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Abstract

The Ca2+-activated, maxi-K (BK) K+ channel, with low Ca2+-binding affinity, is expressed in the distal tubule of the nephron
and contributes to flow-dependent K+ secretion. In the present study we demonstrate that the Ca2+-activated, SK3 (KCa2.3)
K+ channel, with high Ca2+-binding affinity, is also expressed in the mouse kidney (RT-PCR, immunoblots).
Immunohistochemical evaluations using tubule specific markers demonstrate significant expression of SK3 in the distal
tubule and the entire collecting duct system, including the connecting tubule (CNT) and cortical collecting duct (CCD). In
CNT and CCD, main sites for K+ secretion, the highest levels of expression were along the apical (luminal) cell membranes,
including for both principal cells (PCs) and intercalated cells (ICs), posturing the channel for Ca2+-dependent K+ secretion.
Fluorescent assessment of cell membrane potential in native, split-opened CCD, demonstrated that selective activation of
the Ca2+-permeable TRPV4 channel, thereby inducing Ca2+ influx and elevating intracellular Ca2+ levels, activated both the
SK3 channel and the BK channel leading to hyperpolarization of the cell membrane. The hyperpolarization response was
decreased to a similar extent by either inhibition of SK3 channel with the selective SK antagonist, apamin, or by inhibition of
the BK channel with the selective antagonist, iberiotoxin (IbTX). Addition of both inhibitors produced a further
depolarization, indicating cooperative effects of the two channels on Vm. It is concluded that SK3 is functionally expressed
in the distal nephron and collecting ducts where induction of TRPV4-mediated Ca2+ influx, leading to elevated intracellular
Ca2+ levels, activates this high Ca2+-affinity K+ channel. Further, with sites of expression localized to the apical cell
membrane, especially in the CNT and CCD, SK3 is poised to be a key pathway for Ca2+-dependent regulation of membrane
potential and K+ secretion.
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Introduction

Calcium-activated potassium channels, KCa, are a small group

of potassium channels that are widely expressed in numerous

tissues ranging from neurons to vascular endothelial cells [1–5]. As

with other K+ channels, the KCa channels can play a major role in

regulating the plasma membrane electrical potential difference,

Vm. However, their classical regulation by intracellular Ca2+,

[Ca2+]i, leads to a highly dynamic coupling between Vm and

[Ca2+]i which appears to underlie their central role in a wide array

of functions ranging from neuronal excitability [6,7], to modula-

tion of vascular smooth muscle tone [8,9], to cell volume

regulation [10,11]. Indeed, depending on the types of KCa

channels expressed by a particular cell type, the hyperpolarization

of the cell membrane following Ca2+-induced activation of a given

KCa channel can either enhance Ca2+ influx through non-voltage-

activated, Ca2+-permeable channels, such as TRP channels, or

reduce Ca2+ influx in the case of voltage-activated Ca2+ channels

[4,12].

To date, five subtypes of Ca2+-activated K+ channels have been

identified: the large-conductance channel (BK, KCa1.1), the

intermediate-conductance channel (IK1, KCa3.1), and three

small-conductance channels (SK1, KCa2.1; SK2, KCa2.2; and

SK3, KCa2.3) [1–3]. While the channels have similar structure (6–

7 transmembrane segments, a pore loop region, and assembly as

homo/heterotetramers), the gating mechanisms can differ, espe-

cially between BK and the other channels. Indeed, BK is gated by

both membrane potential (activates with depoloarization) and

intracellular Ca2+. Further, the Ca2+ binding sites in the C-

terminus, the ‘‘Ca2+ bowl,’’ of the channel-forming a-subunit of

BK are characterized with a low Ca2+ binding affinity requiring

high cytoplasmic levels of Ca2+ for activation (EC50 = 1–11 mM;

[13–15]); however, the Ca2+ affinity can be modulated by binding

of selective BK b subunits. In contrast, IK and SK channels are

voltage insensitive. However, the IK/SK Ca2+ binding site is the

ubiquitous Ca2+-sensor, calmodulin, constitutively bound to the C-

terminus of the channel, which is characterized by a high Ca2+

binding affinity with a Ca2+ EC50 for gating near 300–600 nM
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[16–18]. As a consequence, the SK channels are highly sensitive

‘‘Ca2+ sensors’’ intimately linking [Ca2+]i to membrane potential

and K+ efflux in all cells where these channels are expressed.

In the mammalian kidney, K+ channels expressed at the luminal

(apical) membrane of the late distal tubule and cortical collecting

duct (CCD) are Ba2+-sensitive (blocker) channels that represent the

dominant conductance of the apical membrane (see [19,20]).

Hence, the underlying channels serve as key K+ secretory

pathways which regulate K+ excretion and, hence, K+ homeostatis

[21–24]. It has been shown that the ROMK channel (Kir1.1), an

inward rectifier K+ channel from the Kir family, is the resting,

Ba2+-sensitive, channel responsible for K+ secretion under normal

physiological conditions [5,25–27]. Under stimulated states,

however, it is becoming apparent that other K+ channels can

contribute to K+ secretion. Indeed, it has been shown that elevated

flow rates to the late distal tubule or the CCD leads to enhanced

K+ secretion via activation of the luminal BK channel giving rise

to the phenomenon of flow-dependent K+ secretion [24,28,29].

