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Indonesia is a country that is surrounded by active volcanoes, which may erupt at any time; therefore, an 
online early warning system of volcanic eruption is crucial. In this paper, an online early warning system is 
constructed based on the changepoints detection on earthquake magnitude time series. This online early warning 
system is built using a Bayesian Online Changepoint Detection (BOCPD) method. One of the method’s advantages 
is that one can customize the parameters (initial hyper-parameters and hazard-rate parameter) of BOCPD to 
follow a chosen constraint. These parameters determine the time and number of changepoints. An algorithm, 
called Appropriate Parameters of Bayesian Online Changepoint Detection for Early Warning (APBOCPD-EW), is 
proposed to get the parameters that lead the detection to the early warning points before eruption. We apply 
the algorithm for online early warning of mount Merapi eruptions. The results show that the proposed method 
produces parameters that give good estimation time for early warnings of mount Merapi’s eruptions.
1. Introduction

Early warning detection of volcanic eruptions is an important study 
in volcanology to avoid the risks and damage due to explosions. Mon-

itoring and studying volcanoes can develop information, actions, and 
evacuation plans for people living around when an upcoming eruption 
occurs. Volcano-monitoring studies are at the core of an effective early 
warning system [1]. If the early warning system fails to detect an abrupt 
event, it could result in severe damage [2]. In statistical analysis, the 
abrupt event is known as a changepoint.

Some early warnings of volcanic eruptions have been studied. 
Bertagnini et al. (2006) published an early warning of Vesuvius erup-

tion by learning its precursors (gas emission, ground deformation, and 
seismic activity) period: the first period, lasting from months before the 
eruption; a second period, represented by the 15–20 days before the 
eruption [3]. The precursory geophysical patterns are also studied by 
Mothes et al. (2017) for early warning at Cotopaxi volcano [4]. Gam-

bino et al. (2014) reviewed that the time–amplitude tilt ranges before 
the eruptions are categorized in large variations (up to over 100 micro 
radians) and minor variations (not exceeding 2.5 micro radians) [5]. 
The studies of mount Etna’s infrasound for detecting imminent eruption 
are discussed by Hall (2018) and Ripepe et al. (2018) that the volcano 
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often produces infrasound waves before it erupts [6] where the infra-

sound parameter (IP) thresholds are IP > 0.2 for 20 minutes (a warning 
stage), and IP < 0.02 for 24 hours (a normal stage) [7]. Matoza et al. 
(2019) and Marcheti et al. (2019) analyzed the infrasound of volcano 
at regional and global scales [8] [9]. Some studies proposed the early 
warning using the data from satellite: total ozone mapping [10], the air-

borne volcanic ash cloud [11], volcano thermal [12], and the volume 
of volcanic sulfur dioxide emissions [13].

Scientists also study that increased seismic activity may predict an 
eruption [14]. According to the United States geological survey, magma 
and volcanic gas movement caused an earthquake. The study in esti-

mating intruded magma volume from the cumulative seismic moment 
by tectonic earthquakes is another tool for predicting eruption [15]. 
Although earthquakes in volcano areas can occur at different places 
(longitude and latitude) and depth, these studies conclude that magma 
activity causes the earthquakes before an eruption/explosion [16]. Fur-

ther, the earthquakes at the volcano become the signal of the eruption 
[17] and a sequence of earthquakes may indicate an imminent erup-

tion [18], [19]. Therefore, a changepoints analysis in the earthquake 
magnitude data for eruption’s early warning needs further research.

In this paper, early warnings are constructed based on change-

points in the time series of earthquake magnitude. The changepoint 
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defines an eruption signal, where the time of changepoint represents 
the early-warning time. Changepoint detection methods have been suc-

cessfully applied in some cases, such as the satellite fault prediction 
using Bayesian Changepoint Detection [20] and change detection of 
the UAV (Unmanned Aerial Vehicle) fuel system [21]. Changepoint de-

tection using BOCPD successfully detects a change in the stratification 
of the earth’s crust, the Dow Jones return rate, and coal mine disaster 
data [22].

The changepoint for early warning in our research uses Bayesian 
Online Changepoint Detection (BOCPD) method. BOCPD can detect 
the changes incrementally as data arrives. This model’s advantage is 
an efficient computational cost by an online scheme. Another benefit 
of BOCPD is that we can set its parameters (initial hyperparameters 
and hazard-rate parameter in BOCPD) to produce the expected time 
and number of the changepoints. We utilize this to adjust the time of 
changepoint before the time of the eruption.

The BOCPD parameters are initial hyper-parameters and hazard-rate 
parameter. The hazard-rate parameter is a parameter to determine a 
conditional prior on changepoint. Here, we use a constant parameter 
derived from a Geometric distribution. The Geometric distribution is 
a common model for calculating the probability of step number fail-

ures before the first success. It represents the probability of the run-

length until the success to detect changepoint. Meanwhile, initial hyper-

parameters are used to define the initial prediction-probability density 
function that initiates the conjugate-exponential models in BOCPD. 
These initial hyper-parameters are updated incrementally as new data 
arrives. For detecting changepoints before the eruption time, we should 
adjust these parameters appropriately.

The role of BOCPD parameters has been studied. We design an 
algorithm for selecting the parameters for the early warning sys-

tem of a volcano eruption. The algorithm is called Appropriate Pa-

rameter Bayesian Online Changepoint Detection for Early Warning 
(APBOCPD-EW). The APBOCPD-EW algorithm outputs are appropriate 
initial hyper-parameters and a hazard rate parameter for accurately de-

tecting early warning points. We define a minimum number of change-

points (early warnings) before an eruption and a minimum total lag day 
from explosion time to get the proper detection of early warning time.

