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Subclass-specific IgG glycosylation 
is associated with markers of 
inflammation and metabolic health
Rosina Plomp1, L. Renee Ruhaak1,2, Hae-Won Uh3, Karli R. Reiding1, Maurice Selman1,5, 
Jeanine J. Houwing-Duistermaat4, P. Eline Slagboom4, Marian Beekman   4 & Manfred 
Wuhrer1

This study indicates that glycosylation of immunoglobulin G, the most abundant antibody in human 
blood, may convey useful information with regard to inflammation and metabolic health. IgG occurs in 
the form of different subclasses, of which the effector functions show significant variation. Our method 
provides subclass-specific IgG glycosylation profiling, while previous large-scale studies neglected to 
measure IgG2-specific glycosylation. We analysed the plasma Fc glycosylation profiles of IgG1, IgG2 and 
IgG4 in a cohort of 1826 individuals by liquid chromatography-mass spectrometry. For all subclasses, 
a low level of galactosylation and sialylation and a high degree of core fucosylation associated with 
poor metabolic health, i.e. increased inflammation as assessed by C-reactive protein, low serum 
high-density lipoprotein cholesterol and high triglycerides, which are all known to indicate increased 
risk of cardiovascular disease. IgG2 consistently showed weaker associations of its galactosylation 
and sialylation with the metabolic markers, compared to IgG1 and IgG4, while the direction of the 
associations were overall similar for the different IgG subclasses. These findings demonstrate the 
potential of IgG glycosylation as a biomarker for inflammation and metabolic health, and further 
research is required to determine the additive value of IgG glycosylation on top of biomarkers which are 
currently used.

Glycosylation is known to reflect the physiological state of an organism and changes thereof1. For immuno-
globulin G (IgG), which occupies a central role in the immune system, it is known that the conserved N-glycan 
located at asparagine 297 on the fragment crystallisable (Fc) part of IgG can modulate inflammatory responses: 
a lack of core fucose, galactose and N-acetylneuraminic (sialic) acid increases the ability of IgG to induce 
antibody-dependent cell-mediated cytotoxicity (ADCC) in mice2–4. Furthermore, glycosylation of IgG is associ-
ated with various pathologies. Autoimmune diseases are generally associated with decreased galactosylation and 
sialylation of IgG Fc, which is a hallmark of the inflammatory state of these pathologies5–10. Different types of can-
cer11–13 and viral infections14,15 have been shown to exhibit low galactosylation and sialylation of IgG N-glycans 
similar to inflammatory conditions. IgG glycosylation, specifically low galactosylation and sialylation, has also 
been proposed as a biomarker of inflammageing, the state of chronic weak inflammation in elderly individuals16, 
or more generally as a marker of immune activation17.

Since IgG glycosylation is known to be altered during a state of inflammation, it is not surprising that associa-
tions between certain glycoforms and the inflammatory marker C-reactive protein (CRP) have been reported18–21. 
Inflammation often goes hand in hand with ageing and poor metabolic health, which are all associated with a 
higher risk for cardiovascular disease22. However, an overview is lacking of the associations between IgG glycosyl-
ation and an assortment of clinical markers related to metabolic health in healthy individuals. Furthermore, other 
large cohort studies (>100 healthy participants) on IgG glycosylation report either a released glycan profile23,24, 
which does not contain any subclass-specific information, or a joint profile for IgG2 and IgG325,26. This is due to 
the shared peptide sequence of the tryptic glycopeptides of these two subclasses, which prevents separate analysis 
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by mass spectrometry, and thereby prevents separate examination of IgG2 glycosylation. From in vitro assays 
it is known that IgG2 exhibits a lower overall binding affinity to Fc gamma receptors (FcγRs)27–29 and ADCC 
capacity30,31.

