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Abstract

The palm family (Arecaceae) is of high ecological and economic value, yet identification in

the family remains a challenge for both taxonomists and horticulturalists. The family consists

of approximately 2600 species across 181 genera and DNA barcoding may be a useful tool

for species identification within the group. However, there have been few systematic evalua-

tions of DNA barcodes for the palm family. In the present study, five DNA barcodes (rbcL,

matK, trnH-psbA, ITS, ITS2) were evaluated for species identification ability across 669

samples representing 314 species and 100 genera in the Arecaceae, employing four analyt-

ical methods. The ITS gene region was found to not be a suitable barcode for the palm fam-

ily, due in part, to low recovery rates and paralogous gene copies. Among the four analyses

used, species resolution for ITS2 was much higher than that achieved with the plastid bar-

codes alone (rbcL, matK, trnH-psbA), and the barcode combination ITS2 + matK + rbcL

gave the highest resolution among all single barcodes and their combinations, followed by

ITS2 + matK. Among 669 palm samples analyzed, 110 samples (16.3%) were found to be

misidentified. The 2992 DNA barcode sequences generated in this study greatly enriches

the existing identification toolbox available to plant taxonomists that are interested in

researching genetic relationships among palm taxa as well as for horticulturalists that need

to confirm palm collections for botanical garden curation and horticultural applications. Our

results indicate that the use of the ITS2 DNA barcode gene region provides a useful and

cost-effective tool to confirm the identity of taxa in the Palm family.

Introduction

Botanical gardens typically hold a wide diversity of well-documented living plant collections

for the purpose of scientific research, conservation, display and education. Globally, botanical

gardens conserve at least 41% of known threatened plant species in their living collections and
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seed banks [1]. Although most botanical gardens are curated by taxonomic experts, which

often specialize in specific groups of plant taxa, there is often a considerable percentage of

botanical garden collections that are often misidentified or not resolved to the species, or even,

genus level. Many plants grown in botanical gardens have been obtained as seed that are either

misidentified during collection from wild or cultivated sources, or have had their identity lost

or reassigned during the cultivation process within the garden. To add to the problem, which

may be especially poignant for small botanical gardens that are understaffed or display focused,

herbarium vouchers and taxonomic experts are often lacking.

A group of taxa for which species identification at botanical gardens may be particularly

problematic are the Palms (Arecaceae). The Arecaceae is composed of 181 genera (approxi-

mately 2600 species) that are concentrated primarily in moist equatorial, tropical and subtropi-

cal regions [2, 3]. The economic and horticultural importance of palms ranks them third

among the most important plant families for human use, following grasses and legumes [4];

the fruits are the primary food source for many indigenous peoples as well as numerous verte-

brates. In addition, almost all palm species are commonly used as ornamentals and many are

economically important species: coconut (Cocos nucifera L.), the African oil palm (Elaeis gui-
nensis Jacq.), date palm (Phoenix dactylifera L.) and the Saw Palmetto (Serenoa repens Small),

to name a few. Despite the importance of palms to the economy and many ecosystems, accu-

rate morphological identification of palm species, especially at the seedling stage, remains a

challenge for taxonomists and gardeners at botanical gardens.

The height of some species, and their large leaves and/or thorny characteristics, make spe-

cies classification and identification based on herbarium specimens difficult for palms. The

specimens are usually only part of the entire plant, being selected from leaves and inflores-

cences, if available. In addition, floral morphology can change dramatically among different

developmental stages and identification at the seedling stage is difficult due to the similarity of

morphological characters. Due to the lack of taxonomic expertise on this family and the large

number of known palm species, failure to identify species, or misidentification, is not uncom-

mon in botanical garden collections.

DNA barcoding may be a particularly valuable tool for confirming the identification of

palm species, especially for specimens at immature stages of development, where diagnostic

floral characteristics are rarely present in many botanical garden collections. Despite the spe-

cies richness and economic or cultural importance of the palm family, there have only been a

handful of studies that have utilized DNA barcoding to resolve species relationships in the

group [5–7], although rates of species discrimination based on DNA barcoding varies among

studies and genera. For example, among 40 out of the 48 species of the southeast Asian tribe

