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Multinomial Logistic Regression (MLR) has been advocated for developing
clinical prediction models that distinguish between three or more unordered
outcomes. We present a full-factorial simulation study to examine the predic-
tive performance of MLR models in relation to the relative size of outcome
categories, number of predictors and the number of events per variable. It is
shown that MLR estimated by Maximum Likelihood yields overfitted predic-
tion models in small to medium sized data. In most cases, the calibration and
overall predictive performance of the multinomial prediction model is improved
by using penalized MLR. Our simulation study also highlights the importance
of events per variable in the multinomial context as well as the total sample
size. As expected, our study demonstrates the need for optimism correction of
the predictive performance measures when developing the multinomial logistic
prediction model. We recommend the use of penalized MLR when prediction
models are developed in small data sets or in medium sized data sets with a
small total sample size (ie, when the sizes of the outcome categories are bal-
anced). Finally, we present a case study in which we illustrate the development
and validation of penalized and unpenalized multinomial prediction models for
predicting malignancy of ovarian cancer.
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1 INTRODUCTION

Prediction models are developed to estimate probabilities that conditions or diseases are present (diagnostic prediction)
or will occur in the future (prognostic prediction).1,2 Most prediction models are developed to estimate the probability
for two mutually exclusive diagnostic or prognostic outcomes (events versus nonevents).3,4 However, for real diagnostic
and prognostic questions, there are often more than two diseases or conditions that need to be assessed. For instance,
the presence of various alternative diseases must be considered when dealing with real patients (ie, the so-called differ-
ential diagnosis).5,6 Similarly, there are often also more than two possible prognostic outcomes considered in patients
diagnosed with a certain disease (eg, progression free survival, disease free survival, and death as outcome categories).
Biesheuvel et al4 recognized that the polytomous nature of prediction questions should be taken into account more often
in the development of prediction models, suggesting the use of Multinomial Logistic Regression (MLR). While the use
of MLR is still relatively rare, applications of MLR for risk prediction are found in a variety of medical fields, such as in
predicting the risk of several modes of operative delivery,7 predicting the risk of three prognostic outcomes of elderly after
hospitalization,8 the differential diagnosis of four types of ovarian tumors9 and the differential diagnosis of three bacterial
infections in children.10

So far, the operational characteristics of MLR models in relation to development data characteristics have not been
evaluated. In contrast, the relevance of data characteristics for prediction models' out-of-sample performance has been
clearly demonstrated for prediction models with binary and time-to-event outcomes.11,12 For these models, minimal sam-
ple size criteria have been suggested, supported by simulation studies, and a minimum of roughly 10 events per predictor
variable (EPV) has been advocated for the development of these binary or time-to-event prediction models.2,3,12-17 For sit-
uations where EPV < 20, “shrinkage” of the regression coefficients has been recommended to reduce the chances of
overfitting.3,11,18 It is unclear to what extent these rules of thumb also apply to the polytomous case of MLR.

In this study, we focus on the predictive performance of MLR models that are developed in small to medium sized data
sets (multinomial EPV ≤ 50). We study the effects of the number of multinomial events per variable (EPVm), relative out-
come sizes (frequencies), and number of predictors. In a sensitivity analysis, we assess the effects of correlations between
the predictors and the type of predictors. We compare the performance of MLR estimated by Maximum Likelihood (ML)
and two popular penalized estimation methods that perform shrinkage of the regression coefficients (lasso [least absolute
shrinkage and selection operator] and ridge regression19,20). This article is structured as follows. In the next section, we
describe the estimation methods and we provide a brief overview of predictive performance measures for MLR models.
In Sections 3 and 4, we present our simulation study, and in Section 5, we present our case study of predicting malignancy
of ovarian cancer. Finally, a discussion is provided in Section 6.

2 MULTINOMIAL LOGISTIC REGRESSION MODEL

2.1 MLR model
Let yij denote the presence ( yij = 1) or absence ( yij = 0) of multinomial outcomes j, j = 1, … , J, for observation
i, i = 1, … ,N. Let xi denote observation i′s R-dimensional vector of the predictor variables, r = 1, … ,R. We further
assume that

∑
𝑗𝑦i𝑗 = 1. Taking J as the reference outcome, the MLR for predicting the probabilities 𝜋ij(xi) for outcomes

j = 1, … , J − 1 can then be defined by the multinomial logit21:

𝜋i𝑗(xi) =
exp

(
𝛼𝑗 + 𝜷′

𝑗xi
)

1 +
∑J−1

h=1 exp
(
𝛼h + 𝜷′

hxi
) , (1)

where 𝜷 j = (𝛽 j1, … , 𝛽 jR)′ denotes the coefficients for the jth linear predictor, except its intercept 𝛼j. For the reference
outcome, 𝜋i J(xi) = 1∕(1+

∑J−1
h=1 exp(𝛼h+𝜷′

hxi)). Hereafter, we refer to 𝜋ij(xi) simply as the risk of outcome j. ML estimation
of model 1 proceeds by maximizing the log-likelihood l(𝜶, 𝜷) =

∑J
𝑗=1

∑N
i=1 𝑦i𝑗 log 𝜋i𝑗(xi).

2.1.1 Penalized MLR
ML is known to produce parameter estimates 𝜷̂ that yield too extreme predictions in new samples, when estimated in
small samples.3 In this paper, we therefore also apply lasso19 and ridge estimation.20,22-24 Both of these approaches to
shrinkage work via a penalty function and are directly applicable to MLR models. By shrinking the ML estimates 𝜷̂ toward
the null effect (𝜷 = 0), both lasso and ridge produce probability estimates that tend to be less extreme (further away from



DE JONG ET AL. 1603

the boundaries of 0 and 1) than the probabilities one would obtain with ML MLR. A slightly modified multinomial logit
function is convenient for penalization, as the penalization removes the necessity to put restrictions on the reference
category25: 𝜋i𝑗(xi) = exp(𝛼∗

𝑗
+ 𝜷∗′

𝑗 xi)∕
∑J

h=1 exp(𝛼∗
h + 𝜷∗′

h xi).
The penalized MLR models are estimated by maximizing the penalized log-likelihoods l(𝜶∗, 𝜷∗) =∑J
𝑗=1

∑N
i=1{𝑦i𝑗 log 𝜋∗

i𝑗(xi)} − 𝜆1
∑J

𝑗=1
∑R

r=1 |𝛽∗𝑗r| and l(𝜶∗, 𝜷∗) =
∑J

𝑗=1
∑N

i=1{𝑦i𝑗 log 𝜋∗
i𝑗(xi)} − 𝜆2

∑J
𝑗=1

∑R
r=1 𝛽

∗2
𝑗r , for lasso

and ridge, respectively. A consequence of the lasso's penalty is that coefficients can be shrunk to (exactly) zero, thereby
removing a predictor variable from the equation. Estimation occurs via pathwise coordinate descent, which starts at large
𝜆1 and 𝜆2 values, such that all of the 𝜷∗ are zero. The 𝜆1 and 𝜆2 values are then iteratively decremented, allowing the 𝜷∗

vectors to increasingly deviate from zero. Maximization of the penalized log-likelihood proceeds by performing partial
Newton steps, leading to a path of solutions. For every value of both 𝜆1 and 𝜆2, a 𝜷∗ vector is attained.25 In this study, the
optimal 𝜆1 and 𝜆2 parameters (ie, tuning parameters), for lasso and ridge, respectively, are estimated by a search over a
grid of possible values, selecting the values for 𝜆1 and 𝜆2 that minimize deviance in 10-fold cross-validation.25

2.2 Predictive performance measures
As not all predictive performance measures for binary outcomes directly generalize to multinomial outcomes, we provide
details of the multinomial predictive performance measures that were used in our study in this section and an overview
in Table 1.