This is a Ca2+-dependent process [28,30–32] that we and others

have shown is paralleled by flow-induced Ca2+ influx arising from

activation of the Ca2+-permeable TRPV4 channel, a noted

mechanotransducer channel [33–36], that is highly expressed in

the renal collecting duct cells [28,31,32]. However, whether the

BK channel can fully account for the flow-induced K+ secretion or

during other Ca2+-dependent K+-secretory stimulatory states is not

known. Indeed, while a major fraction of the enhanced flow-

induced K+ secretion is abolished in various animals models

deficient in BK or certain regulatory b subunits [37–39], it is also

known that the enhanced flow will stimulate luminal ATP release

from distal tubule cells into the lumen [40,41] and, in turn, inhibit

ROMK channel activity [42]. What channel accounts for the

continued relatively high levels of K+ secretion under these

conditions is currently not known. However, we have recently

demonstrated that mouse M-1 collecting duct cells express both

the BK channel and the SK3 channel where both channels are

activated by mechanical stimulation in a Ca2+-dependent manner

[43]. With the high Ca2+ binding affinity of SK3, especially over

BK, we speculate that the SK3 channel is an ‘‘early effector’’ that

would respond to modest elevations in [Ca2+]i during K+ secretory

stimulatory events where the channel would function as an

important pathway contributing to regulation of Vm, K+ secretion

and K+ homeostasis.

The goal of this study was to determine if the SK3 channel was

expressed in the late distal tubule and other nephron segments of

the kidney and, if so, was it functionally regulated by Ca2+ influx.

We found that SK3 is expressed in the mouse kidney with

immunohistochemical staining showing apparent strong expres-

sion in the thick ascending limb, the distal convoluted tubule, and

the entire collecting duct systems, including the connecting tubule

(CNT) and the cortical collecting duct (CCD). In the CCD SK3

was shown to be expressed in both principal cells (PC) and

intercalated cells (IC), with pronounced expression along the

apical (luminal) border and subapical regions. Selective activation

of TRPV4, leading to Ca2+ influx, led to cell hyperpolarization

that was partially inhibited by application of either apamin, a

selective SK channel inhibitor, or iberiotoxin (IbTX), a selective

BK channel inhibitor. These findings demonstrate that functional

SK3 channels are expressed in the late distal tubule/collecting

duct and that they are regulated by TRPV4-mediated Ca2+ influx

where they would appear to play a key role in regulating

membrane potential and K+ secretion in the TRPV4-positive cells

of the CNT and CCD.

Materials and Methods

C57BL/6 mice were maintained on a normal diet with free

access to water. Kidneys were removed and used for experimen-

tation as outlined for each protocol below. All studies were carried

out in strict accordance with recommendations in the Guide for

the Care and Use of Laboratory Animals of the NIH. All animal

protocols were approved by the Institute for Animal Care and Use

Committee of The University of Texas Health Science Center

(AWA#: A3414-01).

Kidney RT-PCR
Total RNAs were prepared from whole kidney using TRIzol

reagents (Invitrogen) following the manufacturer’s instruction as

described previously [44,45]. All RNA samples were pretreated

with DNase I to eliminate potential genomic contamination. RT-

PCR products were verified in separate reactions in which the

reverse transcriptase was omitted (data not shown). The first strand

cDNA Synthesis kit (Roche) was used to synthesize all cDNAs.

PCR was performed using specific primers for SK3 (KCNN3)

(forward: 59-GCCCTGTTTGAAAAGAGAAAGCGAC-39 and

reverse: 59-GCATCAGTGAAGAGTTTGCTATGGAGC-39).

SK3 primers were selected to cross the boundary been exon 2

and 3 to rule out products derived from genomic DNA. Nucleotide

sequencing verified that the PCR product was derived from SK3

mRNA (see Figure 1A). For BKa (KCNMA1), standard primers

were selected for variant 1 (forward: 59-CCTCTTCAT-

CATCTTGCTCTGGCG-39 and reverse: 59-TGGCAG-

GATTCTATTGGGTTTGACG-39 as typically done. PCR

cycling included 35 cycles: denaturation at 95uC for 20 s, primer

annealing at 55uC for 30 s, and extension for 1 min at 72uC,

followed by a 10 min completion step at 72uC. All PCR products

were verified by agarose gel analyses (1% agarose, 0.5 mg/ml

ethidium bromide) against 100-bp standard markers (New

England Biolabs).

Western blotting
In preparation for Western blotting, mice were anesthetized

with isoflurane inhalation and the kidneys dissected free and

immediately processed for immunoblotting. Briefly, kidneys were

immediately sliced into several small pieces, on ice. Tissue was

then homogenized with 46volume of ice-cold lysis buffer (50 mM

Tris, 1% Triton X-100, 5 mM EDTA, pH 7.5), containing

protease inhibitor cocktail (1 ml/20 g of tissue, Sigma-Aldrich).

The homogenates were then immediately centrifuged at 15000 g

for 15 min at 4uC and the supernatants collected and stored at 2

20uC until use.

For Western blots, 56 Laemmli buffer was added to sample

protein and then heated for 10 min at 70uC. Next, 20 mg of

sample protein was run in a 4–15% SDS-PAGE gradient gel,

transferred to PVDF membrane, and blocked with 5% nonfat milk

for 1.5 hrs at RT. Membranes were incubated with a well-

characterized, high specificity, anti-SK3 primary antibody (anti-

KCa2.3 directed against the N-terminus, 1:100, Alomone Cat.

#APC-025; see references [46–48] and Alomone web site)

overnight at 4uC. After washing, membranes were incubated with

secondary antibody (anti-rabbit, 1:1000, Invitrogen). Alpha-

tubulin (<50 kD) was used as a loading control (monoclonal

anti-a-tubulin, 1:1000, Sigma). An SK3 specific blocking peptide

(Alomone) was used to verify specificity of the SK3 primary

antibody.

The SK3 K+ Channel in Distal Tubule
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Immunohistochemistry
Standard immunocytochemistry procedures were used to

prepare and immunostain kidney tissue as previously described

[32,43]. Mice were anesthetized with isoflurane inhalation and the

kidneys then fixed by cardiac perfusion with 40 ml of ice cold

fixative solution (4% paraformaldehyde in 0.1% cacodylate buffer,

pH 7.4). Kidneys were then removed and post-fixed in fixative

solution for an additional 24 hrs, at 4uC. Following fixation, the

tissue was placed in a 30% sucrose PBS for 48–72 hrs at 4uC.