Caryoteae, two DNA barcodes (rbcL and matK) revealed relatively low species discrimination

rates, and ITS2 was chosen over trnH-psbA as a supplemental region to these two ‘core’ mark-

ers [5]. In contrast, in a study on 15 Chinese Calamus species [6], trnH-psbA was recom-

mended as an appropriate single DNA barcode, and ITS was eliminated from consideration

due to low sequence recovery rates, and the presence of paralogous sequences. Previous molec-

ular phylogenetic studies based on or including plastid data (including matK, rbcL, rps16 and

trnL-trnF) have also demonstrated low sequence variation within the palm family (e.g., [8–

11]). Given the discrepancy among previous studies, a comprehensive DNA barcode study of

the palms from across an extensive sampling range is important if the approach is to be applied

for the confirmation of palm taxa identifications at botanical gardens.

To determine the utility of DNA barcodes to confirm the genetic identity of palms in botan-

ical garden collections, we sampled more than 300 palm species cultivated at three botanical

gardens in China. To address this goal, we 1) evaluate taxon resolution for individual barcodes
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and well as in combination and 2) determine rates of identification failures found in existing

botanical collections.

Materials and methods

Ethics statement

The South China Botanical Garden, the Xiamen Botanical Garden and the Xishuangbanna

Tropical Botanical Garden granted permission for palm samples collection.

Taxon sampling

Voucher specimens and DNA samples were collected from three botanical gardens in China,

viz. the South China Botanical Garden (SCBG) at Guangzhou, the Xiamen Botanical Garden

(XMBG) at Xiamen and the Xishuangbanna Tropical Botanical Garden (XTBG) at Jinghong,

Yunnan. These gardens harbor the most prominent collections of palms in China. Young

leaves were stored in silica gel for DNA analysis. A total of 669 samples from 314 species across

100 genera were collected (S1 Table). All voucher specimens were deposited in the Herbarium

of the South China Botanical Garden, Chinese Academy of Sciences (IBSC).

The classification system followed Baker & Dransfield [3] and http://powo.science.kew.org/.

Plant identifications were compared with online libraries of images of living plants, mono-

graphs such as Genera Palmarum [2], and an encyclopedia of cultivated palms [12].

DNA extraction, amplification and sequencing

Total DNA was extracted from dried leaf tissue using a CTAB method [13]. The amplification

of rbcL, matK, trnH-psbA, ITS and ITS2 was carried out with universal primer sets ([14–19],

Table 1). We amplified DNA in a 25 μL reaction mixture following Zhang et al. [20] using

rTaq DNA polymerase. For those samples that failed to amplify on a first pass, LA or Primer

Star DNA polymerase (Takara Biotechnology Co. Ltd.) or 2�T5 Super PCR Mix (Beijing

TsingKe Biotech Co., Ltd.) was used as an alternative to rTaq DNA polymerase. Samples show-

ing a clear single band were sent to Shanghai Majorbio Bio-Pharm Technology Co., Ltd.,

Shanghai, China for bi-directional sequencing. All sequences were uploaded to the GenBank

(GenBank accession numbers are given in S1 Table).

Table 1. Primers used for amplification and sequencing of five single markers.

Region Primer names Primer sequences (50-30) References

rbcL rbcLa F ATGTCACCACAAACAGAGACTAAAGC Kress et al. [14]

rbcLa R GTAAAATCAAGTCCACCRCG

matK KIM-3F CGTACAGTACTTTTGTGTTTACGAG Kim, unpublished

KIM-1R ACCCAGTCCATCTGGAAATCTTGGTTC

trnH-psbA psbA3 GTTATGCATGAACGTAATGCTC Sang et al. [15]

trnH05 CGCGCATGGTGGATTCACAATCC Tate & Simpson [16]

ITS ITS-leu1 GTCCACTGAACCTTATCATTTAG Urbatsh et al. [17]

ITS4 TCCTCCGCTTATTGATATGC White et al. [18]

ITS2 ITS2 S2F ATGCGATACTTGGTGTGAAT Chen et al. [19]

ITS2 S3R GACGCTTCTCCAGACTACAAT

https://doi.org/10.1371/journal.pone.0235569.t001
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Data analysis

Raw sequences were assembled and edited using Geneious v.10.2.3 [21]. Edited sequences

were then aligned using the default option implemented in MAFFT [22] as a plugin in Gen-

eious [21]. Inversions in trnH-psbA were edited manually following Jeanson et al. [5]. We eval-

uated sixteen DNA barcodes, which included five single loci and eleven combinations using

the following methods. Firstly a genetic distance-based method was used and based on two

analyses: (a) The values of intra- and inter-specific divergence were calculated using the