2.2.1 Discrimination
The discriminative ability of prediction models with a binary outcome is commonly expressed by the concordance prob-
ability or c-statistic26 and by the c-index for time-to-event models.27 We consider a generalization of the c-statistic to
multinomial outcomes: the polytomous discrimination index (PDI).28 The PDI is an estimator for the probability of
correctly identifying a randomly selected case in a set of cases consisting of one case from each outcome category.28

The PDI takes on the value 1 for perfect discrimination and 1∕J for random discrimination. The PDI can be inter-
preted as the probability that the outcome of a randomly selected individual in a set of J different cases is correctly
identified.28

The PDI is defined as follows. Let qh, qh = 1, … ,nh, denote the observations with outcome h, and 𝜋i𝑗∈qh(xi) denote
the predicted risk of outcome j for individuals with outcome h. First, the outcome-specific components of the PDI are
computed, denoted by PDIh. For each possible set of J cases with a different observed outcome, determine whether the
predicted risk for outcome h is highest for a case with observed outcome h. The value on an outcome-specific component
PDIh is equal to the proportion of sets for which this is true and can be interpreted as the probability that a randomly
selected individual with outcome h is correctly identified as such in a set of J randomly selected cases. Second, the PDI is
given by the average of the outcome specific PDIh components. Formally,28

PDIh = 1
n1· · ·nJ

n1∑
q1=1

· · ·
nJ∑

qJ=1
Ch

(
𝜋i𝑗∈q1(xi), … , 𝜋i𝑗∈qJ (xi)

)
, (2)

where Ch is an indicator function taking on the value 1 if 𝜋i𝑗∈qh(xi) > 𝜋i𝑗∈q𝑗
(xi), for all q𝑗 ≠ qh, or 1∕t in case of ties, where

t is the number of ties in 𝜋i𝑗∈q1(xi), … , 𝜋i𝑗∈qJ (xi), or else 0. By taking the mean of outcome-specific components, the PDI
is obtained: PDI = 1

J

∑J
h=1 PDIh.

TABLE 1 Multinomial prediction performance measures

Aspect Measure Interpretation
Discrimination PDI PDI = 1∕J: no discriminative performance.

PDI = 1: perfect discrimination.
Calibration Calibration slope Calibration slope < 1: overfitting.

Calibration slope > 1: underfitting.
Overall performance Brier score Brier score = 0: Perfect predictive performance.

Brier score = 2: completely imperfect predictive performance.
Nagelkerke R2 Nagelkerke R2 = 0: 0% explained variation.

Nagelkerke R2 = 1: 100% explained variation.

Abbreviation: PDI, polytomous discrimination index.
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2.2.2 Calibration slope
Calibration slopes are a measure of the calibration of a prediction model's linear predictors lpij, lpi𝑗 = 𝛼𝑗 + 𝜷′

𝑗xi. For
computation of the calibration slopes, we followed the approach of Van Hoorde et al,29 who extended the recalibration
framework of the binary logistic model30,31 to multinomial outcomes

log
(

P(𝑦i = 𝑗)
P(𝑦i = Q)

)
= 𝛾𝑗 + 𝜃𝑗 lpi,𝑗 , (3)

where 𝛾 j is the calibration intercept for outcome category j, lpi, j is the linear predictor of outcome category j versus the
referent Q (which need not be the same as the referent in Equation 1) for observation i, and 𝜃j is the calibration slope for
outcome category j versus the referent Q. Estimates of 𝜃j≠Q are obtained with unpenalized MLR, whereas 𝜃Q is naturally
equal to zero and is disregarded.

As ML perfectly calibrates the coefficients to the development sample, it will always attain a calibration slope of 1
there. We assess out-of-sample calibration, where a slope < 1 is evidence of overfitting, and a slope > 1 is evidence of
underfitting.31 As the value of the multinomial calibration slopes depend slightly on the choice of the reference category,29

we computed all possible calibration slopes with each category as the reference once.

2.3 Overall performance
The overall performance measures quantify the distance between the predicted and observed outcomes and thus cap-
ture both the discrimination and calibration of the model.3 The Brier score quantifies the squared distance between the
observed outcomes and the predicted probabilities.32 It can take values from 0 for perfect predictions to 2 for completely
inaccurate predictions. The Brier score for a MLR model is defined by

Brier score = 1
N

J∑
𝑗=1

N∑
i=1

(𝜋i𝑗(xi) − 𝑦i𝑗)2. (4)

The Nagelkerke R2 estimates the proportion of explained variation in a discrete outcome variable33: it is equal to 0 for
no explained variation and 1 for a complete explanation of the variation.33 Let l(0) and l(𝜷̂) be the log-likelihood for an
intercept-only MLR model and the MLR model under scrutiny, respectively. Then,

R2
Nagelkerke =

1 − exp
(

2
N

[
l(𝜷̂) − l(0)

])
1 − exp

(
2
N

l(0)
) . (5)

3 SIMULATION STUDY—METHODS

3.1 Main simulation settings
For ease of presentation, we focused our simulations on the simplest extension of the binary logistic regression model by
studying the MLR for J = 3 outcome categories. Sixty-three Monte Carlo simulation scenarios were investigated by fully
crossing the following simulation factors.

• multinomial EPV: 3, 5, 10, 15, 20, 30, and 50 events per predictor.
• Relative frequencies of the 3 outcome categories. Levels: 1 ∶ ( 1

3
,

1
3
,

1
3
); 2 ∶ ( 2

20
,

9
20
,

9
20
); 3 ∶ ( 8

10
,

1
10
,

1
10
).

• Number of predictors (R): 4, 8, and 16.

In binary logistic regression, the number of events per variable (EPV) is defined by the ratio of the number of observa-
tions in the smallest of two outcome categories divided by the number of estimated regression coefficients, excluding
the intercept.34 In parallel, we define EPVm by ratio of the smallest number of observations in the multinomial outcome
categories divided by the effective number of regression coefficients excluding the intercepts. The number of effective
regression coefficients excluding the intercept is given by (J − 1)R. Further, for categorical predictors with G categories
the number of effective regression coefficients per predictor is (J − 1)(G − 1).