Fixed kidneys were then frozen at 220uC and sectioned (5 mm

thick, sagittal and transverse sections) with use of an OTF 5000

cryostat (Bright Instruments).

Prior to staining, tissue sections were allowed to warm to room

temperature, and washed with 16 TBS. Subsequently, kidney

sections were incubated with 0.25% Triton X-100, again washed

with TBS, and then blocked by incubation with 5% donkey serum.

The tissue was then incubated with the appropriate primary

antibody (anti-SK3, anti-NCX, anti-THP, or anti-AQP2 ATTO-

550) overnight at 4uC (see Table 1). Following wash of primary

antibodies with TBS, sections were incubated with secondary

antibodies (Cy5 anti-rabbit, fluorescein labeled peanut agglutinin

(PNA-FITC), Cy2 anti-sheep, Cy2 anti-mouse) for 3 hrs at room

temperature. The tissue sections were mounted on coverslips with

VectaShield mounting medium (Vector Laboratories). The

sections were then imaged on a Nikon A1 confocal microscope.

From 2–3 sections were imaged from each of 3 kidneys to evaluate

SK3 expression in each tubular segment. Representative images

were selected from each condition reported, as done previously

[31,32,49]. For CCD, SK3 intensity profiles were obtained for

each cell in a x-sectional view using Image J (NIH, version 1.46r)

to define a linear profile line through the cell (apical to basal) to

obtain maximal intensities across the apical (luminal) and basal

(abluminal) membranes and minimal intensities within the cytosol.

The intensity profiles were determined for PCs (AQP2 positive)

and ICs (AQP2 negative). All cells from 2 x-sections from each

kidney were analyzed in an identical manner to provide an

adequate number of cells for statistical analysis (37 PCs, 12 ICs).

Isolation & preparation of split-open collecting ducts
Sections of CCD were isolated and prepared from mouse

kidney tissue as previously described [32,50,51]. In short, mice

were sacrificed by CO2 treatment and subjected to cervical

dislocation. Subsequently, kidneys were dissected and cut into

transverse sections (,1 mm thick); then placed into ice cold PBS

(pH 7.4). Medullary-cortical strips of tubules were dissected from

the tissue and then individual CCD teased from the strips using

watchmaker forceps (sites of bifurcation of the CCD were used to

identify CCD segments from upstream connecting tubules).

Isolated tubules were moved onto poly-L-lysine coated glass chips

and placed in a perfusion chamber mounted on an Eclipse Ti

Nikon microscope at room temperature. Tubules were then split-

open with two sharpened micropipettes and used within 3 hrs of

isolation for membrane potential measurements (see below).

Fluorescence measurement of membrane potential, Vm
DiSBAC2(3) (Invitrogen), a voltage-sensitive fluorescent probe,

was used to measure relative changes in cell membrane potential,

Vm, of individual cells [52–54] in split-opened CCDs on coverslips

using high resolution fluorescence imaging [32,43,55]. The

DiSBAC2(3) dye has been widely used in a broad range of cells

to report Vm. Unless otherwise noted, cells were bathed in a

isotonic modified balanced salt solution (MBSS), containing (in

mM): 140 NaCl, 5.4 KCl, 0.5 MgCl2, 0.4 MgSO4, 3.3 NaHCO3,

2 CaCl2, 10 Hepes, 5.5 glucose, and pH 7.4. Prior to imaging,

cells were loaded with dye by incubation in MBSS containing

100 nM DiSBAC2(3) for 30 min at RT in the dark. The coverslips

were mounted in a perfusion chamber (see above) on the stage of a

high-resolution Nikon Eclipse Ti inverted fluorescence microscope

equipped with a Lambda LS Xenon arc lamp illuminator and

filter wheel (Sutter Instruments) and a CoolSNAP HQ2 cooled

CCD camera (Photometrics) as before [32,55]. Whereupon,

DiSBAC2(3) was added to all perfusion solutions throughout the

experiment. The fluorescence signal (images) was acquired using

standard procedures (excitation wavelength = 530 nm and emis-

sion wavelength = 580 nm) [52–54]. The association of the

negatively charged fluorescent probe to the cell membrane is a

function of membrane potential. Depolarization of the membrane

leads to accumulation of the probe near the cell membrane and is

associated with an increase in fluorescence; conversely hyperpo-

larization of the membrane leads to dispersion of the probe away

from the cell membrane and is associated with a decrease in

fluorescence. Regions-of-interest, ROIs, were drawn around

peripheral membrane areas of individual cells for measurement

of fluorescence intensities (one ROI/cell). Correction for back-

ground signals was performed by selecting ROIs in regions

without cells and subtracting this background fluorescence signal

from all cell measurements. All fluorescence measurements were

Figure 1. SK3 expression in WT mouse kidney. A. RT-PCR analysis
using whole kidney mRNA extracts revealed prominent bands of the
appropriate size on agarose gels for both SK3 (473 bp) and BKa
(318 bp), demonstrating expression of both of these channels in the
kidney. SK3 primers were selected to cross the exon 2 and exon 3
borders to rule out amplification of intron sequences from genomic
DNA. The electropherogram for SK3 is shown with both nucleotide
sequences (NT) and amino acid sequences (AA) indicated for the
segment across the exon border region, demonstrating that the PCR
product does not originate from genomic DNA. 100-bp marker
standards are shown (Lane M). B. Western blot of WT mouse kidney-
SK3. SK3 protein is expressed as a single band near 90 kD in mouse
kidney. SK3 blocking peptide (SK3-BP) was used as a control to verify
antibody specificity which, as shown, abolished binding of the anti-SK3
antibody (right lane). Alpha-tubulin expression was used as a loading
control (lower panel).
doi:10.1371/journal.pone.0095149.g001

The SK3 K+ Channel in Distal Tubule

PLOS ONE | www.plosone.org 3 April 2014 | Volume 9 | Issue 4 | e95149



reported as relative fluorescence units (RFU). A High K+ solution

containing 50 mM KCl (High K+ solution: 50 mM KCl

substituted for NaCl in MBSS) was used as a standard test for

inducing a defined membrane depolarization. For statistical

analysis, 7–15 ROIs from each split-open CCD were selected

based on the Vm response to application of the High K+ solution.