According to the earthquake’s magnitude data, we should use its 
distribution that qualifies a Gutenberg-Richter relation. A truncated 
generalized exponential distribution is one of the magnitude distribu-

tions that follow a Gutenberg-Richter relation [23]. BOCPD with conju-

gate exponential models supports the earthquake’s magnitude data type 
(continuous and bounded). The conjugate exponential models that use 
bounded continuous data type is a truncated generalized Student-t dis-

tribution. Thus, the initial hyper-parameters refer to parameters in a 
probability density function of truncated generalized Student-t.

The algorithm is designed for general data types with various erup-

tion numbers. So, this study can also use other volcanic data types or 
even apply the method to other volcanoes. For using another data type, 
we need to confirm that BOCPD supports its distribution. The data type 
for early warnings of an eruption is selected based on the signs that 
usually initiate an eruption on that volcano.

We choose mount Merapi in research for good reasons. The vol-

cano is located in a tectonically active region of south-central Java, 
and mount Merapi is the most active volcano in Indonesia that fre-

quently erupts [24]. During 2012-2018, mount Merapi has erupted four 
times within earthquake sequences. Therefore, we use earthquake mag-

nitude data in the mount Merapi area to obtain information for its 
early-warning system. Some researches of mount Merapi eruption have 
been done in last five decades: the eruption and earthquake events at 
Merapi volcano during 2006 [25], the 2010 explosive eruption of Java’s 
Merapi volcano in a 100-year event [26], correlation of seismic activity 
and fumarole temperature at mount Merapi in 2000 [27], classification 
of seismic signals of volcanic origin at mount Merapi [28] and monitor-

ing a temporal change of seismic velocity before the eruption of mount 
Merapi in 1992 [29]. The seismic activity changes at mount Merapi can 
2

be treated as probabilistic changes, which the changepoint detection 
methods can solve.

The paper consists of five sections. Section 2 discusses the theory 
of BOCPD mathematically and the analysis of parameters of BOCPD. 
Section 3 describes the methodology of APBOCPD-EW as the proposed 
algorithm and shows the BOCPD algorithm. Section 4 discusses the data, 
analysis sensitivity of hyper-parameter on BOCPD as part of our re-

search, and analysis of APBOCPD-EW results of the APBOCPD-EW in 
detecting early warning. We use training data to get early warnings 
of three eruptions, and then we use testing/validation data to detect 
early warnings of the fourth eruption. It confirms that using appropri-

ate parameters gives the proper estimation of the early warning. The 
conclusions of the paper are provided in Section 5.

2. Theory

This section discusses the BOCPD method mathematically and the 
role of updating parameters in truncated generalized Student-t.

2.1. Bayesian Online Changepoint Detection Method

Bayesian Online Changepoint Detection (BOCPD) is an online 
method to detect the changepoints on a time-discrete data sequence. 
BOCPD uses Bayesian statistical analysis of run-length posterior distri-

bution [22].

Assume we have data of earthquake magnitude 𝑦𝑡. Generally, run–

length at time 𝑡 (𝑟𝑡) is a non-negative discrete variable denoting the 
number of time steps elapsed at time 𝑡 = 1, 2, .., 𝑁 from the last change-

point. A changepoint is the data at early warning time. Thus, the run–

length at time 𝑡 defines the number of time steps elapsed at time 𝑡 since 
the last early warning time.

Initially at time 𝑡 = 1, 𝑦1 is a changepoint then the step number 
to the changepoint at time 𝑡 = 1 is zero (𝑟1 = 0). Prior probability of 
a changepoint given previous run-length is written as 𝑃 (𝑟𝑡 = 0|𝑟𝑡−1). If 
the next observation is not a changepoint, the run-length is increased 
by one. Thus, 𝑃 (𝑟𝑡 = 𝑟𝑡−1 + 1|𝑟𝑡−1) is the probability of the growth run-

length given the previous run-length. Posterior of run-length given data 
sequence 𝑦1∶𝑡 = 𝑦1, 𝑦2, ..., 𝑦𝑡 is written as follows

𝑃 (𝑟𝑡|𝑦1∶𝑡) = 𝑃 (𝑦1∶𝑡, 𝑟𝑡)
𝑃 (𝑦1∶𝑡)

, (1)

where 𝑃 (𝑦1∶𝑡, 𝑟𝑡) is a joint probability function of the observation 𝑦1∶𝑡
and the run-length (𝑟𝑡) that is formulated by marginalizing the run-

length 𝑟𝑡−1 as follows

𝑃 (𝑦1∶𝑡, 𝑟𝑡) =
∑

𝑟𝑡−1
𝑃 (𝑟𝑡|𝑟𝑡−1)𝑃 (𝑦𝑡|𝑟𝑡, 𝑦(𝑟)𝑡−1)𝑃 (𝑦1∶(𝑡−1), 𝑟𝑡−1), (2)

where 𝑦(𝑟)
𝑡−1 = 𝑦(𝑡−1−𝑟)∶𝑡−1 are the data sequence from the last change-

point. The probability 𝑃 (𝑟𝑡|𝑟𝑡−1) is formulated in the following way

𝑃 (𝑟𝑡|𝑟𝑡−1) = ⎧⎪⎨⎪⎩
𝐻(𝑟𝑡), 𝑟𝑡 = 0 (changepoint)

1 −𝐻(𝑟𝑡), 𝑟𝑡 = 𝑟𝑡−1 + 1 (not changepoint),

0, otherwise,

(3)

where 𝐻(𝑟𝑡) is a hazard function. We use a geometric distribution 
with time scale 𝜆 for the inter-arrival time of changepoint which gives 
𝐻(𝑟𝑡) =

1
𝜆
. The joint probability function of data observation 𝑃 (𝑦(1∶𝑡)) is 

derived by marginalizing run-length 𝑟𝑡, as follows

𝑃 (𝑦(1∶𝑡)) =
∑
(𝑟𝑡)