Predictor covariate vectors were drawn from multivariate normal distributions with the covariance matrix an iden-
tity matrix. For the development of clinical prediction models, predictor variables may be selected based on expert
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knowledge,3,35 in which case variables with varying predictive impact may be present, and true noise variables pre-
dictors (regression coefficient of data generation mechanism of exactly zero) may be infrequent. This simulation was
designed to mimic this situation and therefore did not include noise predictors. For the scenario with R = 4, 𝜷1 =
{− 0.2, − 0.2, − 0.5, − 0.8} and 𝜷2 = {0.2, 0.2, 0.5, 0.8}, corresponding to small (±0.2), medium (±0.5), and large (±0.8)
predictor effects of category 1 and 2 versus the referent category.36 For simulation scenarios with 8 and 16 predictors, pre-
dictor effects were similarly distributed, ie, 1

2
small, 1

4
medium, and 1

4
large effects. The true intercepts for each linear

predictor were approximated numerically (Appendix A). Outcome data were sampled from a multinomial distribution,
where the probability of drawing each outcome was computed by applying the multinomial logit function (Equation 1)
on the generated covariate vectors.

3.2 Sensitivity analyses
In the sensitivity analyses, we studied the effect of additional factors on the predictive performance of MLR. In each of
these scenarios, EPVm in the development data sets was fixed to 10, frequencies of outcome categories were equal and the
number of predictors was set to 4. The factors that were varied were as follows.

• Correlations between predictors. Levels: 0; 0.2; 0.3; 0.5; 0.7; and 0.9.
• Type of predictors. Levels: continuous (standard normal) and binary (with relative frequency 1∕2).

3.3 Development and validation data sampling procedure
Two-thousand replications per simulation scenario were performed. For each replication, a development data set was
generated (total sample size per scenario is given in Tables 2 to 4), as well as an independent (external) validation data set
of size N = 30 000. On each development data set, MLR models were estimated by ML (Section 2.1) and lasso and ridge
(Section 2.1.1). For these models, the apparent discrimination predictive performance and apparent overall predictive
performance (Table 1) were calculated on the development data. Further, the out-of-sample predictive performance (all
measures in Table 1) of the fitted models were evaluated on the validation data sets. Similar to earlier EPV studies,37 EPVm
and N were fixed for each simulation data set by sampling covariate and outcome data until these criteria were met, while
disregarding oversampled data.

3.4 Software
Simulations and analyses were carried out in R 3.2.2.38 For the fitting of ML, the mlogit39 and maxLik40 packages
were used. For the fitting of ridge and lasso, the glmnet package was used.25 In a pilot study (data not shown), the
sequence of default 𝜆 values generated for ridge MLR showed to be insufficient. This issue was alleviated by extending
the sequence with smaller values. The models rarely failed to converge in general. On overall, in < 0.01% of the main
analyses, at least one of the models did not converge, whereas in the scenario with highest nonconvergence, this was
0.3%. In the sensitivity analyses, all models converged. Our simulation code and aggregated data are available via GitHub
(https://github.com/VMTdeJong/Multinomial-Predictive-Performance).

4 RESULTS

4.1 Calibration
Calibration slopes could not be computed for the lasso in 0.04% of the simulations, when all predictor coefficients were
shrunk to exactly zero. We report the results of the two multinomial calibration slopes where category 3 was taken as
reference for simplicity of interpretation (Figure 1 and Table 2). The distribution of calibration slopes estimated on the
validation data sets was right skewed for some simulation scenarios. This was especially the case for the penalization
methods, due to extensive shrinkage of coefficients to values very close to zero in a few simulation replications. Therefore,
we report the medians of the calibration slopes as an overall measure of calibration.

https://github.com/VMTdeJong/Multinomial-Predictive-Performance


1606 DE JONG ET AL.

TABLE 2 Median multinomial calibration slopes for ML, lasso, and ridge
Maximum Likelihood Lasso Ridge

Relative Frequencies Predictors EPVm N Slope 3 vs 1 Slope 3 vs 2 Slope 3 vs 1 Slope 3 vs 2 Slope 3 vs 1 Slope 3 vs 2
1/3, 1/3, 1/3. 4 3 72 0.556’ 0.707’ 0.823∗ 1.097∗ 0.836∗ 1.150∗

5 120 0.686∗ 0.799’ 0.867∗ 1.037∗ 0.892∗ 1.075∗
10 240 0.823’ 0.891’ 0.919∗ 1.006’ 0.951∗ 1.042’
15 360 0.873’ 0.924’ 0.937∗ 0.995’ 0.965’ 1.028’
20 480 0.901’ 0.943 0.946’ 0.994’ 0.974’ 1.023’
30 720 0.933’ 0.965 0.959’ 0.994 0.982’ 1.019
50 1200 0.958 0.973 0.972 0.987 0.989’ 1.006

8 3 144 0.609’ 0.728’ 0.801’ 1.001’ 0.819∗ 1.049∗
5 240 0.734’ 0.825’ 0.860’ 0.987∗ 0.885’ 1.026’

10 480 0.845’ 0.900’ 0.912’ 0.976 0.937’ 1.006’
15 720 0.888 0.927 0.930’ 0.975 0.955’ 1.000
20 960 0.924 0.949 0.954 0.984 0.976 1.006
30 1440 0.945 0.966 0.964 0.985 0.981 1.003
50 2400 0.963 0.977 0.976 0.990 0.985 1.000

16 3 288 0.644’ 0.738 0.811’ 0.971’ 0.830’ 1.000’
5 480 0.758’ 0.827 0.868’ 0.964 0.888’ 0.991’

10 960 0.865 0.908 0.921 0.972 0.943 0.996
15 1440 0.905 0.936 0.943 0.976 0.962 0.995
20 1920 0.926 0.951 0.954 0.980 0.968 0.997
30 2880 0.949 0.967 0.967 0.987 0.979 0.998
50 4800 0.970 0.980 0.983 0.993 0.988 0.998

2/20, 9/20, 9/20. 4 3 240 0.737∗ 0.900’ 0.860∗ 1.033’ 0.901∗ 1.084∗
5 400 0.822∗ 0.934 0.899∗ 1.013’ 0.929∗ 1.046’

10 800 0.905’ 0.966 0.942’ 1.004 0.965’ 1.026
15 1200 0.935’ 0.979 0.956’ 1.000 0.975’ 1.020
20 1600 0.948’ 0.983 0.962’ 0.996 0.978’ 1.013
30 2400 0.970’ 0.990 0.978’ 0.999 0.989 1.010
50 4000 0.981 0.994 0.986 0.999 0.994 1.006

8 3 480 0.774’ 0.905 0.857’ 1.006’ 0.884’ 1.036’
5 800 0.855’ 0.939 0.906’ 0.998 0.927’ 1.021

10 1600 0.921’ 0.966 0.944 0.991 0.959’ 1.009
15 2400 0.948 0.979 0.962 0.994 0.975 1.007
20 3200 0.961 0.984 0.971 0.995 0.981 1.006
30 4800 0.972 0.989 0.979 0.997 0.985 1.003
50 8000 0.983 0.993 0.988 0.998 0.992 1.002