Typically from 3–5 CCDs were isolated and used from 2–4

kidneys (1–2 CCDs/kidney) for each treatment group. ‘‘n’’ is

representative of the number of cells analyzed for all tubules in

each group. Data are presented as a mean value 6 SEM.

Chemicals
The following chemicals were used in this study: GSK101

(GSK1016790A, Santa Cruz Biotechnology) from a stock solution

(1 mM) in DMSO; apamin (Apa, Alomone) from a stock solution

(1 mM) in PBS; and iberiotoxin (IbTX, Alomone) from a stock

solution (0.1 mM) in PBS.

Statistical Methods
Summary data are given as mean values 6 SEM as indicated in

the figures. Differences among groups was analyzed with either the

t-test, when comparing only two groups, or a one-way ANOVA for

larger groups followed by the Holm-Sidak a posteriori test to define

significant differences among groups. The significance level was

defined as P,0.05; n is the number of cells assessed in each group.

Results

SK3 expression in the mouse kidney
As an initial step toward identifying the expression of SK3

channels in renal tubules, we assayed for both mRNA and protein

expression levels using RT_PCR and immunoblotting from whole

kidney samples. As shown in Figure 1A, kidney mRNA analysis

revealed relatively high levels of SK3 expression similar to that

observed for BKa. Immunoblots from whole kidney homogenates,

using a well-characterized antibody against mouse SK3 (see

Materials and Methods), revealed a prominent band near 90 kD,

consistent with expression of SK3 in kidney (Figure 1B) as shown

for SK3 in other tissues [56–59]. As a negative control, an SK3

blocking peptide was used to verify the specificity of our SK3

antibody which, as shown, abolished the SK3 band (Figure 1B,

SK3-BP lane). Hence, both RT-PCR analysis and immunoblots

demonstrate prominent SK3 expression in mouse kidney.

SK3 expression along the nephron
To identify the sites of expression of SK3 channels in renal

tubules, mouse kidney sections (5 mm thick) were immunostained

for SK3. We employed Alomone Lab’s anti-SK3 antibody

directed against the N-terminus as it has been shown to display

high specificity for SK3 in a wide range of cell types and tissues

(see Materials and Methods). Initial studies included co-staining for

Aquaporin 2 (AQP2), a marker of PC cells within the collecting

duct system (from CNT through inner medullary collecting duct).

Transverse kidney sections revealed substantial binding of anti-

SK3 antibody to discrete tubular structures within the cortex and

medulla (Figure 2B and 2E). In agreement with our previous

findings using M-1 collecting duct cells [43], much of the SK3

staining was located in the collecting ducts, as evidenced by co-

localization of SK3 with AQP2 (Figure 2A–2C; 2D–2F, asterisk).

In addition, SK3 staining was also apparent in tubular structures

which did not show AQP2 expression, reflecting likely expression

in other tubule segments (Figure 2D–2F, arrows). The smaller

tubule-like structures likely represent SK3 expression in the renal

vasculature endothelial cells since most endothelial cells are known

sites of SK3 expression (Figure 2D–2F, arrow heads) [60–62]. To

verify the specificity of our SK3 antibody, immuno-staining studies

were also performed in the presence of the SK3 blocking peptide.

As shown by the example in Figure 2G–2I, SK3 staining was

abolished in the presence of the blocking peptide, demonstrating

specificity of our anti-SK3 antibody for the SK3 epitope in the

mouse kidney.

In order to further elucidate the sites of expression of the SK3

channel along the distal nephron, kidney sections were co-

immunostained for SK3 and selective markers of defined tubule

segments (see Table 1). This included antibodies against Tamms

Horsfall Protein (THP), a marker of the thick ascending limb, the

Na+/Ca2+ exchanger (NCX), a marker of the distal convoluted

tubule and, as above, AQP2, a selective marker of PC cells of the

collecting duct system (see Table 1, [63–65]).

In thick ascending limb segments (THP-positive) significant

SK3 expression was apparent along the luminal cell border

(Figure 3C, 3D) with considerable colocalization with THP

(Figure 3E–3F). Some SK3 staining was also apparent along the

abluminal cell borders, although the intensity of staining was more

variable (Figure 3D). The thick ascending limb is a prominent site

for ROMK expression which functions to secrete K+ into the

tubular lumen as part of the K+ recycling processes in TAL [25–

27,66]. Whether SK3 contributes to this process in stimulated

states, i.e. states of elevated [Ca2+]i, is not currently known, but its

expression along the luminal border would be consistent with this

view. Figure 3 also shows a section through a proximal tubule

which shows minimal SK3 staining, although weak staining is

apparent along the luminal brush border of proximal tubule cells

(Figure 3G and 3H, PT label).

SK3 staining was also prominent along the distal convoluted

tubule (DCT) segments, a site that is noted for ROMK expression

and modest K+ secretion. The tubule segments in the upper

portion of Figure 4 show prominent cytoplasmic and abluminal

staining by anti-NCX, a marker of the DCT, particularly of the

later segment, the DCT2 [64]. As evidenced in the detailed image

(Figure 4C and 4D), SK3 is highly expressed along the apical

Table 1. Antibodies and markers used for immunohistochemistry.