𝑃 (𝑦(1∶𝑡), 𝑟𝑡) (4)

Substituting Equation (3) into Equation (2); and then substituting Equa-

tion (2) and Equation (4) into Equation (1), one obtains

𝑃 (𝑟𝑡 = 0|𝑦1∶𝑡) = ∑
𝑟𝑡−1

𝐻(𝑟𝑡)𝑃 (𝑦𝑡|𝑟𝑡−1, 𝑦(𝑟)𝑡−1)𝑃 (𝑦1∶(𝑡−1), 𝑟𝑡−1)∑
𝑃 (𝑦 , 𝑟 )

, (5)

(𝑟𝑡) (1∶𝑡) 𝑡
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Fig. 1. The figures illustrate how the run-length at time 𝑡 has two possibility of 
run-length; the solid lines show how the run-length growth 𝑟𝑡 = 𝑟𝑡−1 + 1 and the 
dotted lines show the run-length time 𝑡 that drop to zero. Zero run-length 𝑟𝑡 = 0
is defined when changepoint occurs.

where 𝑃 (𝑦𝑡|𝑟𝑡−1, 𝑦(𝑟)𝑡−1) is an Underlying Predictive Model (UPM) function 
of 𝑦𝑡 given 𝑦(𝑟)

𝑡−1 and 𝑟𝑡−1; 𝑡 = 1, 2, .., 𝑁 ; 𝑟 = 0, 1, 2, .., 𝑟𝑡−1. The changepoint 
is detected when posterior of zero run-length 𝑃 (𝑟𝑡 = 0|𝑦1∶𝑡) is higher 
than the posterior of growth run-length 𝑃 (𝑟𝑡 = 𝑟𝑡−1 +1|𝑦1∶𝑡). In this case, 
𝑦𝑡 is a changepoint and time 𝑡 is occurrence time of the changepoint.

An illustration of the run-length at time 𝑡 in BOCPD, 𝑟𝑡, is depicted 
in Fig. 1. The run-length becomes zero when the changepoint is de-

tected. The run-length is increased by one when the changepoint is not 
detected.

The online scheme is built by updating the hyper-parameter of the 
predictive distribution. We choose a truncated generalized Student-t 
distribution for UPM.

2.2. Role of BOCPD hyper-parameters

The probability density function of a generalized Student-𝑡 distribu-

tion is defined in Equation (6)

𝑃 (𝑦𝑡|𝜇𝑡, 𝜎𝑡, 𝜈𝑡) =
Γ
(

𝜈𝑡+1
2

)
√
𝜋𝜎𝑡Γ

(
𝜈𝑡

2

)(
1 +

(
𝑦𝑡 − 𝜇𝑡

𝜎𝑡

)2
)− 𝜈𝑡+1

2

, (6)

where mean (𝜇𝑡), scale (𝜎𝑡) and degrees of freedom (𝜈𝑡) are its param-

eters. Every time a new data point arrives, the generalized Student-𝑡

distribution is updated by updating 𝜇𝑡, 𝜎𝑡, and 𝜈𝑡. Those parameters de-

pend on parameters 𝛼𝑡 and 𝛽𝑡, called hyper-parameters.

Meanwhile, a truncated generalized Student-t with lower bound 𝑎
and upper bound 𝑏, is defined in Equation (7); we choose fixed 𝐹 (𝑎)
and 𝐹 (𝑏).

𝑃𝑇 (𝑦𝑡|𝜇𝑡, 𝜎𝑡, 𝜈𝑡) =
𝑃 (𝑦𝑡|𝜇𝑡, 𝜎𝑡, 𝜈𝑡)
𝐹 (𝑏) − 𝐹 (𝑎)

;𝐹 (𝑥) =

𝑥

∫
−∞

𝑃 (𝑦𝑡|𝜇∗, 𝜎∗, 𝜈∗) (7)

The formulas for updating the parameters and hyper-parameters are 
given in Equation (8), (9), and (10):

𝜇𝑟+1
𝑡

=
𝜇𝑟
𝑡−1𝑟+ 𝑦𝑡

𝑟+ 1
, (8)

𝜎
(𝑟+1)
𝑡

=

√
2𝛽𝑟+1

𝑡
(𝑟+ 1)
𝑟

;𝛽𝑟+1
𝑡

= 𝛽𝑟
𝑡−1 +

𝑟(𝑦𝑡 − 𝜇𝑡−1)2

2(𝑟+ 1)
, (9)

𝜈𝑟+1 = 2𝛼𝑟+1;𝛼𝑟+1 = 𝛼𝑟 + 0.5 (10)

𝑡 𝑡 𝑡 𝑡−1

3

Those updating parameters are based on the conjugate Bayesian anal-

ysis of Gaussian distribution [30]. The hyper-parameter 𝛼𝑟+1
𝑡

is used to 
define the new degrees of freedom 𝜈𝑟+1

𝑡
in Equation (10). Meanwhile, 

the hyper-parameters 𝛽𝑟+1
𝑡

define the scale 𝜎(𝑟+1)
𝑡

in Equation (9). By the 
increasing iteration, the degrees of freedom and variance of generalized 
Student-t distribution increase.

The iterative method by updating predictive distribution is sensitive 
to the initial hyperparameters. Let the initial hyper-parameters of pre-

dictive distribution be 𝛼0 and 𝛽0, these parameters are updated until 
the changepoint is detected. The left Curves in Fig. 2 show the updating 
of generalized Student-t distribution from 𝑡 = 1 until 𝑡 = 30. The figure 
shows two different updates by two different initial hyper-parameters; 
𝛽0 = 1 (red curve) and 𝛽0 = 7 (blue curve).