In order to evaluate the merit of IgG Fc N-glycosylation as a systemic biomarker of metabolic health, we here 
analysed glycosylation of IgG1, 2 and 4 in a cohort of 1826 healthy individuals to investigate associations with 
known markers related to inflammation and metabolic health. The population analysed in this study is part of the 
Leiden Longevity Study, aimed at determining the biological foundation of healthy ageing. In this study we inves-
tigate the glycosylation of IgG in relation to measurements of inflammation, such as plasma levels of C-reactive 
protein (CRP) and interleukin-6 (IL-6), and of metabolism, such as lipids and thyroid hormone. IgG glycosyla-
tion analysis has previously been performed on this cohort with MALDI-MS to facilitate the measurement of 6 
N-glycopeptides for IgG1 and IgG2 each, allowing only the assessment of galactosylation and bisection18. The cur-
rent analysis is performed with nanoLC-ESI-QTOF-MS, which offers enhanced sensitivity and a more extensive 
glycoprofiling of the samples: 20 N-glycopeptides were identified for IgG1 and IgG2 and 10 for IgG4, providing 
novel information on the sialylation and fucosylation of these samples.

Methods
Cohort participants and study design.  This study was performed on 1995 available plasma samples from 
1170 offspring of nonagenarian siblings of the Leiden Longevity cohort and 656 of their partners as controls32. 
Families were included if the parents were over 91 (for females) or over 89 (for males) years of age. Previously 
we have shown that comparison of the middle-aged offspring of long-lived parents and their partners as con-
trols reveals parameters associating with familial metabolic health, thereby demonstrating that offspring have 
a beneficial immune-metabolic health33–35. An overview of the age and sex distribution of the participants can 
be seen in Table 1. The prevalence of type 2 diabetes and myocardial infarction was 5.2% and 2.9%, respectively, 
and prescriptions for lipid-lowering medication and anti-hypertensives were being taken by 11.3% and 21.7% of 
the individuals in our sample set36. Venous blood was collected under non-fasting conditions. All participants 
have given informed consent prior to sample collection, in accordance with the Declaration of Helsinki. The 
study design and protocols were approved by the Ethical Committee of the Leiden University Medical Center. All 
experiments were carried out in accordance with relevant guidelines and regulations.