Antibody Dilution Host Vendor

Anti-SK3, N-terminus 1:100 Rabbit Alomone

Anti-AQP2 ATTO-550 1:200 Rabbit Alomone

Anti-NCX 1:500 Mouse Swant

Anti-THP 1:1000 Sheep Millipore

PNA-FITC 1:1000 Vector

doi:10.1371/journal.pone.0095149.t001
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border of the cells, but again, with staining apparent along the

abluminal border of some cells. The tubular structure in Figure 4A

and 4B also demonstrates that the lower half of the NCX-positive

tubule in the figure shows a marked reduction in NCX staining

with a shift in staining towards the abluminal membrane. This is

characteristic of the transition from DCT2 to the CNT [64].

Hence, the lower half of the tubule is likely representative of the

CNT. SK3 staining of the CNT segment shows more prominent

apical membrane staining with greatly reduced abluminal staining

(Figure 4C, lower half, CNT label), similar to that observed for the

CCD as detailed below. Again, since ROMK is also expressed at

the luminal border of distal tubule segments to effect K+ secretion,

it may be that SK3 contributes to this process under stimulated

states.

SK3 expression and function in cortical collecting duct
Kidney sections and isolated CCD tubules were used to identify

the expression pattern of SK3 in the mouse collecting duct.

Staining of kidney sections with SK3 and AQP2 revealed

expression of SK3 channels along the entire collecting duct

(Figure 2 and 5). Figures 5B, 5D, and 5F shows immunostaining

results in a cross section of a CCD. AQP2 staining is evident along

the luminal border of 5–6 cells, identifying these cells as PCs, while

two other cells did not stain for AQP2, identifying these as ICs

(Figure 5B and 5F). Prominent SK3 staining, however, was

apparent along the luminal border of all cells of the CCD

(Figure 5D). SK3 expression in PCs was characterized by relatively

high SK3 staining of the apical membrane and subapical regions

with weak or variable staining along the abluminal border

Figure 2. Immunohistochemical staining for SK3 and aquaporin-2 (AQP2) in WT mouse kidney sections. Top Panel (A–C): A low-
magnification transverse section (5 mm) of the mouse kidney is shown. Discrete labeling is shown for staining for aquaporin-2 (A. AQP2, red), a
marker of the collecting ducts, SK3 (B. SK3, green), and a merger of both channels (C. Merge, yellow-organge for co-localization of AQP2 and SK3).
Labeling is apparent for SK3 in both the cortex (label C) and medullary (label M) (dashed line shows cortical-medullary demarcation). Middle Pannel
(D–F): Magnified view of the yellow inset box from A. SK3 co-localizes with all AQP2-postive tubules as show by the yellow-orange images (F.,
asterisk). SK3 staining is also apparent in AQP2-negative structures including other tubular structures (F., arrows) and smaller secondary structures
(possibly vascular structures, F., arrow heads). Bottom Panel (G–H): Magnified view of staining in the presence of SK3 blocking peptide. All SK3
staining is abolished demonstrating specificity of our anti-SK3 antibody. Scale bar is 50 mm.
doi:10.1371/journal.pone.0095149.g002
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(Figure 5E). Similarly, most ICs showed significant levels of SK3

expression along the apical membrane/subapical regions with

minimal or variable staining of the abluminal border (Figure 5E).

Separate immunostaining for SK3 alone, without AQP2 immu-

nostaining, showed similar SK3 localization (data not shown). A

line intensity profile of SK3 immunofluorescence along the

luminal-to-abluminal axis of both PCs and ICs indicates prom-

inent SK3 expression along the luminal border in all cells of the

CCD with the PC typically showing modestly higher levels of

staining as shown by the representative example for a PC and IC

in Figure 5G (obtained from the cells identified in Figure 5F).

Indeed, the relative maximal fluorescence intensity across the

luminal and abluminal borders averaged 10062.4 and 24.462.2

(n = 37) relative units in PCs (P,0.02) and 87.566.9 and

36.765.9 (n = 12) relative units in ICs (P,0.02), respectively,

confirming the dominant expression of SK3 at the luminal border

of both PCs and ICs (Figure 5H).

Finally, the functional activity of SK3 channels was investigated

in split-open CCD tubules with the voltage-sensitive fluorescent

probe, DiSBAC2(3), as done by others [52–54,67]. This dye has

been widely used to reproducibly report Vm under both

depolarizing and hyperpolarizing conditions in a broad range of

cells. Changes in the fluorescence intensity of DiSBAC2(3) reflects

changes in Vm where an increase in fluorescence intensity

(Relative Fluorescence Units, RFU) correlates with a depolariza-

tion of Vm and a decrease in fluorescence intensity with a

hyperpolarization of Vm. A 30-min loading period with the dye

(100 nM) provided an excellent fluorescence signal over back-

ground (Figure 6A). As a control test and an index of cell viability,

cells incubated with the DiSBAC2(3) fluorescent probe were also

briefly exposed to a High K+ solution (50 mM K+, Figure 6B) to

depolarize the cell membrane. As shown in the representative

Figure 3. Immunohistochemical staining of SK3 for thick
ascending limb tubules. Sagital section (5 mm) of WT mouse kidney
showing staining for Tamm-Horsefall protein (THP, red), a marker of TAL
cells, and SK3 (green). Panels A, C, E, and G are low magnification
images showing THP staining of TAL structrues (A), SK3 labeling of the
same structures (C), and a merged image (E). As shown at higher
resolution for one of the tubules (inset from A), THP strongly stains the
luminal border of the TAL (B and F) with SK3 also showing strong
labeling of the luminal border and, to a variable degree, the abluminal
border (D and F). The merged image (F) clearly identifies SK3 staining in
the TAL cells. Panel H is a magnified view of a proximal tubule (PT),
located left of the TAL in A. The PT showed minimal staining for SK3,
although light staining was apparent along the luminal brush border.
Scale bar is 10 mm.
doi:10.1371/journal.pone.0095149.g003