The higher iteration produces a curve with a higher peak and a 
thinner tail. The possibility of the changepoints increases because the 
data with a small probability density value increases. Therefore, the red 
curve will be faster than the blue curve in detecting changepoints. The 
initial hyper-parameter 𝛼0 and 𝛽0 determine the changepoints detection.

The other important parameter in BOCPD is 𝜆, which formulates the 
hazard rate, 1

𝜆
. If 𝜆 increases, then the hazard rate and the probability of 

changepoint decrease. Further, decreasing the change-point probability 
increases the inter-arrival time of the changepoint. As the inter-arrival 
time of the changepoint increases, the number of detected change-

points decreases. On the contrary, if 𝜆 decreases, then the changepoints 
inter-arrival time decreases, and the number of changepoints increases. 
Clearly, that initial hyper-parameter 𝛼0, 𝛽0 and parameter 𝜆 have the 
role on BOCPD.

In the next section, the proposed algorithm to find the appropri-

ate parameters (𝛼0, 𝛽0, 𝜆) in BOCPD is discussed for detecting the early 
warning points.

3. Methodology

In this section, two main algorithms for the early warning volcano 
eruption are presented. The proposed algorithm, Appropriate Param-

eters Bayesian Online Changepoint Detection for Early Warning algo-

rithm (APBOCPDEW), is presented in Algorithm 1 for finding appropri-

ate initial hyper-parameters (𝛼0 and 𝛽0) and parameter hazard rate (𝜆). 
Meanwhile, the BOCPD algorithm with the updating of truncated gen-

eralized Student-t parameters is presented in Algorithm 2. The change-

points results provide the time and number of changepoints. Times of 
the changepoints refer to the times of early warnings.

The APBOCPD-EW algorithm runs BOCPD with input earthquake 
magnitude data, the number of eruptions, the date of eruptions, hazard 
rates (𝜆), and initial hyper-parameters (𝛼0 and 𝛽0). The results are the 
appropriate hazard rate and initial hyper-parameters by screening all 
changepoints detection results from some observation parameters. The 
screening rule is to have at least one early warning point before erup-

tion with a minimum number of changepoints and total lag-day to the 
eruption-time.

Algorithm 1 Appropriate Parameters Bayesian Changepoint Detection 
for Eruption Early Warning (APBOCPD-EW).

The earthquake magnitude data=𝑦1∶𝑁
Input: The earthquake magnitude data= 𝑦1∶𝑁 = 𝑦1 , 𝑦2 , .., 𝑦𝑁 ; 𝑛𝑒 = eruptions number, 
𝑑𝑒 =eruption date

Observe for some 𝜆, and initial 𝛼0 and 𝛽0 in domain

changepoint(𝐶𝑝𝜆,𝛼0 ,𝛽0 ) ← BOCPD algorithm

if ∃𝐶𝑝𝜆,𝛼0 ,𝛽0 before eruption date (𝑑𝑒) ∀𝑑𝑒 then

𝐺𝑐𝑝(𝜆,𝛼0 ,𝛽0 ) ← 𝐶𝑝𝜆,𝛼0 ,𝛽0𝐺𝑐𝑝 ∶ 𝑔𝑜𝑜𝑑 𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑜𝑖𝑛𝑡
𝑁𝐺𝑐𝑝(𝜆,𝛼0 ,𝛽0 )

= 𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝐺𝑐𝑝(𝜆,𝛼0 ,𝛽0 )

𝑡𝑜𝑡𝑎𝑙𝑙𝑎𝑔𝑐𝑝(𝜆,𝛼0 ,𝛽0 ) =
∑𝑛𝑒

𝑖=1 𝑙𝑎𝑔𝑐𝑝(𝜆,𝛼0 ,𝛽0 )(𝑖); total lag-day to eruption i-th
end if

𝑆 ←∗ 𝑎𝑟𝑔𝑚𝑖𝑛𝜆,𝛼0 ,𝛽0 (𝑁𝐺𝑐𝑝(𝜆,𝛼0 ,𝛽0 )
); 𝑆 = {𝜆, 𝛼0, 𝛽0|𝑚𝑖𝑛(𝑁𝐺𝑐𝑝(𝜆,𝛼0 ,𝛽0 )

)}
𝐴𝑝𝑝𝑟𝑜𝑝𝑟𝑖𝑎𝑡𝑒{𝜆, 𝛼0, 𝛽0} ←∗ 𝑎𝑟𝑔𝑚𝑖𝑛𝜆,𝛼0 ,𝛽0 {𝑡𝑜𝑡𝑎𝑙𝑙𝑎𝑔𝑐𝑝(𝜆,𝛼0 ,𝛽0 ) |(𝜆, 𝛼0 , 𝛽0) ∈ 𝑆}

Result: Appropriate initial hyper-parameter 𝛼0, 𝛽0 and 𝜆 for early warning
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Fig. 2. The updating curve of generalized Student-𝑡 distribution and truncated generalized Student-𝑡 by 30 iterations. The left curves are probability density function 
(𝑃 (𝑦) = 𝑃 (𝑦𝑡|𝑟𝑡−1, 𝑦𝑟𝑡−1)) of generalized Student-𝑡 that are started by two condition initial value: 𝛽0 = 1; 𝛼0 = 1 (red curves) and 𝛽0 = 7; 𝛼0 = 1 (blue curves). The right 
curves are illustrations of truncated generalized Student-t with lower bound 𝑎 and upper bound 𝑏. Since first iteration, the peak and variance of red curve is below 
the blue curve. Decreasing 𝑃 (𝑦𝑡|𝑟𝑡−1, 𝑦𝑟𝑡−1) will decrease growth probabilities which increase the possibility of changepoint. Thus, changepoint detection on the red 
curve is faster than the blue curve.
Algorithm 2 Bayesian Online Changepoint Detection.