Kimura 2-parameter (K2P) distances in MEGA 7.0.26 [23]. To detect barcode gaps, we used

both histogram and scatter plot approaches. Histograms were generated from the distribution

of divergence at intervals of 0.005 distance units, based on the “pairwise summary” function in

the program TaxonDNA [24]. Scatter plots were compiled using R version 3.2.5 [25], with

each dot representing a species; the values of intra-specific and inter-specific distances for each

species were calculated with the “extreme pairwise” function in the program TaxonDNA [24].

We then searched for the minimum inter-specific distance and maximum intra-specific dis-

tance for each species using a custom R script [25]; and (b) Unrooted Neighbor-Joining (NJ)

trees were constructed in MEGA 7.0.26 [23], with pairwise deletion based on the P-distance

model [26]. The calculation of node support was based on 1000 bootstrap replicates. A species

was considered to have been successfully identified only when all conspecific individuals

formed a single clade with a bootstrap value�50% [27]. Secondly, we used a tree-based

method, where Maximum likelihood (ML) trees based on the GTR + GAMMA substitution

model and 1000 bootstrap replicates were reconstructed using RAxML-HPC2 v8.2.12 [28] in

the CIPRES Science Gateway [29]. If conspecific (congeneric) sequences formed a monophy-

letic clade with bootstrap support of 50% or greater [30], we considered that species (genus) to

be correctly identified. Finally, a similarity-based method based on the “Best match” (BM) and

“Best close match” (BCM) functions in the program TaxonDNA [24] was used to calculate per-

centage identification success [24].

Species confirmation

During voucher collection at each garden, all samples were photographed and the species iden-

tification label was noted, and subsequently verified using traditional taxonomical methods

and comparisons to the online image library of living plants and monographs. These "tradi-

tional" palm identifications were then compared to identifications based on DNA barcodes.

Because the barcode combination (ITS2 + matK + rbcL) achieved the highest rate of species

resolution in NJ-tree analysis, the NJ-tree of this combination was used for species confirma-

tion. The barcode sequences were a composite of barcodes from the barcode library established

in this study and those downloaded from GenBank. For those samples with different a species’

name, yet clustering within a clade having a bootstrap value higher than or equal to 50%, speci-

mens were rechecked in order to verify whether they were misidentified and subsequently

changed to the correct name.

A total of 2098 rbcL sequences, 1504 matK sequences, 783 ITS/ITS2 sequences, and 723

trnH-psbA sequences were downloaded from GenBank and extracted from the complete chlo-

roplast genome available on July 10th, 2019. The downloaded barcode sequences from Gen-

Bank were filtered. We then removed sequences shorter than 300 bp in length (for rbcL, matK,

and ITS) or shorter than 200 bp in length (for ITS2 and trnH-psbA), of poor quality, or with

the species name within the genus unspecified. Synonyms and incorrect names were corrected

according to the website http://powo.science.kew.org/, with the names of palm genera follow-

ing Baker and Dransfield [3]. After filtering, there were 1563 rbcL sequences from 427 species

(176 genera), 1197 matK sequences from 571 species (170 genera), 293 ITS2 sequences from
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147 species (42 genera), 432 ITS sequences from 174 species (44 genera), and 718 trnH-psbA
sequences of 162 species (45 genera). Due to the highly variable sequence length and alignment

difficulty for trnH-psbA, we did not use trnH-psbA sequences for species confirmation. In

addition, the paralogous copies that we found in many of the ITS sequences rendered this gene

region unsuitable for palm species identification. In total, our final database contained 2232

rbcL sequences from 562 species (177 genera), 1865 matK sequences from 671 species (173

genera), and 919 ITS2 sequences from 385 species (108 genera).

Results

Barcode recovery

A total of 2,992 new barcode sequences (669, 668, 660, 626 and 369, for rbcL, matK, trnH-

psbA, ITS2, and ITS, respectively) were obtained from 669 samples representing 314 species

and 100 genera in the Arecaceae. All sequences were submitted to the NCBI database (S1

Table). The ITS gene region had the lowest percentage sequencing success (55.2%), whereas

the other four barcodes showed relatively high success rates, which ranged from 100% (rbcL)

to 93.6% (ITS2). For rbcL, matK, trnH-psbA and ITS2, a database containing a subset of 617

sequences per barcode was used for further investigation. In this database, there were 431

sequences from 151 species with more than one individual per species. The ITS gene region

was analyzed separately because the number of sequences available for this barcode was much

lower than that for the other four barcodes.