mean SD range N

Age (years) 59.1 +/−6.7 30.2–79.2 1826

Sex 47.1% male — — 1826

CRP (mg/L) 2.86 +/−9.5 0.2–228.7 1813

IL-6 (pg/mL) 0.67 +/−1.2 0–19.6 1705

Glucose (mmol/L) 5.94 +/−1.5 2.5–26.3 1816

Insulin (mU/L) 23.23 +/−22.1 2–238 1766

TC (mmol/L) 5.55 +/−1.2 1.4–10.8 1820

LDLC (mmol/L) 3.33 +/−1.0 0.7–7.9 1772

HDLC (mmol/L) 1.42 +/−0.4 0.2–3.2 1819

TG (mmol/L) 1.82 +/−1.2 0.2–21.2 1820

free T3 (pmol/L) 4.12 +/−0.8 1.8–14.3 1819

smoking 13.6% smoking — — 1587

CMV serostatus 45.9% positive — — 1437

longevity 64.1% offspring — — 1826

IgG1 fucosylation 91.2% +/−4.1 69.3–99.5 1825

IgG2 fucosylation 97.4% +/−0.9 92.6–99.1 1826

IgG1 bisection 19.1% +/−3.3 6.5–35.8 1825

IgG2 bisection 13.9% +/−2.7 6.4–26.5 1826

IgG4 bisection 19.6% +/−4.4 8.8–41.3 1742

IgG1 galactosylation 50.1% +/−6.4 24.6–70.8 1825

IgG2 galactosylation 39.5% +/−6.2 9.0–61.3 1826

IgG4 galactosylation 43.7% +/−6.9 14.5–66.0 1742

IgG1 sialylation 6.8% +/−1.4 2.5–14.0 1825

IgG2 sialylation 6.2% +/−1.4 1.4–11.9 1826

IgG4 sialylation 9.1% +/−2.0 3.2–18.9 1742

IgG1 sialic acid per gal 13.6% +/−1.6 9.0–21.5 1825

IgG2 sialic acid per gal 15.5% +/−1.7 9.4–22.5 1826

IgG4 sialic acid per gal 20.7% +/−2.0 13.8–30.8 1742

Table 1.  Distribution of age, sex, glycosylation features and metabolic parameters within the Leiden Longevity 
study population. The mean, standard deviation (SD), range (minimum and maximum value) and number of 
included samples (N) are given. Samples that were excluded based on data quality criteria were not used for 
calculation of values in this table.
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Metabolic parameter analysis.  Various parameters related to metabolic health were determined for the 
participants of the Leiden Longevity cohort. High-sensitivity measurements of CRP, glucose, total cholesterol 
(TC), high-density lipoprotein cholesterol (HDLC) and triglycerides (TG) in blood samples were performed on 
the Hitachi Modular P-800, while free triiodothyronine (T3) levels were assessed using a Modular E-170 (both 
Roche Diagnostics, Almere, the Netherlands)37–39. Low-density lipoprotein cholesterol (LDLC) was derived from 
these measurements using the Friedewald formula (LDLC = TC − HDLC − TG/5)40. If the level of TG exceeded 
4.52 mmol/L, LDLC was listed as missing. The level of insulin in blood was assessed with an Immulite 2500 
(DPC, Los Angeles, CA)39. Interleukin 6 (IL-6) levels were determined with an enzyme-linked immunosorbent 
assay (ELISA) (Sanquin Reagents, Amsterdam, The Netherlands). Furthermore, the self-reported current smok-
ing status of the participants was registered. An ELISA was done on serum to determine if the participants had 
antibodies against cytomegalovirus (PKS Assay, Medac, Wedel, Germany). The distributions of these metabolic 
parameters within the cohort are listed in Table 1.

IgG glycopeptide sample preparation.  IgGs were purified in 96-well format as described previously18. 
An amount of 2 µL of plasma was incubated with 15 µL Protein A Sepharose Fast Flow beads (GE Healthcare, 
Uppsala, Sweden) and 150 µL phosphate buffered saline (PBS) on a 96-well filter plate for 1 hour at room temper-
ature while shaking. The IgG samples were washed three times with PBS and three times with MilliQ-purified 
water, followed by elution with 100 µL 100 mM formic acid. The samples were then dried in a vacuum concentra-
tor for 2 hours at 60 °C and resuspended in 40 µL 25 mM ammonium bicarbonate with 200 ng of trypsin (sequenc-
ing grade modified trypsin, Promega, Madison, WI). Digestion took place overnight at 37 °C. Two of the 96-well 
plates were prepared twice to assess interbatch variation.

NanoLC-ESI-QTOF-MS analysis.  The IgG glycopeptide samples were analysed using liquid chromatogra-
phy coupled to mass spectrometry (LC-MS), in a setup described previously41. An amount of 2.5 µL of the sam-
ples was injected in an Ultimate 3000 RSLCnano liquid chromatography system (Dionex, Sunnyvale, CA). The 
samples were first washed on an Acclaim PepMap100 C18 trap column (5 mm × 300 µm i.d., Dionex, Sunnyvale, 
CA), and subsequently separated on an Ascentis Express C18 nanoLC column (50 mm × 75 µm i.d., 2.7 µm HALO 
fused core particles; Supelco, Bellefonte, PA) with a flow rate of 0.9 µL/min. The following linear gradient was 
used, with solvent A consisting of 0.1% trifluoroacetic acid and B of 95% acetonitrile (ACN): t = 0, 3% solvent B; 
t = 2, 6%; t = 4.5, 18%; t = 5, 30%; t = 7, 30%; t = 8, 0%; t = 11, 0%.

Via a sheath-flow electrospray (ESI) interface (Agilent Technologies, Santa Clara, CA), the LC was coupled 
to a Maxis Impact quadrupole time-of-flight (QTOF)-MS system (micrOTOF-Q; Bruker Daltonics, Bremen, 
Germany). A sheath-flow consisting of 50% isopropanol, 20% propionic acid (Merck) and 30% MilliQ-purified 
water was applied at 2 µL/min, and nitrogen gas was applied at 4 L/min. MS1 spectra were acquired with a fre-
quency of 0.5 Hz and within an m/z range of 600-2000. An IgG standard and two blank injections were run in 
between every 12 runs.