Require: 𝑦1∶𝑁 = 𝑦1 , 𝑦1 , .., 𝑦𝑁 ; 𝜆
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ∶ 𝜇0 = 𝑦1; 𝜎2

0 = 1; 𝑟0 = 0, 𝐻(𝑟0) = 1;

𝛼0 , 𝛽0; 𝑃 (𝑦1|𝑦(0), 𝑟0 = 0) = 𝑃 (𝑦1|𝜇0 , 𝜎2
0 );

while changepoint is not detected do

Observe new datum: (𝑦𝑡)
Evaluate predictive probability; 𝑃 (𝑦𝑡|𝑟𝑡, 𝑦(𝑟)𝑡−1) = 𝑃 (𝑦𝑡|𝜇𝑡−1 , 𝜎𝑡−1 , 𝜈𝑡−1)
Calculate joint probability of growth run-length:

𝑃 (𝑦1∶𝑡 , 𝑟𝑡 = 𝑟𝑡−1 + 1) = (1 −𝐻(𝑟𝑡))𝑃 (𝑦𝑡|𝑟𝑡, 𝑦(𝑟)𝑡−1)𝑃 (𝑦1∶(𝑡−1), 𝑟𝑡−1)
Calculate joint probability for changepoint:

𝑃 (𝑦1∶𝑡 , 𝑟𝑡 = 0) =∑
𝑟𝑡−1

(𝐻(𝑟𝑡))𝑃 (𝑦𝑡|𝑟𝑡, 𝑦(𝑟)𝑡−1)𝑃 (𝑦1∶(𝑡−1), 𝑟𝑡−1)
Marginal distribution:𝑃 (𝑦(1∶𝑡))
Determine run-length distribution:

𝑃 (𝑟𝑡 = 0|𝑦1∶𝑡) = ∑
𝑟𝑡−1

(𝐻(𝑟𝑡 ))𝑃 (𝑦𝑡 |𝑟𝑡−1 ,𝑦(𝑟)𝑡−1 )𝑃 (𝑦1∶(𝑡−1) ,𝑟𝑡−1 )

𝑃 (𝑦(1∶𝑡) )

𝑃 (𝑟𝑡 = 𝑟𝑡−1 + 1|𝑦1∶𝑡) = (1−𝐻(𝑟𝑡 ))𝑃 (𝑦𝑡 |𝑟𝑡−1 ,𝑦(𝑟)𝑡−1 )𝑃 (𝑦1∶(𝑡−1) ,𝑟𝑡−1 )
𝑃 (𝑦(1∶𝑡) )

if 𝑃 (𝑟𝑡 = 0|𝑦1∶𝑡) ≥ 𝑃 (𝑟𝑡 = 𝑟𝑡−1 + 1|𝑦1∶𝑡); 𝑦𝑡 is a changepoint then

𝑟𝑡 = 0
else {𝑃 (𝑟𝑡 = 0|𝑦1∶𝑡) < 𝑃 (𝑟𝑡 = 𝑟𝑡−1 + 1|𝑦1∶𝑡); 𝑦𝑡}

𝑟𝑡 = 𝑟𝑡−1 + 1
update hyper-parameter and parameters: 𝛼𝑡, 𝛽𝑡, 𝜇𝑡, 𝜎𝑡, 𝜈𝑡

end if

end while

Result: Changepoint (CP)

Repeat algorithm for new data coming

We observe some 𝜆, 𝛼0, 𝛽0 in BOCPD using Algorithm 1, then col-

lect all changepoints results. Good changepoints are chosen from the 
results that have at least one detection before the eruption. For every 
good changepoint, a number of changepoints 𝑁𝐺𝑐𝑝(𝜆,𝛼0 ,𝛽0)

and total lag-

day (𝑡𝑜𝑡𝑎𝑙𝑙𝑎𝑔𝑐𝑝(𝜆,𝛼,𝛽)) are calculated; then choose a minimum 𝑁𝐺𝑐𝑝(𝜆,𝛼0 ,𝛽0)
. 

We choose the minimum number of changepoints for minimum early 
warnings, which can avoid panic to public. In algorithm, a set 𝑆 is a 
collection set of (𝜆, 𝛼0, 𝛽0) that have the minimum number of change-

point. A total of lag day is the total day starting from changepoints (as 
early warnings points) to the eruptions; summing the lag-day of each 
early warning points to eruptions (𝑙𝑎𝑔𝑐𝑝(𝜆,𝛼0 ,𝛽0)(𝑖) for 𝑖 = 1, 2, .., 𝑛𝑒). The 
early warnings time should be close to the eruptions, then we choose 
the collection of (𝜆, 𝛼0, 𝛽0) from 𝑆 that have the minimum total lag-day. 
By this technique, BOCPD with the chosen 𝜆, 𝛼0, 𝛽0 detects early warn-

ing points properly. It detects the early warning points before eruptions 
with the closest eruptions time. The chosen 𝜆, 𝛼0, 𝛽0 are called the ap-

propriate BOCPD parameters for early warning.
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4. Result and discussion

4.1. Data

Mount Merapi is located in the south of Central Java, Indonesia. 
Four eruptions have taken place at mount Merapi, from July 8, 2012, 
until June 23, 2018. The first eruption was on November 18, 2013; 
the second eruption was on March 10, 2014; the third on November 4, 
2016, and the fourth eruption on May 11, 2018.

Earthquakes magnitude data of mount Merapi were collected from 
July 8, 2012, until June 23, 2018, which is available at the link 
https://doi.org/10.6084/-/m9.figshare.11559279.v1. The earthquake 
magnitude data sequences are collected inside the rectangular geo-

graphic area, with a longitude interval of 106.27 − 109.91 and latitude 
interval (−7.72566) −(−6.14046). The magnitude range is Mlv1.8-Mlv5.2 
that depicted in Fig. 3 for the variant depth from 10 to 303 km.