Figure 4. Immunohistochemical staining of SK3 in the distal
convoluted tubule (DCT). Mouse (WT) kidney section (5 mm)
showing staining for the sodium-calcium exchanger (NCX, red), a
marker of DCT, especially the later portion (DCT2), and SK3 (green). The
heavy NCX staining of the upper portion of the tubule in Panel A
(within yellow inset box) is consistent with the DCT2 segment with the
weaker, more basolateral staining in the lower half of the tubule
indicating this is the connecting tubule (CNT) (see text for details).
Higher resolution image of the DCT2 (D) shows strong staining of SK3
along the luminal border with more variable, weaker staining along the
abluminal border. The merged image clearly identifies SK3 staining of
the DCT (F). In the CNT segment (A., labeled CNT), SK3 staining was also
apparent along the luminal border with abluminal staining appearing
weaker. Scale bar is 10 mm.
doi:10.1371/journal.pone.0095149.g004
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trace, exposure to a High K+ solution led to an increase in the

fluorescence intensity at the cell membrane reflecting the expected

depolarization of Vm.

To determine if activation of the SK3 channel contributed to

Vm, the effect of apamin, a selective SK channel antagonist, was

tested along with the BK channel selective antagonist, iberiotoxin

(IbTX). Under basal [Ca2+]i conditions, addition of apamin

(300 nM) or IbTX (50 nM) had little or no effect on Vm

(Figure 6C) with RFUs changing by 1.063.1 (n = 31) and 7.963.5

(n = 31) RFUs, respectively, although a few cells, but not all,

responded to addition of IbTX. The data support the view that

both channels are relatively quiescent under basal conditions. In

contrast, following activation of TRPV4 using the selective

agonist, GSK101 (50 nM), thereby inducing Ca2+ influx and a

rise in [Ca2+]i as shown before (see [32,43,55]), Vm typically

hyperpolarized, reflecting activation of Ca2+-activated K+ chan-

nels (Figure 6D). Indeed, addition of either apamin or IbTX in the

presence of GSK101 now induced a significant membrane

depolarization (increased fluorescence) as shown by the represen-

tative example in Figure 6D. Data from all studies is summarized

in Figure 6E. As shown, the mean fluorescence intensity increased

by 197621.7 RFUs upon addition of apamin (Apa, n = 37) and

17269.5 RFUs upon addition of IbTX (n = 59). The combined

addition of apamin and IbTX brought about a greater increase in

RFUs, averaging 276626.6 RFUs (n = 37). The increase in RFUs

was significantly greater upon addition of both inhibitors relative

to either inhibitor alone (P,0.02). Hence, inhibition of SK3

induced a membrane depolarization that was similar in magnitude

as that observed for inhibition of the BK channel, indicating both

channels are activated by TRPV4-mediated Ca2+ influx. The two

channel types appear to operate in parallel since inhibition of both

SK3 and BK induced a further depolarization in the CCD cells

than inhibition of either channel alone. The results of these studies

are consistent with that observed for SK3 and BK expression in

M-1 CCD cell line where hypotonicity-induced cell swelling

induced Ca2+ influx with the subsequent activation of both SK3

and BK [43]. Hence, these data demonstrate that functional SK3

channels are expressed in mouse kidney distal nephron and

collecting duct cells and that TRPV4-mediated Ca2+ influx can

gate these channels as shown here for collecting duct cells.

Discussion

In the present study we assessed the potential functional

expression of the Ca2+-activated, small conductance, SK3 K+

Figure 5. Immunohistochemical staining of SK3 in the collecting duct. Section (5 mm) from WT mouse kidney showing staining for AQP2
(red), a marker of PCs in collecting duct, and SK3 (green). Panels A, C, and E are low magnification views of a cross-section through a CCD identified
by AQP2 staining. Panels B, D, and F represent a magnified view of the inset area from A (yellow inset box). Panel B shows strong AQP2 staining
along the luminal border of PCs (5–6 cells), but not of the ICs (2 cells without staining). As shown in D and F, strong staining of SK3 is evident along
the luminal border of all cells, both PCs and ICs. Variable, but weak staining, is also apparent along the abluminal border of some cells. However, the
staining is most pronounced along the luminal border for both PCs and ICs, although typically stronger in PCs, as indicated by the SK3 fluorescence
line intensity profiles across (luminal to abluminal direction) two cells identified as PC and IC (Panel G). H. Relative mean intensity profiles (6 SEM)
across the cells from all sections showing the maximal values across the luminal border (Apical) and abluminal border (Basal) and the minimal values
within the cytoplasm (Cytosol). The mean values are given for both PCs (n = 37) and ICs (n = 12) from all sections analyzed. The maximal luminal
intensity is much greater than the abluminal intensity (*P,0.02) indicating dominant expression at the luminal border. Scale bar is 10 mm.
doi:10.1371/journal.pone.0095149.g005
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channel in the nephron. Here we demonstrate for the first time