Glycosylation data processing.  Glycosylation profiles were extracted from the data files as described pre-
viously41. The three subclass-specific types of tryptic glycopeptides (IgG1: EEQYNSTYR, IgG2: EEQFNSTFR, 
IgG4: EEQFNSTYR) eluted at different time points, with the retention times of differentially glycosylated var-
iants of each subclass clustered closely together, since the secondary interaction between sialic acids and the 
silica column which usually leads to later elution of sialylated glycopeptides was negated by the use of TFA in 
the mobile phase (Supplemental Figure S1). Based on their mass and previous characterizations of IgG N-glycan 
structures42–44, 20 N-glycans were identified for both IgG1 and IgG2 (Supplemental Table S1). For IgG4, only 10 
glycopeptides could be identified, as the mass of the minor afucosylated species overlapped with the much more 
abundant IgG1 fucosylated glycopeptides, and could thus not be reliably distinguished from tailing of the latter 
(Supplemental Table S1).

LC-MS data was examined and calibrated in Compass Data Analysis 4.2 (Bruker Daltonics), based on a list of 
four of the most abundant N-glycopeptides (G0F, G1F, G2F, G2FS) in both double and triple charge state. The data 
was then exported in mzXML file format. Alignment of the retention times was done using MSalign. Next, the 
in-house developed software tool Xtractor 2D45 was used to extract the signal intensity of the first three isotopic 
peaks of various glycopeptides in both double and triple charge state, within an m/z window of ±0.04 Thompson 
and a time window of ±10 s surrounding the retention time. These N-glycopeptides were inputted from a list of 
m/z values (Supplemental Table S1) encompassing 20 IgG1 glycopeptides, 20 IgG2 glycopeptides and 10 IgG4 
glycopeptides (afucosylated IgG4 species overlapped with IgG1 glycopeptides and thus could not be properly 
analysed).

For each N-glycopeptide, the signal intensity of the three isotopic peaks in double and triple charge state 
were background-corrected and summed. IgG2-G1FNS1 (the IgG2 glycan carrying 1 galactose (G1), 1 sialic acid 
(S1), a core fucose (F) and a bisecting N-acetylglucosamine) and IgG2-G2FNS1, which each represented less 
than 0.4% of the total IgG2 glycopeptide abundance, were excluded from the data due to a severe batch effect. 
The N-glycopeptide signals were normalised by dividing each by the total signal intensity of all N-glycopeptides 
belonging to that subclass, yielding percentage data amounting to 100% per subclass.

An intensity threshold was determined based on the percentage of the signal intensity which was derived from 
N-glycopeptides with a signal-to-background ratio larger than 3. If the total intensity per subclass did not exceed 
the threshold, data from that subclass was excluded. After this exclusion, IgG1 data remained for 1825 individu-
als, IgG2 for 1826 and IgG4 for 1742.

Data preprocessing.  From the individual N-glycan percentage data, five glycosylation features were deter-
mined for each IgG subclass (calculations can be found in Supplemental Table S2): fucosylation (% of fucosylated 
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N-glycopeptides), bisection (% of N-glycopeptides carrying a bisecting N-acetylglucosamine (GlcNAc)), galac-
tosylation (% of galactoses per antennae), sialylation (% of sialic acids per antennae) and sialic acid per galactose 
(% of sialic acids per galactose). Fucosylation could not be determined for IgG4, since no afucosylated IgG4 
glycopeptides were measured due to overlap with IgG1 glycopeptides.

The three most abundant glycopeptides (G0F, G1F, G2F) of the standard IgG samples run in between every 
twelve samples showed a relative standard deviation (RSD) of 4.7%. The average intraplate RSD was 1.9%, 
based on standard IgG samples run during the measurement of each plate, and the interplate RSD was 3.3%. 
Therefore, batch correction was done using the ComBat package46 in R 3.0.1, with the 96-well plates as batches47. 
Furthermore, any glycosylation feature value which deviated more than 5 standard deviations (SD) from the 
mean was replaced by 5 × SD from the mean.

To not violate the assumption of linear regression that variables are normally distributed, we transformed the 
glycosylation features and several of the metabolic parameters (CRP, IL-6, glucose, insulin, TG, free T3) using a 
natural logarithm.

Reproducibility of the analysis.  Two 96-well plates with samples were purified and analysed twice, to 
assess the reproducibility of our method. To assess the level of correlation between these sample plates, a Pearson’s 
correlation test was performed in R using the function cor.test(). The glycosylation features on the different plates 
showed a high level of correlation, i.e. Pearson’s correlation coefficients (r) of 0.97 (fucosylation), 0.95 (bisection), 
0.98 (galactosylation), 0.93 (sialylation) and 0.80 (SA per gal) for IgG1. From the two plates which were prepared 
twice, the plate which showed the highest signals was used for further data analysis.

