G, SRP68,
CLDN14, GANAB

GO:1904504—positive regulation of lipophagy 2 0.044199 ADRB2, SPTLC1
GO:0032651—regulation of interleukin-1

β production 2 0.044199 S1PR3, SPHK1

GO:0030501—positive regulation of
bone mineralization 3 0.049487 ADRB2, OSR1, FBN2

GO:0010107—potassium ion import 3 0.049487 KCNJ11, KCNJ16, KCNJ2
ssc04742—taste transduction 5 0.000381 TAS1R1, GRM4, ITPR3, GNB3, SCNN1A

ssc04911—insulin secretion 5 0.019468 CREB3L1, KCNJ11, CAMK2A,
ITPR3, ABCC8

ssc04725—cholinergic synapse 5 0.045538 CREB3L1, CAMK2A, ITPR3, GNB3, KCNJ2
ssc03320—PPAR signaling pathway 4 0.047474 ACOX1, SLC27A6, PLTP, CYP7A1

a GO, gene ontology, KEGG, Kyoto Encyclopedia of Genes and Genomes pathway.
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The positive regulation of bone mineralization (GO:0030501) is a key biological process
of bone formation, which promotes the deposition of inorganic minerals in the organic–
matter of the bone. Bone mineralization affects the strength and density of bone, enabling
it to bear the body weight. Shim et al. [70] found that rapid weight gains were correlated
with bone mineralization in broilers.

The positive regulation of lipophagy (GO:1904504) is an autophagic process that
promotes cells to activate autophagy-related molecules to degrade lipids and regulate
intracellular lipid content. Excessive fat deposition in pigs reduces feed conversion rate
and affects growth rate, but also affects the quality of animal products [71]. Hence, the
function of lipophagy in preventing excess fat deposition may improve the growth traits of
pigs. Moreover, the PPAR signaling pathway (ssc03320) is the main pathway associated
with lipid metabolism in pigs [72]. Free fat acid from lipophagy is a well-characterized
ligand for PPARγ (peroxisome proliferator-activated receptor γ) [68], which activated the
PPAR signaling to induce agouti-related peptide expression (AgRP). Sandoval et al. [73]
found that AgRP co-expressed neuropeptide Y stimulated food intake and reduced energy
expenditure.

Potassium ion import (GO:0010107) mediates the transmembrane transport of ions
and plays a key role in material exchange, energy transfer, and signal transduction. In
particular, resting potassium currents make sour taste cells particularly sensitive to changes
in intracellular pH, thereby affecting sour taste transduction [74]. Besides this, the taste
transduction (ssc04742) pathway is the biological process by which the taste receptors of the
organism detect and encode taste information through various transduction mechanisms.
Several studies have shown that taste affects appetite and feed intake, and leads to a
decrease in growth traits, such as body weight [75]. Moreover, the taste transduction
pathway stimulates cephalic phase responses [76], promoting the process of salivary,
gastric acid, and cephalic insulin secretion. Moreover, the insulin secretion (ssc04911)
pathway was related to feeding intake, which promotes digestive metabolism and nutrient
absorption and thus improves the growth trait.

4. Conclusions

In conclusion, we indicated 41 genomic regions to be associated with four growth
traits (AGE, ADG, BF, and LMP) in a Canadian Duroc pig population using the wssGWAS
method. The identified windows explained 1.00 to 3.07% of the genetic variance. Further-
more, 21 genes with related functional validation in previous studies were highlighted as
candidate genes for growth traits in pigs. Moreover, GO, and KEGG enrichment analyses
implied that the identified genes took part in bone formation, the immune system, and
digestion, which were associated with growth traits. Such a full use of phenotypic and
genotypic data and genealogical information will further advance our understanding of
the genetic architecture and accelerate the genetic improvement of these economically
important traits in pigs. In addition, the SNPs within identified regions may be useful for
marker-assisted selection or genomic selection in future pig breeding.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-442
5/12/1/117/s1, Table S1: Genomic regions of 0.8 Mb explained more than 1% of genetic variance
for growth traits in Duroc pigs; Table S2: The explained genetic variance of SNPs within significant
windows for AGE; Table S3: The explained genetic variance of SNPs within significant windows for
ADG; Table S4: The explained genetic variance of SNPs within significant windows for BF; Table S5:
The explained genetic variance of SNPs within significant windows for LMP.
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