Data is divided into training data and testing data. The training data 
is data from July 8, 2012, until one day before the third eruption of 
mount Merapi, on November 3, 2016. The testing data is data from the 
third eruption in November 4, 2016 until June 23, 2018. The testing 
data is used for detecting an early warning for the fourth eruption. It 
is to confirm that parameters from APBOCPD-EW work properly in de-

tecting early warning before the eruption.

Some time-discrete data cases are managed from real-time earth-

quake magnitude data for comparison in results. The first case is the 
daily data of earthquake magnitude inside the rectangular area, 1-day 
data. The second case is maximum earthquake magnitude in two-day 
intervals, 2-day data. The data cases are continued until the last case 
(10-day data, the maximum earthquake magnitude in ten-day inter-

vals).

Fig. 4 shows the magnitude data in two cases data of mount Merapi 
from July 8, 2012, until June 23, 2018. Data are shown for 1-day data 
and 10-day data. The 10-day case has fewer data points to analyze than 
the 1-day case.

4.2. Analysis sensitivity of BOCPD parameters

We analyze the impact of initial hyper-parameters 𝛼0, 𝛽0, and hazard 
rate parameter 𝜆 on change-point detection. The purpose is to support 
our idea about choosing the appropriate hyper-parameter through the 
minimum number of the changepoints and minimum lag-day of the 
changepoints to eruptions.

https://doi.org/10.6084/m9.figshare.11559279.v1


S.S. Sholihat, S.W. Indratno and U. Mukhaiyar Heliyon 7 (2021) e07482

Fig. 3. Scatter plot of earthquake locations (longitude and latitude) and the scatter plot of earthquake magnitude (Mlv).

Fig. 4. 1-day data and 10-day data of earthquakes magnitude at mount Merapi from July 8, 2012, until June 23, 2018. 10-day case has less data points to analyze 
than 1-day case.
The observing results are summarized in Tables 1, 2, and 3. These 
tables list the numbers of detected changepoints with some observing 
parameter 𝜆 and initial hyper-parameters 𝛼0, 𝛽0. The tables show that 
the number of changepoints decreases significantly with increasing 𝜆 =
3, ..., 10, 20. Meanwhile, the number of change points decrease slowly 
with increasing initial hyper-parameter 𝛼0 = 1, ..., 10 or 𝛽0 = 1, ..., 10. It 
concludes that the parameter 𝜆 affects more significantly than 𝛼0 and 𝛽0. 
Discretized data into some data cases also affect the detection. Number 
of detected changepoints for different data cases with 𝜆 = 3, ..., 10, 20
are listed in Table 3. The case 10-day data has a minimum number of 
changepoints than other data cases because of the fewer data number 
that caused changepoints. The observing results perform that different 
parameters and data cases detect changepoints at different numbers and 
times.

BOCPD with random parameters (without APBOCPD-EW) could not 
detect changepoints properly for early-warning points. Using the ran-

dom values for initial hyper-parameters and hazard rate, BOCPD may 
give too many detections, e.g., the results in Fig. 5. The figure shows 
BOCPD results detection with parameters 𝜆 = 20, 𝛼0 = 1, and 𝛽0 = 1. The 
drop of run-length to zero (𝑟 = 0) corresponds to the changepoint detec-

tion.
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Table 1. Changepoints numbers (𝑛𝑐𝑝) of earthquake magnitude sequence at 
mount Merapi by given initial 𝛼0 = 1, 𝛽0 = 1, 2, 3, 4, 5, 6, 7, 9, 10 and constant 
𝜆 = 3, 4, 5, 6, 7, 8, 9, 10.

𝛽0

1 2 3 4 5 6 7 8 9 10
𝜆 = 3 68 60 59 59 59 59 58 58 57 56

𝜆 = 4 37 35 31 29 29 27 25 25 24 22

𝜆 = 5 25 22 19 18 17 16 14 14 13 11

𝜆 = 6 16 15 14 13 13 10 9 9 7 6

𝜆 = 7 14 11 11 10 8 8 6 5 4 4

𝜆 = 8 11 10 8 7 6 5 4 4 3 3

𝜆 = 9 9 7 6 6 4 4 4 3 2 2

𝜆 = 10 7 6 5 5 4 3 3 2 2 2

The analysis of these simulations gives the idea of APBOCPD-EW 
algorithm that is described in the methodology section.

4.3. Analysis of APBOCPD-EW results

The APBOCPD-EW algorithm works finding appropriate parameters 
with domain setting in Table 4 and the number of the eruption 𝑛𝑒 = 3
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Table 2. Changepoints number (𝑛𝑐𝑝) of earthquake magnitude sequence at 
mount Merapi by 10-day data given initial 𝛽0 = 1, 𝛼0 = 1, 2, .., 10 and constant 
𝜆 = 3, 4, .., 10.

𝛼0

1 2 3 4 5 6 7 8 9 10
𝜆 = 3 68 73 73 73 73 72 72 72 72 72

𝜆 = 4 37 38 39 42 47 51 53 56 60 61

𝜆 = 5 25 28 26 28 28 30 31 33 38 39

𝜆 = 6 16 17 19 20 20 23 23 28 29 31

𝜆 = 7 14 14 14 14 16 16 17 17 18 20

𝜆 = 8 11 11 10 11 13 14 15 15 16 16

𝜆 = 9 9 9 9 8 10 12 11 13 14 16

𝜆 = 10 7 7 7 8 8 8 11 11 12 13

Table 3. Number of changepoints using mount Merapi earthquake magnitude 
sequence; given 𝛼0 = 1, 𝛽0 = 5 for some constant 𝜆 = 3, 4, 5, 6, 7, 8, 9, 10 20 and 
data cases 1-day until 10-day.