Statistical association analysis.  Statistical analyses were done in R 3.0.147. A paired t-test from the R 
stats package was performed to see if there was a significant difference in glycosylation features between differ-
ent subclasses. Regression analysis was done using the generalised estimating equation package (geepack)48 to 
account for family relationship. A linear model with formula ‘glycosylation feature Y ~ β1*metabolic parameter 
X + β2*age + β3*sex + β4*(age*sex) + error’ was fitted to the data, to assess the association between each glycosyl-
ation feature and metabolic parameter, while correcting for confounders, taking into account within-family relat-
edness and under the assumption of an exchangeable correlation structure. The output of this regression analysis 
consisted of a p1-value, β1 coefficient and its standard error (SE(β1)) describing the association between each gly-
cosylation feature and metabolic parameter, and from this the t statistic was derived using t = β1/SE(β1). To assess 
the relation of IgG glycosylation with familial metabolic health, a logistic regression model was applied using the 
same software, with familial metabolic health as dependent variable Y, coded as 0 for controls and 1 for members 
of long-lived families, and IgG glycosylation features as independent variable X, while correcting for the same 
confounders and within-family relatedness, and under the assumption of an independent correlation structure.

Significance was defined as a p-value below the Bonferroni-corrected threshold α = 0.000714 (7.14 × 10−4). 
This threshold was derived from the standard threshold α = 0.05 divided by 70, which is the number of analyses 
between 14 variables (metabolic parameters + age + sex) and 5 glycosylation features (subclass-specific versions 
of the same glycosylation feature were disregarded since they are highly intercorrelated).

Data visualization.  Before plotting, glycosylation data was corrected for either age-specific differences or for 
both age- and sex-specific differences, by fitting the linear model (geepack) ‘glycosylation feature ~ age’ or ‘glyco-
sylation feature ~ age + sex’, and then taking the residuals. The ggplot2 package in R was used for visualization of 
the data49. A linear trendline was fitted to plots with the geom_smooth function. A heatmap was generated in R 
with the weighted correlation network analysis (WGCNA) package50.

Results
Tryptic N-glycopeptides of IgG2 and IgG3 share the same peptide sequence in Caucasians51,52, and so the com-
monly used protein G enrichment of IgG gives a joint profile for both IgG2 and IgG3. In this study we use Protein 
A for IgG purification, which has been shown to capture IgG1, 2 and 4, but has a much lower binding affinity for 
IgG3 under the enrichment conditions we use53, thus allowing for near-separate glycoprofiling of IgG2.

By performing nanoLC-ESI-QTOF-MS analysis on tryptic IgG glycopeptides, Fc glycosylation profiles of 
IgG1, IgG2 and IgG4 were determined for nearly 2000 participants of the Leiden Longevity study. After data cura-
tion, IgG1, IgG2 and IgG4 data remained for respectively 1825, 1826 and 1742 participants. From the individual 
N-glycan data five glycosylation features were derived (the calculations can be found in Supplemental Table S2): 
fucosylation, bisection, galactosylation, sialylation and sialic acid per galactose (SA per gal). While the type of 
sialic acid linkage could not be determined by our methods, it is known from literature that the vast majority of 
sialic acids from plasma-derived Fc-IgG are 2,6-linked54–56.