that the SK3 protein is expressed in the mouse kidney with the

highest levels of expression apparent in tubular segments of the

distal nephron and collecting ducts. Using segment-specific

markers we show that SK3 is expressed in the thick ascending

limb, the distal convoluted tubule, the connecting tubule and the

entire collecting duct system. Cellular sites of expression show

dominant luminal membrane staining, although significant

basolateral (abluminal) membrane staining is apparent in some

cells, especially in the earlier segments of the distal nephron. Since

we also show that the channel is functional, being activated by

Ca2+ influx and leading to hyperpolarization of Vm, it follows that

SK3 may play a key role in Ca2+-dependent regulation of

membrane potential and K+ transport in these distal nephron and

collecting duct segments (see below). Indeed, the sites of SK3

expression largely mirror those for the Ca2+-independent ROMK

Figure 6. Effect of TRPV4-mediated activation of SK3 channels on membrane potential, Vm. A. Fluorescence image of a split-open CCD
loaded with the voltage-sensitive fluorescence dye, DiSBAC2(3), showing loading of all cells. The fluorescence intensity is an index of Vm and is
presented as relative fluorescence units (RFU). B. Effect of 50 mM K+ (High K+) application on Vm of CCD cells showing the expected membrane
depolarization (increased RFU). C. Effect of 300 nM apamin or 50 nM IbTX application on Vm in basal conditions showing little or no effect of either
apamin (Apa) or IbTX in the basal state (TRPV4 not activated). D. Effect of TRPV4 activation with GSK101 (50 nM) leading to membrane
hyperpolarization of Vm (decreased RFU), as expected for SK3 and BK activation. Subsequent application of either 300 nM apamin or 50 nM IbTX now
induce a marked depolarization of Vm (increased RFU) demonstrating inhibition of SK3 and BK, respectively. E. Summary graph showing mean
changes in Vm in basal conditions upon addition of High K+ (High K+, n = 44 cells), 300 nM apamin, or 50 nM IbTX (Left panel, Basal). Right panel
(GSK101: TRPV4 Activation) shows the results after activation of TRPV4 (Ca2+ influx). Both apamin and IbTX now bring about a significant
depolarization of Vm (*P,0.01 compared to Basal). The combine addition of both apamin and IbTX (Apa + IbTX) displays an enhanced depolarization
compared to addition of apamin or IbTX alone (**P,0.01). The number in parentheses is the number of cells for each group (n).
doi:10.1371/journal.pone.0095149.g006
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channel (see [25]). Since ROMK is a known key channel effector

of K+ secretion in these segments, it is likely that SK3 shares some

of this K+ secretory function, especially under stimulated states

with elevated [Ca2+]i levels.

We extended our analysis of SK3 expression and function in the

CCD since this is a major site for regulating K+ secretion in the

kidney [23,28,68]. Using AQP2 as a marker of PCs in the CCD

[63], our immunohistochemical staining shows apparent high

levels of expression of SK3 in both the PC (AQP2 positive) and the

IC (AQP2 negative) (Figure 5). This expression is dominant at the

apical membrane and subapical regions of the cells, an expected

pose for a K+ secretory channel. Using freshly isolated split-opened

mouse CCD, we measured changes in the membrane electrical

potential, Vm, using the fluorescence dye DiSBAC2(3), as done by

many other groups [52–54,67]. Addition of the SK selective

channel blocker, apamin, had little or no effect on Vm under basal

conditions. However, after activation of TRPV4 to induced Ca2+

influx, leading to membrane hyperpolarization as expected for

activation of K+ channels, apamin now induced a significant

depolarization of Vm demonstrating functional SK3 channels in

the CCD following induction of TRPV4-mediated Ca2+ influx

(Figure 6). The depolarization response was subsequently verified

by blockade of the BK channel, a well-characterized Ca2+-

dependent K+ channel in CCD [5,26,69], were addition of the BK

selective antagonist, IbTX, was shown to have a similar

depolarizating effect on Vm as that observed for blockade of

SK3 channels (Figure 6). These studies demonstrate that both SK3

and BK are functional in the CCD and both are activated by

TRPV4-mediated Ca2+ influx. Hence, SK3 must play a key role in

regulating the Vm in CCD during states of induced Ca2+ influx.

Indeed, this view is supported by our recent studies in mouse M-1

collecting duct cells where we show that modest Ca2+ influx not

only activates SK3, but that the associated membrane hyperpo-

larization with SK3 activation, in turn, serves to further enhance

Ca2+ influx through non-voltage-activated TRP channels [43].

Hence, this same phenomenon leading to a positive coupling

between Vm and Ca2+ influx will likely be at play for SK3 in the

intact CCD. It remains for future studies to fully characterize the

SK3 channel properties and to define the extent that it underlies

control of Vm and K+ secretion in the CCD.

Activation of SK3 in the mouse CCD by elevation of Ca2+

influx would appear to be, at least in part, under the control of the

Ca2+-permeable TRPV4 channel. We have previously shown that

TRPV4 is highly expressed in the mouse kidney (the source of our

homology-based TRPV4 clone [70]),which we demonstrated is

localized to the entire collecting duct including the connecting

tubule and CCD [31,32]. Using the selective TRPV4 agonist,

GSK101 (GSK1016790A, [71]), we now show that TRPV4-

mediated Ca2+ influx appears to be a key regulator of both SK3

and BK activity in CCD (Figure 6D, 6E). These findings are

consistent with our previous studies in mouse M-1 CCD cells

where we demonstrated that both SK3 and BK are closely

regulated by TRPV4-mediated Ca2+ influx following either

activation of TRPV4 by osmomechanical stimulation (hypotonic-

ity) or direct activation by addition of GSK101 [43]. Furhter,

while the Ca2+ dependence of flow-induced K+ secretion in CCD

is well known [30], the role of TRPV4 in this process is developing

where recent studies in TRPV4-deficient mice show that both

flow-induced Ca2+ signaling [32] and flow-induced K+ secretion

by the CCD are markedly blunted [28], as heretofore noted.

Hence, TRPV4 would appear to play a central role in regulating

the Ca2+-dependent K+ channels and, in turn, Vm and K+

secretion in the CCD.