𝜆

3 4 5 6 7 8 9 10 20
1-day data 514 224 158 130 109 91 80 76 44

2-day data 272 141 90 67 47 39 30 28 17

3-day data 185 102 58 43 27 23 20 17 9

4-day data 145 77 46 28 20 17 14 13 5

5-day data 115 63 35 23 16 13 13 11 3

6-day data 99 51 28 17 14 12 10 8 3

7-day data 83 44 24 15 14 11 8 9 3

8-day data 74 39 22 15 12 7 9 5 2

9-day data 66 30 18 13 8 6 5 4 2

10-day data 59 29 17 13 8 6 4 4 2

Fig. 5. The run-length results by applying BOCPD using 1-day data with 
𝜆 = 20, 𝛼0 = 1, and 𝛽0 = 1. These parameters could not be used to detect early 
warning of mount Merapi eruption because the data consists of four eruptions. 
Meanwhile, these parameters are resulting in 125 changepoints detection. The 
number of eruptions is too far from the number of changepoints. We need ap-

propriate parameters of BOCPD to produce minimum changepoints (at least one 
changepoint before an eruption).

(data training includes three eruptions data). The results are summa-

rized in Table 5.

Table 5 lists the parameters results of APBOCPD-EW for each data 
case using training data. Different data cases produce different detec-

tion results. Using the parameters results of APBOCPD-EW, BOCPD can 
detect all early warnings point for volcanic eruptions of mount Merapi. 
The appropriate hyperparameter 𝜆, 𝛼0, and 𝛽0 were chosen based on the 
minimum number of changepoints and total lag day of changepoints to 
eruptions. Even though the number of changepoints is minimal, they 
should guarantee that all outbreaks have early warning points. An ideal 
condition is that the number of early warnings is equal to the number 
of eruptions (if possible).

By APBOCPD-EW algorithm, it founds that appropriate parameters 
with 1-day data are 𝜆 = 96, 𝛼 = 1, and 𝛽 = 6 (Table 5). This provided 
15 changepoints that detected three good early warnings for three 
eruptions: warning on September 20, 2013, December 20, 2013, and 
October 26, 2016 (Table 6).

Using appropriate parameters in Table 5, good early warnings time 
(date) for each case are shown in Table 6. The table shows that each 
appropriate hyper-parameters produce early warnings before mount 
Merapi’s eruptions that at least a changepoint is detected before the 
eruptions.
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Table 4. Domain of hazard rate ( 1
𝜆
) and initial hyper-parameter (𝛼0 and 𝛽0) 

from daily until 10-day data.

Data cases(-day)

1 2 3 4 5 6 7 8 9 10

𝜆 3-200 3-142 3-31 3-12 3-7 3-6 3-6 3-6 3-6 3-5

𝛼0 1 1 1 1 1 1 1 1 1 1

𝛽0 1-30 1-30 1-30 1-30 1-30 1-30 1-30 1-30 1-30 1-30

Table 5. The results of APBOCPD-EW: ap-

propriate hazard rate parameter and initial 
hyper-parameter for detecting early warn-

ings in training data (with three eruptions).

Data Cases 𝜆 𝛼0 𝛽0 𝑁𝑐𝑝

1-day data 96 1 6 15

2-day data 18 1 6 14

3-day data 7 1 10 13

4-day data 5 1 14 14

5-day data 5 1 10 17

6-day data 5 1 9 15

7-day data 4 1 22 12

8-day data 6 1 8 18

9-day data 6 1 1 13

10-day data 4 1 18 11

The best early warning with the minimum number of changepoints 
is given by a data case 10-day using 𝜆 = 4, 𝛼0 = 1, 𝛽0 = 18, in Table 5. 
It provided 11 early warnings on three eruptions. Meanwhile, consider-

ing the minimum total lag-day to the explosion, the best early warning 
is given by the 5-day data using 𝜆 = 5, 𝛼0 = 1, 𝛽0 = 10. It is shown in Ta-

ble 6. It provided 17 early warnings on three eruptions. The number of 
changepoints in the 5-day case is six more than the 10-day case.

Fig. 6 shows the sequence of changepoints as the early-warning 
points using data cases 1-day, 3-day, 6-day, and 9-day. The detection re-

sults show that the early warnings are detected more than once, where 
the minimum number of early warning points is for detecting a second 
eruption.

4.4. Validation

This subsection discusses the validation that BOCPD with the appro-

priate parameters 𝜆, 𝛼0, 𝛽0 from Table 5 can detect early warnings point 
of mount Merapi eruption. We applied it to the testing data, earthquake 
magnitude data from the third eruption until June 23, 2018. The result, 
early warnings time are listed in Table 7. The table lists early warn-

ings time before the fourth eruption with a number of the changepoints 
(𝑁𝑐𝑝) and the lag day 𝑡𝑜𝑡𝑎𝑙𝑙𝑎𝑔𝑐𝑝. The BOCPD with the appropriate hy-

perparameters detects the early warnings on all ten data cases.

Three data cases give the closest early warning predictions: Data 1-

day, Data 3-day, and Data 9-day, with only have 6-12 lag days before 
the eruption. Detection using data cases 1-day, 3-day, 5-day, 6-day, 8-

day, and 9-day give proper early warnings for the fourth eruption. Their 
lag-day is not too high. Meanwhile, other data cases detect the fourth 
eruption not well enough because the detections’ date was too far from 
the explosions time, having 275-297 lag days.