The distribution of the age and sex of the study population, as well as the average measurements of meta-
bolic parameters and IgG glycosylation features, can be found in Table 1. IgG glycosylation was observed to 
be age-dependent and differences were seen between males and females (Supplemental Figure S2), as has been 
described in earlier reports26,57–59. We observe significant differences between the glycosylation features of the 
three IgG subclasses: t-tests revealed a p-value below 1.0 × 10−10 for all comparisons of glycosylation features 
between IgG subclasses (1 vs 2, 1 vs 4 and 2 vs 4). IgG2 exhibits a higher level of fucosylation (IgG1: 91.2 ± 4.1% 
(mean ± SD); IgG2: 97.4 ± 0.9%; IgG4 fucosylation could not be determined), but a lower level of bisection (IgG1: 
19.1 ± 3.3%, IgG2: 13.9 ± 2.7%, IgG4: 19.6 ± 4.4%) and galactosylation (IgG1: 50.1 ± 6.4%, IgG2: 39.5 ± 6.2%, 
IgG4: 43.7 ± 6.9%) as well as sialylation (IgG1: 6.8 ± 1.4%, IgG2: 6.2 ± 1.4%, IgG4: 9.1 ± 2.0%). It should be noted 
that galactosylation and sialylation here are defined as the percentage of galactoses/sialic acids per antenna. If 
defined instead as the percentage of galactoses/sialic acids per N-glycan, the percentages of N-glycans carrying 
at least one galactose would lie at 72.3 ± 7.0% (IgG1), 59.9 ± 7.6% (IgG2), and 62.6 ± 8.1% (IgG4), while the 
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percentage of N-glyans carrying at least one sialic acid consists of 13.7 ± 2.9% (IgG1), 12.3 ± 2.7% (IgG2), and 
18.0 ± 3.9% (IgG4).

Association between IgG glycosylation and immune-metabolic parameters.  To investigate the 
relationship between IgG glycosylation and metabolic health parameters, we performed regression analysis. The 
resulting associations between IgG glycosylation features and metabolic parameters are visualised in a heatmap 
(Fig. 1, Supplemental Table S3).

Inflammation markers.  Low galactosylation and high fucosylation of IgG were associated with low-grade 
inflammation, a state of chronic inflammation characterized by elevated levels of inflammation markers CRP 
and IL-6, which is associated with morbidity and mortality in elderly people60,61 (Fig. 2) (p1 < 1.0 × 10−4 for all 
but IgG1 fucosylation, for which p1 = 2.0 × 10−3). IgG sialylation was also found to be significantly increased 
at higher levels of CRP and IL-6 (p1,IgG1 < 1.0 × 10−4), but sialic acid per galactose was not (p1,IgG1 = 6.2 × 10−1, 
p1,IgG2 = 1.9 × 10−2 for CRP). Notably, CRP only has a small contribution to the variance of IgG galactosylation 
(R2 = 0.0569 with a linear model for IgG1).

Metabolic markers.  An increase in IgG galactosylation and sialylation (p1,IgG1 < 1.0 × 10−4), as well as a 
non-significant decrease in fucosylation (p1,IgG1 = 5.2 × 10−2; p1,IgG2 = 1.3 × 10−2) was observed at high levels of 
HDLC and low levels of triglycerides (TG), which together form beneficial risk profiles for cardiovascular disease, 
type 2 diabetes and obesity62,63. A negative association of galactosylation and a positive association of fucosylation 
were seen for insulin and glucose, which are markers for diabetes type 2 and are also known to associate with 
inflammation64. Interestingly, IgG bisection was increased at high levels of glucose and insulin (p1,IgG4 = 3.1 × 10−4 
for glucose). Total cholesterol (TC) and LDLC did not significantly influence IgG glycosylation.

CMV and smoking.  The presence of antibodies against cytomegalovirus (CMV), a common herpes virus which 
remains latent in many individuals after infection, was found to be associated with low levels of IgG fucosylation. 
Fucosylation generally shows little variation between individuals (91.2 ± 4.1% for IgG1), so while the difference in 
IgG1 fucosylation between seronegative and seropositive individuals was minor (91.7 ± 3.7% versus 90.6 ± 4.3%), 
it was nonetheless statistically significant (p1,IgG1 < 1.0 × 10−4, Fig. 3A). The other glycosylation features did not 
show any association with CMV serostatus.

Furthermore, smokers showed slightly higher levels of bisection compared to non-smokers (p1 < 1.0 × 10−4 
for all IgG subclasses, Fig. 3B), as well as a lower level of IgG2 fucosylation. Individuals who smoked at the time of 
sample collection showed a mean IgG1 bisection of 20.1 ± 3.4% versus 18.9 ± 3.2% in non-smokers.

While these differences appear to be too minor to have a significant biological influence, they might point 
towards larger differences in subpopulations of IgG, as is theorized in the Discussion.