Aligned barcode lengths varied from 538 bp (rbcL) to 1735 bp (trnH-psbA) (Table 2). ITS

and ITS2 had the highest percentages of variable sites (79.0% and 71.4%, respectively) and par-

simonious-informative characters (68.1% and 65.1%, respectively), while rbcL, matK and their

combination had the lowest (variable sites: 12.5%, 28.0%, and 22.0%, respectively; parsimoni-

ous-informative sites: 11.2%, 22.8%, and 18.3%, respectively) (Table 2). Due to a high level of

Table 2. Characteristics of the five single markers and eleven combinations evaluated in this study.

Barcode Aligned

length

(bp)

No. of

variable

sites (%)

No. of

parsimony-

informative sites

(%)

Mean

intraspecific

distance

Minimum

intraspecific

distance

Maximum

intraspecific

distance

Mean

interspecific

distance

Minimum

interspecific

distance

Maximum

interspecific

distance

R 538 67 (12.5) 60 (11.2) 0.0001 0 0.0037 0.0080 0 0.0265

M 846 237 (28.0) 193 (22.8) 0.0002 0 0.0062 0.0190 0 0.0671

I 1254 990 (79.0) 854 (68.1) 0.0364 0 0.2382 0.3070 0 0.6057

I2 657 469 (71.4) 428 (65.1) 0.0013 0 0.0208 0.1532 0 0.3937

T 1735 549 (31.6) 458 (26.4) 0.0011 0 0.0284 0.0306 0 0.1765

MR 1384 304 (22.0) 253 (18.3) 0.0001 0 0.0037 0.0145 0 0.0483

I2R 1195 536 (44.9) 488 (40.8) 0.0007 0 0.0096 0.0714 0 0.1609

RT 2273 616 (27.1) 518 (22.8) 0.0006 0 0.0156 0.0197 0 0.0968

I2M 1503 706 (47.0) 621 (41.3) 0.0006 0 0.0097 0.0643 0 0.1381

MT 2581 786 (30.5) 651 (25.2) 0.0006 0 0.0127 0.0239 0 0.0944

I2T 2392 1018 (42.6) 886 (37.0) 0.0012 0 0.0171 0.0822 0 0.2612

I2MR 2041 773 (37.9) 681 (33.4) 0.0004 0 0.0068 0.0475 0 0.0992

I2MT 3238 1255 (38.8) 1079 (33.3) 0.0008 0 0.0099 0.0538 0 0.1396

MRT 3119 853 (27.3) 711 (22.8) 0.0004 0 0.0093 0.0194 0 0.0708

I2RT 2930 1085 (37.0) 946 (32.3) 0.0008 0 0.0116 0.0561 0 0.1496

I2MRT 3776 1322 (35.0) 1139 (30.2) 0.0006 0 0.0078 0.0433 0 0.1063

�rbcL (R); matK (M); ITS (I); ITS2 (I2); trnH-psbA (T).

https://doi.org/10.1371/journal.pone.0235569.t002
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sequence length variation (ranging from 353 bp to 1061 bp), trnH-psbA could not be aligned;

this intergenic spacer is more variable than rbcL and matK (variable sites: 31.6%, 12.5%, and

28.0% respectively; parsimonious-informative sites: 26.4%, 11.2%, and 22.8% respectively).

The mean pairwise inter-specific distance was lowest for rbcL (0.0080) and highest for ITS

(0.3070). ITS exhibited the highest mean intra- and inter-specific distances (0.0364, 0.3070),

followed by ITS2 (0.0013, 0.1532) and trnH-psbA (0.0011, 0.0306), while matK (0.0002, 0.0190)

and rbcL (0.0001, 0.0080) had the lowest (Table 2).