Using the testing data, the detection is successful in detecting at least 
one changepoint before the outbreak because the number of change-

points for all data cases is more than one detection of early warnings 
(𝑁 − 𝑐𝑝 > 1). Some other detections with a large lag-day from the erup-

tion are false early warnings (no outbreak occurs close to the early 
warning points). The detections on data cases 2-day, 4-day, 7-day, and 
10-day are false early warnings (no eruption). These could be a result 
of failed eruptions. A failed explosion is defined as an instance in which 
magma reaches shallow depths but does not reach the surface [31].
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Fig. 6. Closest changepoints for early warning detection based on a minimum number of changepoints and total lag-day. The drop run-length (𝑟𝑡 = 0) is the early 
warning points. Each eruption has more than one early warnings in each data cases 1-day data,3-day data, 6-day data, and 9-day data. The maximum number of 
early warnings is for third eruption (E3). Meanwhile the second eruption (E2) has minimum number of early warning points.
5. Conclusion

BOCPD with appropriate parameters can be an alternative statistical 
method for early warnings of eruptions. The appropriate parameters are 
provided using the APBOCPD-EW algorithm. The algorithm succeeds in 
getting the parameters (hazard rate (𝜆) and initial hyper-parameter (𝛼0) 
and 𝛽0)) for BOCPD, then it detects the early warnings time properly. 
BOCPD with appropriate parameters detects early warning points be-

fore the explosions for all data cases. The results also show that different 
data cases give different results in early warnings time.

The magma at mount Merapi eruptions runs 17-40 meters per day to 
reach the surface on each explosion, with the magma depth is 3-4 Kilo-

meters (3000-4000 meters). It concludes that it is reasonable that the 
maximum lag-day from the changepoint to the eruption is 4000 meters 
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divided by 17 meters, around 235 days. In all cases 1-day until 10-

day data, early warning points on training data are well detected three 
eruptions because the total lag day is less than three times 235 days. 
The lag-day for each eruption is listed in Table 6. Some early warn-

ings are very close to the eruptions time, about 10-12 days before the 
eruption. The early warnings of the fourth eruption using testing data 
are listed in Table 7. The number of lag-day before the fourth eruption 
that higher than 235 days are reached by 2-day, 4 day, 7 day, 8-day, 
and 10-day data cases. But, the 8-day case has 251 lag-day that close to 
235. We conclude that there are at least six out of ten cases detecting 
early warning well. By testing data results, we have a valuable conclu-

sion that the opportunity of the detection using appropriate parameters 
on BOCPD is 60% over ten data cases.
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Table 6. Closest early warnings time of mount Merapi eruptions compare to the eruptions time using the appropriate parameters and training data.

Actual eruption (1-day) (2-day) (3-day) (4-day) (5-day) (6-day) (7-day) (8-day) (9-day) (10-day)

𝜆 = 96 𝜆 = 18 𝜆 = 7 𝜆 = 5 𝜆 = 5 𝜆 = 5 𝜆 = 4 𝜆 = 6 𝜆 = 6 𝜆 = 4
nCP=15 nCP=14 nCP=13 nCP=14 nCP=17 nCP=15 nCP=12 nCP=8 nCP=13 nCP=11

18 Nov’13 26 Sep’13 20 Sep’13 13 Oct’13 15 Oct’13 6 Oct’13 12 Oct’13 17 Nov’13 23 Sep’13 30 Sep’13 21 Sep’13

10 Mar’14 19 Dec’13 20 Dec’13 21 Dec’13 22 Dec’13 24 Feb’14 21 Feb’14 24 Feb’14 28 Jan’14 3 Feb’14 20 Dec’13

4 Nov’16 26 Oct’16 27 Oct’16 12 Aug’16 7 Aug’16 20 Oct’16 16 Aug’16 14 Aug’16 23 Oct’16 19 Aug’16 16 Aug’16

𝑁𝑐𝑝 15 14 13 14 17 15 12 18 13 11

total lag day 140 days 146 days 201 days 200 days 73 days 132 days 98 days 120 days 159 days 218 days

Table 7. Closest early warnings time of mount Merapi fourth eruption using the appropriate parameters and testing data (data magnitude earthquake 
from third eruption 11 May 2018 until 23 June 2018).

Actual eruption (1-day) (2-day) (3-day) (4-day) (5-day) (6-day) (7-day) (8-day) (9-day) (10-day)

𝜆 = 96 𝜆 = 18 𝜆 = 7 𝜆 = 5 𝜆 = 5 𝜆 = 5 𝜆 = 4 𝜆 = 6 𝜆 = 6 𝜆 = 4
11 May’18 1 May’18 17 Jul’17 29 Apr’18 23 Jul’17 2 Feb’18 2 Mar’18 26 Jul’17 2 Sep’17 5 May’18 9 Aug’17

𝑁𝑐𝑝 4 2 4 4 5 5 3 2 6 3

before the eruption

𝑡𝑜𝑡𝑎𝑙𝑙𝑎𝑔𝑐𝑝 10 days 297 days 12 days 291 days 95 days 69 days 289 days 251 days 6 days 275 days
Some early warning methods mostly studied thresholds and period 
of the patterns before an eruption. Compared to other early warning 
methods, our approach is an online statistical changepoint method that 
uses the eruption probability increased over time. If the early warning is 
not detected, then the early warning probability is increased over time. 
It represents the volcano’s time needed to through several stages before 
the eruption. Times of the changepoints are the early warnings signal, 
which detects the earthquake pattern’s change since the last eruption. It 
provides the study that mount Merapi has a temporal change of seismic 
velocity, 4 months before eruption [29].

We use earthquake magnitude data to detect mount Merapi’s erup-

tion because mount Merapi often has earthquakes before the explosions. 
Further works, this study can be adapted to other volcano eruptions us-

ing its earthquake magnitude data or different data types. The data 
type is chosen based on the volcano characteristics (e.g., volume data 
of gases emitted). Using volume data of volcano gases emitted should 
consider how often these gases sign the outbreak. Further, the study 
about detected changepoints as true or false early warnings is needed. 
The eruption follows the true early warning, but no eruption follows the 
false early warning for a long time. We need the scheme to decide that 
the detection is a true early-warning or false early warning by analyzing 
the sequence of changepoints before the eruption.
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