Familial metabolic health.  Since we observed various associations between IgG glycosylation and param-
eters related to metabolic health, we were interested to know whether metabolically healthier middle-aged 
offspring from nonagenarians differed from controls. None of the glycosylation features showed, however, a sig-
nificant difference between these groups (Supplemental Table S4, all p1-values > 0.02).

Discussion
In the current study we were able to measure IgG2-specific glycosylation features, in addition to those of IgG1 and 
IgG4. IgG2-specific glycosylation features showed similar associations with inflammation and metabolic health 

Figure 1.  Associations between glycosylation features (y-axis) and metabolic parameters (x-axis). The 
colors indicate the magnitude of the association as represented by the t statistic (t1 = β1/SE(β1)), with positive 
associations shown in red and negative in blue. Associations with a p1-value below 0.05 are marked with a point, 
while associations with a p1-value below 7.14 × 10−4, which are significant after Bonferroni correction, are 
marked with an X.
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Figure 2.  IgG1 galactosylation and fucosylation are associated with CRP. Both parameters were log 
transformed, and the glycosylation features were subsequently adjusted for age. Males are shown in blue 
and females in pink. A trend line is shown with a 95% confidence interval. P1-values are shown for the total 
population (males and females).

Figure 3.  (A) IgG1 fucosylation of individuals with and without cytomegalovirus infection. (B) IgG1 and IgG2 
bisection of smokers/non-smokers. The interquartile range is shown. Glycosylation data was log transformed 
and adjusted for age and sex.
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markers compared to IgG1 and 4, though IgG2 glycosylation levels showed in general weaker associations for 
galactosylation and sialylation. Low levels of galactosylation and sialylation, as well as a high degree of fucosyla-
tion, appear to reflect an inflammatory state, poor metabolic health and potentially cardiovascular disease risk. 
In contrast, sialic acid per galactose was not associated with any of the metabolic markers. Furthermore, fucosyl-
ation is decreased in individuals infected with cytomegalovirus, reflecting a low-grade inflammatory state, and 
current smokers show higher bisecting GlcNAc levels.

IgG subclass-specific glycosylation differences.  The IgG subclasses display subtle differences in their 
Fc glycosylation, with IgG2 exhibiting a higher degree of fucosylation and a lower level of bisection and galacto-
sylation compared to the other subclasses, confirming observations from a previous study which examined only 
four blood samples53. In addition, we find that galactosylation and sialylation of IgG2 generally display a weaker 
association (i.e. lower β coefficient) with markers of inflammation and metabolic health compared to IgG1 and 
IgG4. This corresponds with literature, in which it is described that IgG2 exhibits the lowest overall affinity for 
FcγRs27–29 and has the lowest ADCC capacity30 compared to other IgG subclasses. One may speculate that the 
lower capacity of IgG2 to trigger inflammatory responses, either pro-inflammatory via FcγRI, IIa, IIc, and IIIa, 
or anti-inflammatory via FcγRIIb, results in a weaker association with inflammation and metabolic health as 
compared to the other subclasses. Furthermore, it has been reported that IgG2 antibody production is primarily 
triggered during T-cell independent immune reactions28,31, which would also contribute to the weaker association 
with T-cell-secreted IL-6 and IL-6-stimulated CRP. Together this points towards a more limited role of IgG2 with 
regard to inflammation compared to the other IgG subclasses.

Galactosylation and sialylation.  Low galactosylation and sialylation are associated with a state of inflam-
mation, which is in concordance with previous work based on MALDI-MS measurements within the same 
cohort18,65 and in children17. Our observations also agree with observations of decreased galactosylation and 
sialylation in autoimmune diseases5–10,66–68 and with several experimental findings that IgG without galactose 
and/or sialic acid has a higher inflammatory capacity3,4,69.

Levels of sialylation and galactosylation are highly correlated, reflecting the fact that the attachment of a sialic 
acid requires the presence of a galactose. We find that galactosylation and sialylation exhibit very similar associations 
with metabolic parameters, but the association with sialylation is generally slightly weaker than with galactosylation. 
The presence of sialic acid on IgG N-glycans is thought to confer an anti-inflammatory effect3,69. However, we did not 
observe any significant association with sialic acid per galactose, i.e. the percentage of galactoses which carry a sialic 
acid, indicating that associations with sialylation may be mediated by its close correlation with galactosylation. This 
is in line with several previous studies which concluded that galactosylation of human IgG, rather than sialylation, 
appears to show a pronounced negative association with clinical parameters and infection5,70. Together, this supports 
the notion that IgG Fc galactosylation may be involved in modulating inflammation.