16 3 960 0.796 0.898 0.861 0.983 0.876 1.003
5 1600 0.866 0.934 0.904 0.980 0.921 1.000

10 3200 0.930 0.966 0.948 0.987 0.960 1.000
15 4800 0.951 0.976 0.966 0.991 0.972 0.997
20 6400 0.964 0.982 0.974 0.993 0.979 0.998
30 9600 0.974 0.987 0.981 0.994 0.986 0.999
50 16000 0.985 0.993 0.990 0.997 0.992 1.000

8/10, 1/10, 1/10. 4 3 240 0.745∗ 0.818’ 0.896∗ 0.993∗ 0.923∗ 1.048∗
5 400 0.840∗ 0.878’ 0.932∗ 0.982’ 0.964∗ 1.017∗

10 800 0.914’ 0.940’ 0.954’ 0.980’ 0.984’ 1.014’
15 1200 0.943’ 0.960’ 0.964’ 0.985 0.993’ 1.012’
20 1600 0.953’ 0.967 0.970’ 0.984 0.992’ 1.005’
30 2400 0.965 0.976 0.974 0.986 0.990 1.002
50 4000 0.980 0.988 0.985 0.994 0.995 1.004

8 3 480 0.801’ 0.851 0.909’ 0.976’ 0.938’ 1.007’
5 800 0.867’ 0.905 0.927’ 0.970 0.958’ 1.004’

10 1600 0.932 0.954 0.958 0.980 0.982 1.007
15 2400 0.952 0.967 0.967 0.981 0.987 1.002
20 3200 0.964 0.976 0.976 0.988 0.990 1.002
30 4800 0.976 0.984 0.984 0.992 0.992 0.999
50 8000 0.984 0.990 0.990 0.995 0.996 1.002

16 3 960 0.822 0.874 0.913 0.973 0.944 1.009
5 1600 0.891 0.921 0.941 0.975 0.968 1.004

10 3200 0.943 0.959 0.966 0.984 0.984 1.002
15 4800 0.959 0.973 0.975 0.988 0.988 1.002
20 6400 0.972 0.981 0.983 0.992 0.993 1.003
30 9600 0.980 0.987 0.989 0.995 0.993 1.000
50 16000 0.988 0.993 0.993 0.998 0.997 1.002

Each multinomial calibration slope consisted of 2 slopes, where category 3 was taken as reference. EPVm: multinomial events per variable. N: total sample size.
SE are obtained by taking the SD of 105 bootstraps. SE are indicated as follows: omitted < .0025 ≤ ’ < 0.005 ≤ * ≤ 0.012.
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TABLE 3 Percentage difference between PDI of ML, lasso and ridge, and the reference
Within-Sample Out-of-Sample

Relative Frequencies Predictors Reference EPVm N ML Lasso Ridge ML Lasso Ridge
1/3, 1/3, 1/3. 4 0.59 3 72 9.28* 7.21* 8.98* −5.72’ −7.36’ −6.47’

5 120 6.00* 5.37* 5.88* −3.86 −4.70’ −4.38
10 240 3.21* 3.07* 3.16* −2.29 −2.58 −2.53
15 360 2.18’ 2.13’ 2.16’ −1.65 −1.82 −1.79
20 480 1.65’ 1.63’ 1.64’ −1.32 −1.43 −1.42
30 720 1.15’ 1.14’ 1.15’ −0.91 −0.96 −0.96
50 1200 0.85’ 0.85’ 0.85’ −0.61 −0.63 −0.63

8 0.65 3 144 8.00* 7.36* 7.73* −5.18 −6.22 −6.01
5 240 4.88* 4.69* 4.80’ −3.51 −4.05 −3.97

10 480 2.75’ 2.72’ 2.74’ −1.95 −2.15 −2.13
15 720 2.00’ 1.99’ 1.99’ −1.41 −1.51 −1.51
20 960 1.34’ 1.34’ 1.34’ −1.10 −1.16 −1.16
30 1440 0.96 0.96 0.96 −0.78 −0.81 −0.81
50 2400 0.64 0.64 0.64 −0.50 −0.51 −0.51

16 0.72 3 288 6.41’ 6.09’ 6.20’ −4.65 −5.56 −5.43
5 480 4.04’ 3.96’ 3.99’ −3.01 −3.43 −3.38

10 960 2.06 2.05 2.05 −1.68 −1.82 −1.81
15 1440 1.44 1.44 1.44 −1.18 −1.24 −1.24
20 1920 1.11 1.11 1.11 −0.92 −0.96 −0.97
30 2880 0.76 0.76 0.76 −0.64 −0.66 −0.66
50 4800 0.47 0.47 0.47 −0.40 −0.41 −0.41

2/20, 9/20, 9/20. 4 0.58 3 240 5.20* 4.92* 5.15* −2.79 −3.03 −2.76
5 400 3.51* 3.41* 3.50* −1.98 −2.10 −1.99

10 800 1.95’ 1.93’ 1.95’ −1.25 −1.30 −1.26
15 1200 1.47’ 1.46’ 1.47’ −0.93 −0.96 −0.94
20 1600 1.18’ 1.18’ 1.18’ −0.74 −0.76 −0.75
30 2400 0.75 0.75 0.75 −0.55 −0.56 −0.56
50 4000 0.46 0.46 0.46 −0.37 −0.38 −0.38

8 0.64 3 480 4.42’ 4.33’ 4.38’ −2.47 −2.66 −2.60
5 800 2.86’ 2.83’ 2.85’ −1.75 −1.86 −1.84

10 1600 1.69’ 1.69’ 1.69’ −1.05 −1.09 −1.09
15 2400 1.14 1.13 1.13 −0.77 −0.79 −0.79
20 3200 0.92 0.92 0.92 −0.62 −0.63 −0.63
30 4800 0.64 0.64 0.64 −0.44 −0.45 −0.45
50 8000 0.45 0.45 0.45 −0.29 −0.29 −0.30

16 0.70 3 960 3.73’ 3.70’ 3.70’ −2.27 −2.48 −2.46
5 1600 2.42 2.41 2.41 −1.52 −1.62 −1.62

10 3200 1.34 1.34 1.34 −0.88 −0.91 −0.92
15 4800 0.97 0.97 0.97 −0.64 −0.66 −0.66
20 6400 0.72 0.72 0.71 −0.50 −0.51 −0.51
30 9600 0.56 0.56 0.56 −0.35 −0.35 −0.36
50 16000 0.35 0.35 0.35 −0.23 −0.23 −0.23

8/10, 1/10, 1/10. 4 0.62 3 240 4.38* 3.75* 4.05* −4.08’ −5.11’ −5.05’
5 400 2.72* 2.54* 2.63* −2.60 −3.03 −2.98

10 800 1.45’ 1.41’ 1.42’ −1.42 −1.53 −1.53
15 1200 0.91’ 0.90’ 0.90’ −0.98 −1.03 −1.04
20 1600 0.76’ 0.76’ 0.76’ −0.76 −0.79 −0.79
30 2400 0.63’ 0.63’ 0.63’ −0.52 −0.54 −0.54
50 4000 0.33 0.33 0.33 −0.33 −0.34 −0.34