Taxon resolution

For the genetic distance method (based on histograms), no distinctive barcode gaps were

detected for any of the markers, whereas barcoding gaps were revealed using the scatter plot

analysis (S1 Fig). Among single barcodes, ITS2 (75.8%) showed the highest species resolution,

followed by trnH-psbA (53.9%), with matK and rbcL showing lower rates of species resolution

(35.2% and 14.8%, respectively). Of the eleven combinations, ITS2 + matK + rbcL exhibited

the highest species resolution (83.6%), followed by ITS2 + matK (81.3%), ITS2 + rbcL (80.5%)

and ITS2 + rbcL + trnH-psbA (77.3%) (Table 3). For the genetic distance method based on the

NJ-tree analysis the same patterns were found. ITS2 + matK + rbcL had the highest species res-

olution (89.4%, Table 3, S2 Fig) among all single and combined barcodes, followed by ITS2 +

matK (86.8%) and ITS2 + rbcL (84.1%) (Table 3). For individual barcodes, ITS2 had the high-

est percentage resolution (species: 82.8%, genus: 90.5%) (Table 3, S3 Fig). The plastid barcodes

(rbcL, matK and trnH-psbA) demonstrated relatively low resolution; (species: 13.2%, 35.1%,

42.4%; genus: 21.6%, 64.9%, 50.0%) (Table 3).

For the ML tree-based method, ITS2 (82.8%) and the combination ITS2 + matK + rbcL
(88.1%) revealed the highest species resolution among single barcodes and their combinations,

respectively (Table 3). The "core" barcode matK + rbcL recommended by CBOL had relatively

Table 3. Identification success rates obtained using distance and tree methods for five single markers and eleven combinations.

DNA region Distance method—Species

level (%)

NJ tree method–Species

level (%)

NJ tree method—Genus

level (%)

ML tree method–Species

level (%)

ML tree method–Genus

level (%)

rbcL 14.8 13.2 21.6 14.6 21.6

matK 35.2 35.1 64.9 38.4 62.2

ITS 50.0 64.9 84.0 62.8 71.7

ITS2 75.8 82.8 90.5 82.8 91.9

trnH-psbA 53.9 42.4 50.0 45 48.6

matK + rbcL 42.2 44.4 77.0 45 73

ITS2 + rbcL 80.5 84.1 90.5 84.1 91.9

rbcL + trnH-psbA 40.6 47.7 59.5 48.3 58.1

ITS2 + matK 81.3 86.8 93.2 86.1 93.2

matK + trnH-psbA 46.9 51.7 71.6 53.6 70.3

ITS2 + trnH-psbA 74.2 78.1 85.1 80.1 89.2

ITS2 + matK + rbcL 83.6 89.4 93.2 88.1 94.6

ITS2 + matK + trnH-
psbA

75.8 82.1 86.5 80.1 90.5

matK + rbcL + trnH-
psbA

50.8 54.3 74.3 55 74.3

ITS2 + rbcL + trnH-
psbA

77.3 79.5 87.8 78.1 90.5

ITS2 + matK + rbcL +

trnH-psbA
77.3 82.8 93.2 80.1 90.5

https://doi.org/10.1371/journal.pone.0235569.t003
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low species resolution (45%). At the genus level, ITS2 + matK + rbcL had the highest resolution

(94.6%) among all the barcodes (and their combinations), and was higher than that of the NJ

tree analysis (93.2%) (Table 3). Five of the 74 genera with more than one sample were not

found to be monophyletic (Astrocaryum; Brahea; Kentiopsis, Syagrus) (S2 and S4 Figs) based

on the three barcode combination ITS2 + matK + rbcL.

For the similarity-based method, similar results were obtained for the BM model and the

BCM model (Table 4). Among the eleven barcode combinations, ITS2 + matK + rbcL had the

highest percentage species resolution for each respective model (88.7%, 88.7%), followed by

ITS2 + matK (86.8%, 86.8%), ITS2 + rbcL (85.4%, 85.4%), ITS2 + matK + rbcL + trnH-psbA
(83.4%, 82.8%) and ITS2 + matK + trnH-psbA (82.1%, 81.5%) (Table 4). Among the five single

barcodes, the ITS2 had the highest rate (80.8%, 80.8%), followed by trnH-psbA (60.3%, 59.6%),

matK (38.4%, 38.4%) and rbcL (14.6%, 14.6%).