Fucosylation.  We find that IgG fucosylation is increased in individuals with a higher level of inflammation. 
Despite the fact that functional studies have shown that the lack of a core fucose in IgG glycosylation greatly 
increases the inflammatory capacity through increased binding to FcγRIIIa71–74, an increase in IgG fucosylation 
is sometimes observed in autoimmune patients66–68. Furthermore, a previous study using UHPLC found that high 
CRP levels were associated with high fucosylation in non-galactosylated IgG N-glycans75, further demonstrating 
that IgG fucosylation is increased during a state of inflammation.

In individuals who tested seropositive for cytomegalovirus (CMV), a common virus which can remain in the body 
in a latent state after infection, a slightly lower level of fucosylation of IgG was observed than in non-infected individu-
als. While the differences in fucosylation are minor, it should be noted that these are individuals with a latent, asympto-
matic CMV infection, and it would be interesting to investigate if a larger decrease in fucosylation is seen during active 
disease. Furthermore, the changes in fucosylation of total IgG may reflect a larger shift towards afucosylation in the sub-
population of anti-CMV IgG. Low IgG fucosylation has also been observed in other antigen-specific IgG populations 
– in alloantibody reactions against platelets and red blood cells during pregnancy or blood transfusion (as low as 12%)76  
and in anti-HIV antibodies (~75%) – and has been suggested to be a defense mechanism by B-cells to increase antiviral 
control77. It may be interesting to investigate autoantibodies against CMV, as well as other types of infectious agents, to 
determine whether low fucosylation of IgG might be a hallmark of viral infections.

Associations with longevity and metabolic health.  Though we find that the IgG glycosylation reflects poor 
metabolic health, we were unable to find significant differences between middle-aged members of long-lived families 
and controls, who are known to differ on various metabolic measures33,36,38. Previous work which applied MALDI-MS 
to the same set of samples reported a significant decrease in the level of bisection of offspring of long-lived people, but 
only in individuals below 60 years of age18, and IgG glycosylation features contributed to the differentiation of con-
trols and members of long-lived families78. A recent investigation into the released N-glycan profile of plasma samples 
within the Leiden Longevity cohort also could not find any association with longevity, while replicating several of the 
associations we find with N-glycans which likely originate from IgG65.Our study design does not allow for estimation of 
whether IgG glycosylation features offer a predictive value for cardiovascular disease in addition to traditional markers 
of inflammation. However, we did test whether IgG parameters associate with metabolic health markers and which of 
the subclasses features the strongest association. We show that low levels of galactosylation and sialylation and high 
levels of fucosylation correspond with a state of low-grade inflammation and a detrimental lipid profile, characterized 
by low HDLC and high TG. This is likely due to the fact that a chronic level of inflammation is a known risk factor for 
cardiovascular disease79. This high risk profile is also characteristic for ageing – in older individuals, galactosylation and 
sialylation decrease, while bisection increases (Supplemental Figure 2).
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IgG glycosylation is known to be directly involved in the interaction with Fcγ receptors and complement, 
modulating the inflammatory capacity of the antibody3,80, whereas CRP influences opsonisation of pathogens 
and complement activation81. Considering the complexity of the immune system and the multitude of pathways 
therein, these regulatory mechanisms might well be (partially) additive rather than overlapping. Furthermore, the 
complexity of IgG glycosylation with its multiple features has the advantage that it could provide more informa-
tion than the level of a single analyte such as CRP, as shown by the IgG glycosylation features exhibiting different 
associations with metabolic markers. For these reasons, subclass-specific glycosylation of IgG, independently or 
in combination with the traditional inflammation marker CRP, might be a more informative biomarker regarding 
inflammation and metabolic health than CRP on its own. Further studies are required to review the added value 
of IgG glycosylation as a biomarker in light of prospective data on cardiovascular incidence and morbidity.
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