While the precise role of TRPV4 in control of Ca2+-activated

K+ channels in CCD is still emerging, a similar close association

between TRPV4 and SK3/IK channels has recently been shown

in vascular endothelial cells. This association appears to be

responsible, at least in part, for the ‘‘generation’’ of the

endothelial-derived hyperpolarizing factor (EDHF) which is a

key signaling factor leading to vascular vasodilations and a

reduction in blood pressure (see [72–74]). It has been shown that

TRPV4, SK3 and IK are expressed in a wide range of endothelial

cells [9,60,75,76]. Recent studies have shown that activation of

endothelial cell TRPV4 channels or SK3/IK channels via fluid

flow or by muscarinic receptor activation (acetylcholine), activates

various pathways including EDHF-mediated signaling leading to

hyperpolarization of the endothelial cell. This response appears to

be communicated through myoendothelial gap junctions to

hyperpolarize the underlying smooth muscle cells which, in turn,

contributes to relaxation of the vessel and vasodilation [60]. In

vessels from animals either deficient in TRPV4 or SK3/IK, or

where either TRPV4 or SK3/IK have been blocked pharmaco-

logically, the effect of stimulation by flow or acetylcholine

administration on membrane hyperpolarization and vessel dilation

is markedly attenuated, largely abolishing the EDHF signaling and

membrane hyperpolarization [9,60,76,77]. The activation of

TRPV4 is a key component in this response since the associated

Ca2+ influx will regulate activation of SK3 and IK and, in turn,

Vm, a response similar to what we report here for SK3 and BK in

the CCD.

In other studies of vascular tissue it has recently been shown that

TRPV4 and SK3 associate with each other in the endothelial cell

plasma membrane [78] and that small, cooperative, complexes of

TRPV4 channels (four channels per complex) exist where

activation of just a few TRPV4 channels is sufficient to fully

activate SK3 [73,79]. Similarly, such a close association has also

been proposed for the underlying smooth muscle cells where

TRPV4, or a TRPC1-TRPV4 complex [67], closely associates

with the BK channel, possibly as another signaling complex which,

in turn, contributes to hyperpolarization of Vm and smooth

muscle relaxation as part of the vasodilatory response [67,80].

Whether such a close association of TRPV4 with either SK3 or

BK into a signaling complex exists in the CCD is currently not

known, but would appear highly likely given that the same

channels (TRPV4, SK3, and BK) appear to underlie Ca2+ influx

and regulation of Vm in the CCD. Nonetheless, it remains for

future studies to define the nature of the association between

TRPV4 and SK3/BK in the CCD and to identify potential

microdomain and/or macromolecular structures that may give

rise to the functional coupling among the channels.

Does SK3 play a role in K+ secretion and, hence, K+

homeostasis? Indeed, with the observed expression of SK3 at the

apical cell membrane in distal nephron and collecting duct

segments, it is likely that SK3 is a key contributor to K+ secretion

under stimulated states that give rise to elevated cytosolic Ca2+

levels. It is well known that basal K+ secretion in the CNT and

CCD, the main sites for K+ secretion, is attributable to the

calcium-insensitive ROMK channels [5,25–27]. However, under

states of enhanced K+ secretion, such as with elevated fluid

delivery to the distal tubule, the Ca2+-activated BK channel has

been shown to be a key contributor to the enhanced K+ flux

[22,28,68]. It is also known that elevated fluid delivery stimulates

Ca2+ influx, which we and others have shown arises from flow-

induced TRPV4 activation [28,30–32], as heretofore noted,

leading to activation of the BK channel and the enhanced K+

secretion. While blockade of BK, or use of animals deficient in BK,

has shown that a major fraction of the flow-induced K+ secretion is
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dependent upon BK, it has also recently been shown that the

elevated flow rates stimulate ATP release from distal tubule cells

[40] which, in turn, inhibits ROMK and the basal K+ secretion

[42]. Hence, this begs the question as to what other K+ channel

may be contributing to K+ secretion under these stimulated states.

SK3 is postured to fit this role since the TRPV4-mediated Ca2+

influx will activate the channel in native CCD as shown in the

current study. We also speculate that since SK3 has a much higher

Ca2+ affinity than BK (see Introduction) that SK3 may actually be

the first channel activated under states of elevated flow, although

this remains to be directly assessed.

Finally, SK3 is also likely to play a role in other K+-channel

dependent phenomena such as cell volume regulation. Cell

swelling of many epithelial cells leads to enhanced Ca2+ influx

and activation of Ca2+-activated K+ channels to induce K+ efflux,

along with Cl2, leading to solute loss and regulatory volume

decrease (see reviews [81–84]). Indeed, we demonstrated a few

years ago that, in native, isolated perfused, CCDs, induction of

PCs to swell by current transfer techniques was immediately

followed by cell volume regulation back to control volume states, a

process that was dependent upon the Ba2+-sensitive apical K+

channels [85] that would include ROMK and all KCa channels.

Others have shown that CCD cells in culture undergo regulatory

volume decrease upon cell swelling [86] and that cell swelling

activates TRP channels to induce Ca2+ influx in collecting duct

cells [43,86,87]. Since we have also shown that, in M-1 cells, cell

swelling activates TRPV4 and Ca2+ influx which, in turn, leads to

activation of both BK and SK3, it seems reasonable to conclude

that swelling states in native CCD and CNT, at least for PCs, leads

to activation of both BK and SK3 to effect cell volume regulation.

However, the precise role of BK and SK3, or other Ca2+-activated

K+ channels, in this process remains to be fully elucidated in future

studies.

In summary, the current study provides evidence for the

expression of functional SK3 channels along the mouse distal

nephron with high levels of expression in the distal tubule and the

entire collecting duct. In CCD, SK3 is expressed in both PCs and

ICs, with prominent localization at the apical membrane and

subapical regions of the cell. The SK3 channel is activated upon

stimulation of TRPV4 and elevation of intracellular Ca2+ levels

and, as such, likely plays a key role, along with other Ca2+-

activated K+ channels, in regulating both membrane potential and

K+ secretion during states of elevated flow rates or cell volume

regulation. It remains to be determined whether these Ca2+-

activated K+ channels and Ca2+-permeable TRP channels

function as independent entities or, more likely, associate into

microdomains as macromolecular signalingplexes to bring about a

coordinated control of channel functions in specific cell types of

the distal nephron and collecting ducts.
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