Species confirmation

Because the highest level of species resolution was found for ITS2 + matK + rbcL (NJ-tree anal-

ysis; 89.4%, Table 3), we used this combination to screen the identification of the samples col-

lected from the three Chinese botanical gardens. Among the 669 palm samples used for this

analysis, 110 samples (16.4%) were found as misidentified. Among these, 90 samples were mis-

identified at the species level, and 20 samples were misidentified at the genus level (S3 Table).

Discussion

Construction of DNA barcode reference databases for tropical plants is still a challenge for the

plant DNA barcoding community. Despite the high economic importance of palms, there are

relatively few DNA barcodes available in the NCBI GenBank database and there are few stud-

ies on barcoding in palms. As of July 10th, 2019, GenBank database contained 5108 Arecaceae

sequences for the five DNA barcode regions analyzed in this study, 70.5% (3602 sequences) are

for rbcL and matK and after filtering, only 2760 were found to be of high quality. Among the

Table 4. Identification success rate based on the similarity method using ‘best match’ and ‘best close match’ models in the TaxonDNA program.

DNA region Best match (%) Best close match (%)

Correct Ambiguous Incorrect Correct Ambiguous Incorrect Outside

rbcL 14.6 82.8 2.6 14.6 82.8 2.6 0

matK 38.4 54.3 7.3 38.4 54.3 6.6 0.7

ITS 57.7 2.6 39.7 57.7 2.6 35.9 3.8

ITS2 80.8 15.2 4 80.8 15.2 4 0

trnH-psbA 60.3 21.9 17.9 59.6 21.9 15.2 3.3

matK + rbcL 47.0 46.4 6.6 47 46.4 6 0.7

ITS2 + rbcL 85.4 11.3 3.3 85.4 11.3 3.3 0

rbcL + trnH-psbA 47.0 38.4 14.6 47 38.4 14.6 0

ITS2 + matK 86.8 11.2 2 86.8 11.2 2 0

matK + trnH-psbA 54.3 29.1 16.6 54.3 29.1 15.9 0.7

ITS2 + trnH-psbA 80.8 10.6 8.6 80.1 10.6 8.6 0.7

ITS2 + matK + rbcL 88.7 9.3 2 88.7 9.3 1.3 0.7

ITS2 + matK + trnH-psbA 82.1 9.9 7.9 81.5 9.9 7.9 0.7

matK + rbcL + trnH-psbA 58.3 26.5 15.2 58.3 26.5 14.6 0.7

ITS2 + rbcL + trnH-psbA 82.8 10.6 6.6 82.1 10.6 6.6 0.7

ITS2 + matK + rbcL + trnH-psbA 83.4 9.9 6.6 82.8 9.9 6.6 0.7

https://doi.org/10.1371/journal.pone.0235569.t004
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remainder, 725 sequences are ITS and ITS2. Our study contributes nearly 3,000 sequences

across 100 palm genera (S1 Table), and significantly enriches this database with ITS2

sequences (626 sequences). The development of this now more comprehensive barcode library

will be a valuable resource for a wide range of future applications, including species identifica-

tion and confirmation, systematic and phylogenetic studies, conservation programs, ecological

research, and the confirmation of species for the palm industry.

Evaluation of DNA barcodes for the palm family

The "core" plant DNA barcodes, rbcL and matK, suggested by the CBOL Plant Working

Group [31] exhibited relatively low rates of species discrimination for the Arecaceae, both

individually and in combination across all four of the different analytical methods used in the

present study (13.2%-47.0%) (Tables 3, 4). This result is consistent with those for the Caryoteae

[5] and Calamus [6] and previous molecular phylogenetic studies have also revealed that rbcL
and matK are unusually, highly conserved in palms compared to other monocots (e.g., [4, 8,

10, 32]). These relatively low species discrimination rates may be partly attributed to the long

generation time of the Arecaceae [33–35]. In addition, the efficacy of DNA barcoding to iden-

tify species is dependent on species that are monophyletic [36], yet in many cases non-mono-

phyletic species have been reported for the palms. For example, the three widely distributed

Neotropical palm species Euterpe precatoria, Hyospathe elegans, and Prestoea acuminata are

non-monophyletic [37] and in our study, non-monophyletic species were found in several

genera (i.e., Arenga, Butia, Coccothrinax, Phoenix, Ptychosperma, Livistona, Sabal, Thrinax)

(S2 and S3 Figs) from all the barcodes and analysis methods. Although paraphyletic or poly-

phyletic species may be one reason for low discrimination rates found in our study, low rates

even at the genus level (21.6%-77.0%; Table 3), certainly indicates the core barcodes, rbcL and

matK are not suitable for the confirmation of palm species at botanical gardens.