8 0.70 3 480 3.30’ 3.13’ 3.22’ −3.06 −3.53 −3.46
5 800 2.06’ 2.01’ 2.03’ −1.93 −2.12 −2.10

10 1600 1.00’ 0.99’ 0.99’ −1.03 −1.08 −1.08
15 2400 0.74 0.74 0.74 −0.69 −0.71 −0.71
20 3200 0.53 0.53 0.53 −0.55 −0.57 −0.57
30 4800 0.39 0.39 0.39 −0.37 −0.38 −0.38
50 8000 0.26 0.26 0.26 −0.23 −0.23 −0.23

16 0.79 3 960 2.27’ 2.22’ 2.25’ −2.18 −2.41 −2.36
5 1600 1.37 1.36 1.37 −1.34 −1.43 −1.41

10 3200 0.73 0.73 0.73 −0.71 −0.73 −0.73
15 4800 0.48 0.48 0.48 −0.48 −0.49 −0.49
20 6400 0.34 0.34 0.34 −0.36 −0.36 −0.36
30 9600 0.24 0.24 0.24 −0.24 −0.25 −0.25
50 16000 0.12 0.12 0.12 −0.15 −0.15 −0.15

Reference values obtained with the data generating mechanism. All SE of reference < 10−4. EPVm: multinomial events per variable. ML: Maxi-
mum Likelihood. N: total sample size. PDI: polytomous discrimination index. SE are indicated as follows: omitted < 0.05 ≤ ’ < 0.10 ≤ * ≤ 0.22.
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TABLE 4 Percentage difference between Brier scores of ML, lasso and ridge, and the reference
Within-Sample Out-of-Sample

Relative Frequencies Predictors Reference EPVm N ML Lasso Ridge ML Lasso Ridge
1/3, 1/3, 1/3. 4 0.55 3 72 −6.89* −3.99* −4.58* 7.01’ 6.14’ 5.70’

5 120 −4.14* −3.14* −3.26* 4.00’ 3.76 3.56
10 240 −1.96’ −1.75’ −1.73’ 1.94 1.90 1.84
15 360 −1.26’ −1.18’ −1.16’ 1.29 1.29 1.25
20 480 −0.92’ −0.88’ −0.86’ 0.97 0.97 0.94
30 720 −0.59 −0.58 −0.57 0.62 0.62 0.61
50 1200 −0.43 −0.43 −0.42 0.38 0.38 0.38

8 0.50 3 144 −7.62* −5.84* −5.97* 7.72’ 6.75’ 6.52’
5 240 −4.30* −3.74* −3.72* 4.47 4.24 4.10

10 480 −2.28’ −2.16’ −2.13’ 2.15 2.12 2.06
15 720 −1.60’ −1.56’ −1.53’ 1.45 1.44 1.40
20 960 −0.99’ −0.97’ −0.96’ 1.06 1.07 1.04
30 1440 −0.69 −0.68 −0.67 0.72 0.72 0.71
50 2400 −0.45 −0.45 −0.44 0.43 0.43 0.43

16 0.44 3 288 −8.70* −7.29* −7.29* 9.01’ 8.16 7.87
5 480 −5.19’ −4.75’ −4.69’ 5.15 4.92 4.76

10 960 −2.47’ −2.39’ −2.34’ 2.53 2.50 2.45
15 1440 −1.66’ −1.62’ −1.60’ 1.68 1.67 1.64
20 1920 −1.25 −1.23 −1.21 1.27 1.26 1.25
30 2880 −0.82 −0.81 −0.81 0.84 0.83 0.83
50 4800 −0.49 −0.49 −0.49 0.50 0.50 0.50

2/20, 9/20, 9/20. 4 0.42 3 240 −2.07* −1.74* −1.66* 1.95 1.96 1.87
5 400 −1.30’ −1.18’ −1.13’ 1.16 1.17 1.14

10 800 −0.61’ −0.58’ −0.56’ 0.57 0.58 0.57
15 1200 −0.37’ −0.36’ −0.35’ 0.37 0.38 0.37
20 1600 −0.34’ −0.34’ −0.33’ 0.28 0.29 0.28
30 2400 −0.15 −0.15 −0.15 0.19 0.19 0.19
50 4000 −0.08 −0.08 −0.07 0.11 0.11 0.11

8 0.36 3 480 −2.28* −2.09* −2.03* 2.23 2.19 2.11
5 800 −1.26’ −1.20’ −1.17’ 1.35 1.34 1.31

10 1600 −0.68’ −0.67’ −0.66’ 0.67 0.67 0.66
15 2400 −0.39 −0.39 −0.38 0.44 0.44 0.44
20 3200 −0.29 −0.29 −0.28 0.33 0.33 0.33
30 4800 −0.18 −0.18 −0.18 0.22 0.22 0.22
50 8000 −0.14 −0.14 −0.14 0.13 0.13 0.13

16 0.31 3 960 −2.70’ −2.56’ −2.52’ 2.77 2.70 2.62
5 1600 −1.60’ −1.56’ −1.54’ 1.63 1.62 1.58

10 3200 −0.81 −0.80 −0.79 0.81 0.80 0.79
15 4800 −0.56 −0.55 −0.55 0.54 0.53 0.53
20 6400 −0.41 −0.41 −0.40 0.40 0.40 0.40
30 9600 −0.34 −0.34 −0.34 0.26 0.26 0.26
50 16000 −0.16 −0.16 −0.16 0.16 0.16 0.16

8/10, 1/10, 1/10. 4 0.32 3 240 −2.61’ −2.06’ −2.06’ 2.73 2.51 2.42
5 400 −1.56’ −1.38’ −1.36’ 1.59 1.54 1.48

10 800 −0.76 −0.73 −0.71 0.80 0.80 0.77
15 1200 −0.48 −0.47 −0.46 0.52 0.53 0.52
20 1600 −0.39 −0.38 −0.37 0.40 0.40 0.39
30 2400 −0.28 −0.28 −0.27 0.26 0.26 0.26
50 4000 −0.18 −0.18 −0.18 0.15 0.15 0.15

8 0.29 3 480 −3.11’ −2.69’ −2.64’ 3.21 3.08 2.97
5 800 −1.81’ −1.69’ −1.64’ 1.90 1.87 1.81

10 1600 −0.86’ −0.84’ −0.81’ 0.93 0.93 0.92
15 2400 −0.63 −0.63 −0.61 0.61 0.61 0.60
20 3200 −0.45 −0.45 −0.44 0.47 0.47 0.47
30 4800 −0.26 −0.26 −0.26 0.31 0.31 0.31
50 8000 −0.19 −0.19 −0.19 0.19 0.19 0.19

16 0.26 3 960 −3.80’ −3.45’ −3.35’ 3.98 3.87 3.73
5 1600 −2.25’ −2.15’ −2.08’ 2.33 2.30 2.24