The chloroplast gene region trnH-psbA has been proposed as supplementary barcodes for

many plant taxa [19, 38, 39]. However, we found many intra- and inter-specific micro-inver-

sions and indels in several of the palm species that we studied, a finding that is in-line with pre-

vious studies that have also demonstrated that trnH-psbA has considerable interspecific

variation, and even intraspecific variation, including the presence of inversions and insertion-

deletion polymorphisms (indels) [40, 41]. The original length of trnH-psbA in our study varied

from 353 bp to 1061 bp, however, the high occurrence of indels caused the aligned length to be

1735 bp. Manually correcting these inversions, insertions and/or deletions and then attempt-

ing to align the trnH-psbA spacer region is a widely-observed, labor-intensive protocol that

requires careful visual inspection during the alignment process. Although trnH-psbA demon-

strated higher discriminatory performance than matK and rbcL in our study, its resolution was

also found to be much lower than ITS2 for many of our palm taxa (Tables 3 and 4). Consider-

ing the limited number of high-quality sequences for palm species on GenBank, the limited

discrimination power associated with this gene region, and the issues associated with aligning

this region among disparate species, we support the suggestion of Jeanson et al. [5] that trnH-
psbA should not be used for the confirmation of palm identifications at botanical gardens.

The ITS gene region has yielded relatively high levels of species resolution in many DNA

barcode evaluation studies [19, 39]. However, in our study, sequence recovery was low

(55.2%), even when using different Taq DNA polymerases and additional primer sets; this

problem has also been shown for Calamus ([6], 25% PCR success rates). In contrast to the lack

of sequence recovery for ITS, ITS2 (93.6%) was much easier to amplify and sequence than the

entire region, a result also found in numerous studies across a broad range of taxa [42]. For the

palm taxa analyzed in our study, ITS2 provided higher taxa resolution than plastid barcodes,
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which also increased when ITS2 was combined with the two DNA barcodes rbcL and matK
(Tables 2–4). In most taxa, species resolution for ITS2 is often higher than that of the plastid

regions, especially for closely-related species (e.g. [27, 43]). Due to the high degree of universal-

ity of its primers, its short sequence length and high capacity for species resolution, ITS2 has

been widely used in plant barcoding [44, 45], especially in metabarcoding in recent years [46];

e.g., for pollen provenance determination [47] and for environmental DNA identification

[48]. Taking into account the high rate of species resolution and the cost-effectiveness associ-

ated with the relatively high sequence recovery rates, we agree with Jeanson et al. [5] that ITS2

should be to supplement the two ‘core’ markers in palms, which has been shown to have con-

sistent results across a range of families and genera (e.g., [49]). In addition and given that

divergent paralogues and multiple PCR bands were observed for the entire ITS gene region in

our study and that recovery is certainly an important criterion for the development of a cost-

effective DNA barcoding strategy [42], we also agree with Yang et al. [6] that entire ITS gene

region is not a suitable barcode for the confirmation of palm collections at Botanical Gardens.

The addition of ITS2 to combinations of plastid markers greatly increased the species reso-

lution rates found in our study (Tables 3 and 4). In particular, the combination of ITS2 +

matK + rbcL demonstrated the highest discriminatory rate among the eleven combinations

analyzed (Tables 3 and 4), this combination has also been used successfully as a standard DNA

barcode in other floristic studies, e.g., [50]. At genus level, however, five of the 74 genera with

more than one sample were not recovered as a monophyletic clade (Astrocaryum, Brahea;

Dypsis; Kentiopsis, Syagrus) based on the NJ tree (S2 Fig) or the ML tree (S4 Fig) of the combi-

nation ITS2 + matK + rbcL. Among these five genera, Astrocaryum [51], Brahea [52] and Sya-
grus [51] have been shown to be monophyletic in previous studies, while the monophyly of

Dypsis and Kentiopsis was not supported [53–55]. It is possible that erroneous topologies may

be obtained when the data are not informative [56] and this may indeed be the case for Astro-
caryum and Brahea, where a lack of monophyly may be due to the low resolution of the mark-

ers that we used, where ITS (for Astrocaryum) and combinations with trnH-psbA (I2T, MT,