10 3200 −1.14’ −1.12’ −1.10’ 1.17 1.17 1.15
15 4800 −0.74 −0.73 −0.72 0.78 0.77 0.77
20 6400 −0.55 −0.55 −0.54 0.57 0.57 0.57
30 9600 −0.38 −0.38 −0.37 0.38 0.38 0.38
50 16000 −0.19 −0.19 −0.19 0.23 0.23 0.23

Reference values obtained with the data generating mechanism. All SE of reference < 5 ∗ 10−5. EPVm: multinomial events per variable. ML:
Maximum Likelihood. N: total sample size. SE are indicated as follows: omitted < 0.05 ≤ ’ < 0.10 ≤ * ≤ 0.18.
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FIGURE 1 Median calibration slopes for Maximum Likelihood (ML), lasso, and ridge. Perfect calibration (1) has been included as
reference. Horizontal axis: number of predictors varied. Vertical axis: relative frequency varied. Solid lines: category 3 vs 2. Dashed lines:
category 3 vs 1 [Colour figure can be viewed at wileyonlinelibrary.com]
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As expected, the calibration slopes estimated on the validation data approached 1 (perfect calibration) as EPVm
increased for all methods (Figure 1 and Table 2). Calibration slopes for ML were consistently smaller than 1 for all scenar-
ios with low EPVm, demonstrating overfit. For penalized MLR, we observed a different calibration pattern than for ML.
In scenarios where both EPVm and total sample size were low, the calibration tended to be in the opposite direction for
the two calibration slopes for the same model. That is, one of the two multinomial calibration slopes tended to be larger
than 1 (indicating underfit) while the other tended to be smaller than 1 (indicating overfit). However, both lasso and ridge
were on overall better calibrated than ML, as the calibration slopes approached the value of 1 more quickly than for ML.
Further, in most scenarios, the calibration slopes of ridge MLR approached the perfect value of 1 more quickly than those
of lasso MLR.

Median calibration slopes for all methods tended to be closer to 1 when there was one large or one small outcome than
when the outcome categories were equal in size, when EPVm was kept constant. Further, the median calibration slopes for
one pair of outcomes (categories 3 and 2) improved, when only the remaining outcome category (category 1) increased in
size. Additionally, calibration slopes for all methods were closer to optimal as the number of predictors increased, while
EPVm was kept constant. As the number of predictors and the relative frequencies of the outcome categories modify the
total sample size, calibration slopes tended to be closer to 1 as the total sample size increased. Finally, calibration slopes
were closer to 1 as the model strength of the data generating mechanism increased, as quantified by the reference PDI
and Brier scores.

4.2 Discrimination
The values of all out-of-sample PDI (ie, estimated on validation data) were consistently lower than the within-sample
PDI (ie, estimated on development data), reflecting overoptimism of the within-sample PDI statistic, due to overfitted
prediction models (Figure 2 and Table 3). As EPVm increased, both the within- and out-of-sample PDI approached the true
values of the data generating mechanism. In situations where the outcome categories were unequally sized, out-of-sample
PDI was better than where outcome categories were equally sized, while EPVm was kept constant. The PDI of all models
improved slightly as the number of predictors increased, while EPVm was kept constant. Out-of-sample discrimination,
as well as within-sample discrimination, were nearly equivalent for ML, ridge, and lasso.

4.3 Overall performance
The results of the Brier score (Figure 3 and Table 4) were similar to the results of Nagelkerke R2 (Figure 1 and
Table 1 of Appendix B). The out-of-sample Brier scores were consistently higher than the within-sample Brier scores, again
reflecting overoptimism of the within-sample statistics. As EPVm increased, both the within-sample and out-of-sample
Brier score approached that of the data generating mechanism. In situations where the outcome categories were unequally
sized, out-of-sample Brier scores were better than where outcome categories were equally sized. Though, the Brier scores
were marginally worse as the number of predictors increased.

Out-of-sample Brier scores were slightly better for ridge and lasso than for ML in situations with low EPVm (Figure 3
and Table 4). Within-sample Brier scores were closer to out-of-sample Brier scores for lasso and ridge than for ML
in situations with low EPVm, reflecting a decrease in optimism of the within-sample statistics, by the application of
penalization.

4.4 Sensitivity analyses
4.4.1 Correlations between predictors
The results of the calibration slopes, PDI, and Brier score are shown in Figure 4 for different values of the correlations
between the predictors. For ML, as the correlations between the predictors was increased, a small improvement was
observed in the calibration slopes and PDI, while the Brier score deteriorated. The calibration slopes increased as the
correlations between the predictors increased, for both penalized methods. When the correlations between predictors
were very high, both penalization methods yielded underfitted models. The PDI improved for both penalization methods
as the correlations between the predictors increased, contrasting with ML, where little difference could be observed. For
both penalization methods, the Brier score was better when the correlations between the predictors were very high, as
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FIGURE 2 Percent difference in polytomous discrimination index (PDI) between reference and Maximum Likelihood (ML), lasso and
ridge. Zero (ie, no difference with the data generating mechanism) has been included as reference. Left: stratified by number of predictors,
frequency marginalized out. Right: stratified by frequency, number of predictors marginalized out. Dotted lines: within-sample PDI. Solid
lines: out-of-sample PDI [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 3 Percent difference in Brier scores between reference and Maximum Likelihood (ML), lasso and ridge. Zero (ie, no difference
with the data generating mechanism) has been included as reference. Left: stratified by number of predictors, frequency marginalized out.
Right: stratified by frequency, number of predictors marginalized out. Dotted lines: within-sample Brier scores. Solid lines: out-of-sample
Brier scores [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 Predictive performance for various values of correlations between predictors, for Maximum Likelihood (ML), lasso, and ridge.
EPVm = 10, the number of predictors = 4, and the frequencies of the outcome categories are equal, giving a total sample size of 240. Top:
median calibration slopes, where 1 is included as reference. Middle: percent difference in polytomous discrimination index (PDI) compared
with reference. Bottom: percent difference in Brier score compared with reference. For the PDI and Brier score, zero (ie, no difference with
the data generating mechanism) has been included as reference. Solid and dashed lines: out-of-sample. Dotted lines: within-sample [Colour
figure can be viewed at wileyonlinelibrary.com]

compared to when the correlations were moderate or low. The Brier scores for both penalization methods were superior
or equivalent to those for ML, for all values of the correlations between the predictors.

4.4.2 Type of predictors
The results of the calibration slopes, PDI, and Brier score are shown for a scenario with continuous and with binary
predictors in Figure 5. For ML, the calibration slopes were smaller when the predictors were binary, indicating more
overfit. Also, the out-of-sample PDI was further from the reference, and the difference with the within-sample PDI was
also larger (larger optimism), when the predictors were binary than when they were continuous. We observed barely any
difference in the Brier scores between binary and continuous predictors.

For the penalization methods, the calibration slopes were further away from 1 when the predictors were binary, indicat-
ing both more underfit and overfit, than when they were continuous (Figure 5). This contrasts with the calibrations slopes

http://wileyonlinelibrary.com
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FIGURE 5 Predictive performance for Maximum Likelihood (ML), lasso, and ridge for normal and binary predictors. EPVm = 10, the
number of predictors = 4, and the frequencies of the outcome categories are equal, giving a total sample size of 240. Top: calibration slopes,
where perfect calibration (1) has been included as reference. Middle: percent difference in polytomous discrimination index (PDI) compared
with reference. Bottom: percent difference in Brier score compared with reference. For the PDI and Brier score, zero (ie, no difference with
the data generating mechanism) has been included as reference. Some extreme values are not shown [Colour figure can be viewed at
wileyonlinelibrary.com]
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TABLE 5 Prediction models for ovarian tumors

ML Lasso (% shrinkage) Ridge (% shrinkage)
EPVm N Predictor Borderline Invasive Borderline Invasive Borderline Invasive

3 614 Intercept −3.96 −5.97 −3.74(5%) −5.55(7%) −3.89(2%) −5.51(8%)
Age 0.00 0.04 0.00(61%) 0.04(11%) 0.00(-18%) 0.04(9%)
Solid diameter 0.04 0.10 0.04(3%) 0.09(5%) 0.04(6%) 0.09(8%)
Papillations flow 1.27 0.52 1.23(3%) 0.47(10%) 1.31(-3%) 0.51(3%)
Irregular 1.37 0.50 1.21(12%) 0.47(4%) 1.26(8%) 0.49(2%)
Shadows −17.95 −4.28 −3.77(79%) −3.77(12%) −3.07(83%) −3.63(15%)
Ascites 1.77 3.23 1.54(13%) 2.92(10%) 1.51(15%) 2.90(10%)

5 1024 Intercept −3.87 −5.40 −3.74(3%) −5.16(4%) −3.84(1%) −5.11(5%)
Age 0.01 0.04 0.01(11%) 0.03(8%) 0.01(-1%) 0.03(6%)
Solid diameter 0.03 0.09 0.03(2%) 0.09(3%) 0.03(2%) 0.08(6%)
Papillations flow 1.74 0.88 1.71(2%) 0.83(5%) 1.74(0%) 0.85(4%)
Irregular 1.02 0.47 0.91(11%) 0.46(2%) 0.96(6%) 0.46(1%)
Shadows −2.53 −3.24 −2.53(0%) −2.96(9%) −2.18(14%) −2.91(10%)
Ascites 1.72 3.20 1.55(10%) 2.99(7%) 1.51(12%) 2.95(8%)

10 2049 Intercept −3.80 −5.40 −3.70(3%) −5.22(3%) −3.78(1%) −5.15(5%)
Age 0.00 0.03 0.00(14%) 0.03(6%) 0.00(-9%) 0.03(5%)
Solid diameter 0.03 0.09 0.03(1%) 0.09(3%) 0.03(0%) 0.08(6%)
Papillations flow 1.92 1.13 1.89(2%) 1.09(4%) 1.90(1%) 1.09(4%)
Irregular 1.21 0.56 1.11(8%) 0.55(1%) 1.14(6%) 0.55(1%)
Shadows −2.15 −2.87 −2.14(0%) −2.66(7%) −1.93(10%) −2.62(9%)
Ascites 1.45 2.85 1.31(10%) 2.68(6%) 1.28(12%) 2.66(6%)

The reference category is benign tumors. The models estimated by lasso and ridge have been reparameterized into the reference-category
model of Equation 1. The shrinkage by lasso and ridge is calculated relative to Maximum Likelihood (ML). EPVm: multinomial events
per variable. N: total size of development sample. Age: age in years. Diameter: maximum diameter of solid component (continuous, but
no increase > 50 mm). Papillations flow: presence of papillations with blood flow. Irregular: irregular cyst walls. Shadows: presence of
acoustic shadows on the echo. Ascites: presence of ascites in the Pouch of Douglas.

for ML, which consistently showed more overfit when the predictors were binary. Similar to ML, the difference between
the PDI for the penalization methods and the reference was slightly larger when the predictors were binary. Finally, we
observed little difference in the out-of-sample Brier scores for the penalization methods when the type of predictor was
varied, similar to ML.

5 CASE STUDY OF OVARIAN CANCER

We here present a case study applying penalized and unpenalized MLR to data from a clinical study with the objective
to produce a clinical prediction model to predict whether an ovarian tumor is benign (n = 3183% or 66%), borderline
malignant (n = 284% or 6%) or invasive (n = 1381% or 28%). The appropriateness of treatment strategies for ovarian
tumors depends on the assessment of the tumor using noninvasive procedures, and choosing the most suitable treatment
is important as invasive treatments may worsen the prognosis.41 Candidate predictors were as follows: age (years), pres-
ence of papillations with blood flow (yes/no), irregular cyst walls (yes/no), presence of acoustic shadows on the echo
(yes/no), presence of ascites in the Pouch of Douglas (yes/no), and maximum diameter of solid component (continuous,
but no increase > 50 mm).

For illustrative purposes, we partitioned the data set into disjoint development (N = 2049,EPVm = 10) and validation
sets (N = 2799). The relative frequencies of the outcome categories were kept constant between development and vali-
dation data. Further, we sampled from the development set to obtain two smaller development data sets, sized N = 1024
(EPVm = 5), and N = 616 (EPVm = 3). We used ML, lasso, and ridge to estimate the MLR models in the develop-
ment data sets (Table 5). In the EPVm = 10 and EPVm = 5 development sets, the largest shrinkage by penalization we
observed was 14%, compared to the model estimated by ML. We observed up to 83% shrinkage in the EPVm = 3 sample.

The developed prediction models were tested in the validation set, thereby quantifying the out-of-sample performance
(Table 6). We observed that the PDI and Brier scores of the penalized and unpenalized models improved as EPVm and the
total sample size increased, in accordance with the results of our simulations. For EPVm = 3 the model estimated by ML
showed overfit, as quantified by the multinomial calibration slopes, whereas the penalized models were close to perfectly
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TABLE 6 Performance of prediction models for ovarian tumors

EPVm N Estimator Slope 3 vs 1 Slope 3 vs 2 PDI Brier Score
3 614 ML 0.85 0.71 0.762 0.0759

Lasso 0.95 0.99 0.762 0.0756
Ridge 0.97 1.02 0.763 0.0753

5 1024 ML 0.98 0.94 0.767 0.0745
Lasso 1.03 0.99 0.768 0.0744
Ridge 1.05 1.01 0.767 0.0743

10 2049 ML 1.01 0.91 0.769 0.0741
Lasso 1.05 0.95 0.769 0.0740
Ridge 1.07 0.97 0.768 0.0740

EPVm: multinomial events per variable. N: total size of development sample. PDI: polyto-
mous discrimination index. ML: Maximum Likelihood. Performance was calculated on an
independent sample.

calibrated. For EPVm ≥ 5, we observed minor miscalibration for all models. Finally, we observed negligible differences
in values of the PDI and Brier score between the three models, for each size of the development data, also in accordance
with the results of our simulations.