RT, I2MT, I2RT, MRT, I2MRT for Brahea) were found to be monophyletic in our study. In

addition, for the genus Syagrus, which we found to form a clade with the closely related, mono-

typic genus Cocos [51, 57], previous studies have separated the two genera based on six WRKY

gene-family loci [51]. Notably, Dypsis and Kentiopsis could not be recovered as monophyletic

based on all barcodes studied, which is in line with other studies [53–55], although it has been

suggested that the large and variable genus Dypsis be divided into several smaller genera [54,

55]. Considering the large number of rbcL and matK sequences currently deposited in NCBI

GenBank database, coupled with the overall discrimination ability of their combination with

ITS2, we suggest ITS2 +matK + rbcL may serve as an effective molecular tool for the confirma-

tion of palm identifications at botanical gardens.

Species resolution in complex genera

Many factors can influence species resolution where, in addition to their evolutionary history,

the number of species in a genus can lower discrimination rates in species-rich genera [58]. In

the palm family, ca. 70% of the species belong to 42 genera that have more than 10 species each

(http://powo.science.kew.org/). As such, these genera pose a significant challenge for DNA

barcoding identification of palms in botanical gardens. In the present study, the combination

of ITS2 + matK + rbcL identified between 66.7% -100% of the species among seven of the eight

large genera that we studied (S2 Table). This unexpected, high degree of species resolution

may be due to the distant evolutionary relationships among the few species that were sampled.

For example, the seven Chamaedorea species studied (S1 Table) are from four different
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subgenera [59]. Alternatively, many DNA barcoding or phylogenetic studies have demon-

strated that it is difficult to identify species from those genera that have undergone rapid radia-

tion [60–62]. Sabal is a genus with 18 species, and due to the low degree of divergence among

Sabal species, the phylogenetic tree estimated from the plastome sequences shows low species

resolution and low support values [63]. This may explain why only two of the six Sabal species

in the present study could be identified (S2 Table). For these reasons, DNA barcoding of palm

taxa, may still possess some significant challenges in complex genera that are species rich,

although the barcode library developed in this study will contribute to the identification toolkit

available for the future curation of botanical garden palm collections.

Application of DNA barcodes for species identification

In the present study, 110 samples (16.4%) were found to be misidentified, and most were at

the species level (90 out of 110 misidentified samples) (S3 Table), a result that is not negligible

given that most botanical gardens serve as an important genetic resource (seeds, propagules,

cuttings) for both scientific and horticultural applications. Although botanical gardens usually

have taxonomic experts for different taxonomic groups, this result indicates that DNA barcod-

ing could serve as a significant tool for the confirmation of palm identifications for important

collections at botanical gardens. Most palm species grown within Chinese botanical gardens

are imported from other countries through plant (seed) catalogues or inventory lists. During

seed collection, prior to shipment to botanical gardens, it seems reasonable to assume that lack

of documentation and unregulated trade practices can result in the mislabeling or misidentifi-

cation of palm taxa, a process that can certainly result in downstream errors that cumulate and

spread over time. Our study indicates that DNA barcoding technology may be a powerful tool

for species confirmation, and in turn, the effective curation of botanic garden palm collections.

Conclusion

Construction of DNA barcode reference databases is still a challenge, especially for plant fami-

lies from tropical regions. To satisfy the high demand for accurate species identification in the

palm family, an increase in the number of DNA barcode sequences, in terms of both taxon

coverage and the number of ITS2 sequences in particular, is greatly needed. The 2992 DNA

barcode sequences generated in this study greatly enriches the existing identification

toolbox available to plant taxonomists that are interested in researching genetic relationships

among palm taxa as well as for horticulturalists that need to confirm palm collections for

botanical garden curation and horticultural applications. To increase the discriminatory

power for genera that contain a large number of species, the use of 2nd generation DNA bar-

codes has been proposed, focusing on either the capture of nuclear gene markers or genome

skimming [64]. The availability of full plastid genomes could increase species resolution dra-

matically [65]. However, it is still an expensive approach for use on a large scale and at institu-

tions that are struggling for funding. Our results indicate that the use of the ITS2 DNA

barcode gene region, and where possible its combination with matK + rbcL, will provide a use-

ful and cost-effective molecular tool to confirm the genetic identity of botanical garden palm

collections.
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