6 DISCUSSION

We conducted an extensive simulation study to examine the predictive performance of MLR models that are developed
in samples with a ratio of 3 to 50 observations in the smallest outcome category relative to the number of parameters esti-
mated, excluding intercepts. This ratio, which we here call “multinomial EPV” (EPVm), is closely related to EPV as known
from the binary logistic regression literature.11,34 In agreement with earlier studies focusing on binary models,3,13,37 we
found that sufficient size of the smallest multinomial category is a factor for the predictive performance of the MLR model.
In this study, we have used the definition for EPVm that most closely matches the EPV definition for binary outcomes.
Further research could be focused on other possible EPV definitions. This study has implications for the development
of diagnostic and prognostic multinomial prediction models, as it draws the basic outlines of what affects predictive
performance in multinomial logistic prediction models in practice.

Our results show that MLR models estimated with ML (ie, unpenalized) tend to be overfit even in samples with a
relatively high number of EPVm. Overall sample size and the method of analysis, ie, whether or not shrinkage techniques
are applied, are clearly also important factors. The extent of overfit (ie, model miscalibration) was further affected by
the relative sizes of the outcome categories. We observed that calibration was worst when all outcome categories were
of equal size, EPVm was small and the number of predictors was low. When EPVm is kept constant, model calibration
improves as at least one of the outcome categories grows in size, and as the number of predictors increases. In both
scenarios, the total sample size also increases. Total sample size is therefore likely an underlying factor affecting model
calibration.

Although MLR estimated with ridge and lasso tended to be slightly overfit or underfit (or a combination thereof when
one linear predictor was overfit while the other was underfit), these penalized models generally showed better calibration
than ML, which in many scenarios showed overfit. Penalization reduces overfit of the estimates by inducing a small bias
in the coefficients, which reduces the variance of the estimated probabilities.22,42 As overall performance is composed of
discrimination and calibration,3 the improvement in calibration improves the overall performance. Our results indeed
showed that the overall performance was slightly better for penalized than for unpenalized MLR, which is in agreement
with earlier simulation studies on binary logistic regression.42,43

As noted earlier, in some scenarios, lasso and ridge MLR produced models for which one calibration slope was under-
fit while the other was overfit. This may be a consequence of the (default) parameterization of penalized MLR, which
applied only one tuning parameter to two linear predictors. Possibly, J − 1 tuning parameters are necessary for calibrating
penalized models for J categories, such that each slope has its own tuning parameter. Further research is necessary to
elucidate this phenomenon.

The conducted sensitivity analyses revealed that the discriminatory performance of unpenalized MLR improved
slightly by increased correlations between predictors, though the reference PDI improved as well. Thus, the performance
improved as the model strength of the data generating mechanism (the reference) improved. Further, the model strength
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TABLE 7 Guidance and recommendations

• Predictive performance gradually improves as the number of multinomial EPV (EPVm) increases, at least until 50 EPVm.
• Higher EPVm may be necessary when the event rates are equal, than when the smallest category is rare.
• Interpret (penalized and unpenalized) models with caution when estimated with EPVm < 10.
• Use penalized methods for best predictive performance.
• Correct for optimism, as within-sample performance measures are overly optimistic.

of the data generating mechanism was also affected by the number of predictors and the relative frequencies of the
outcome categories. Here, we also observe that the calibration and discrimination relative to the reference improved as
the model strength of the data generating mechanism increased. Though, note that the Brier scores did not improve
compared to the reference as the number of predictors increased.

As the correlations between the predictors increased, the predictive performance of both lasso and ridge improve consid-
erably, though both became underfit when the correlations were very high. When lasso MLR is applied to highly correlated
predictors, predictors may be selected randomly and the coefficients of the other predictors may be set to zero.44 For lasso
MLR, the effective number of used degrees of freedom is decreased by shrinkage, which can be estimated unbiasedly by
the number of predictors retained.45 Thus, the number of events per effective degrees of freedom for the lasso increases
as the correlations between the predictors increase, as the effective number of used degrees of freedom is reduced due to
the correlations. This may explain why the predictive performance of lasso MLR improved considerably with increasing
correlations.

For ridge MLR, correlations between predictors cause the estimated coefficients to be drawn toward each other by the
squared penalty.19 This stabilizes the estimates, reduces the number of effective degrees of freedom as the coefficients are
shrunk,24 and improves the predictive performance. For unpenalized MLR, with predictors specified a priori, the number
of effective degrees of freedom is equal to the number of estimated parameters, regardless of the correlations between the
predictors.24 Hence, for unpenalized MLR, the ratio of events per effective degrees of freedom used did not change when
the correlation changed, which may explain that little change in predictive performance occurred.

Our sensitivity analyses also show that predictive performance is worse with binary predictors than with continuous
predictors, for all methods. This particularly seems to affect calibration. For binary predictors, it is more likely that sit-
uations arise where the predictors can (almost) perfectly predict the outcome in the development set, a phenomenon
described as “separation.”46,47 In such cases, the unpenalized MLR estimates may attain extreme values, and hence, the
calibration slope of these models will be close to zero in the validation set.

Our simulation study also has some limitations. First, we limited our study to situations where all predictors had
nonzero effects (ie, no noise variables). Our results may therefore not generalize to situations with a large number of
noise variables. In a recent simulation study, Pavlou et al42 found that penalization improves discrimination for binary
logistic prediction models when noise variables are considered. Our results showed little difference in discriminatory per-
formance between penalized and unpenalized MLR. Perhaps, if noise predictors or more weakly predictive variables are
considered for MLR, penalized methods could also have better discrimination than unpenalized methods. In our simu-
lation without noise predictors, ridge MLR tended to yield models with better calibration and overall performance than
lasso MLR. Though, the relative predictive performance of lasso MLR compared to ridge MLR may improve when the
number of noise variables increases, as has recently been shown for binary logistic regression.48

Additionally, we only considered MLR for three outcome categories in our study, which is the simplest extension of the
binary logistic model. When the number of outcome categories is increased and the number of EPVm is kept constant,
the total sample size increases. As our study showed that predictive performance tends to improve with increasing total
sample size, we anticipate that a larger number of outcome categories will yield better overall predictive performance for
the same number of multinomial EPV. Furthermore, future research on the interaction between the number of outcome
categories and their distribution on predictive performance is warranted.

Our results are in agreement with other reports that the adequate sample size for a prediction model is not simply
given by the number of EPV.48-50 Instead, prediction model performance is related to both EPV and total sample size.
Thus, both should be considered when developing a prediction model. However, based on our findings, some general
recommendations for MLR prediction model development can be given, which are summarized in Table 7. We believe
that the penalization methods (lasso and ridge) are applicable for MLR even for large samples, albeit the added value
of penalization in terms of predictive performance decreases with increasing EPVm and total sample size. For samples
with EPVm 30 or lower, we advise that the total sample size be taken into consideration. When the total sample size is
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large, reasonable predictive performance may be attained with 10 EPVm. Conversely, when the total sample size is low,
predictive performance can be poor if EPVm is 10. Below 10 EPVm, a MLR model is at risk of being seriously miscalibrated.
Penalization and optimism corrections for ≤ 10 EPVm are highly recommended.
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