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Abstract 
Neural networks have emerged as immensely powerful tools in predicting functional genomic 
regions, notably evidenced by recent successes in deciphering gene regulatory logic. However, 
a systematic evaluation of how model architectures and training strategies impact genomics 
model performance is lacking. To address this gap, we held a DREAM Challenge where 
competitors trained models on a dataset of millions of random promoter DNA sequences and 
corresponding expression levels, experimentally determined in yeast, to best capture the 
relationship between regulatory DNA and gene expression. For a robust evaluation of the models, 
we designed a comprehensive suite of benchmarks encompassing various sequence types. While 
some benchmarks produced similar results across the top-performing models, others differed 
substantially. All top-performing models used neural networks, but diverged in architectures and 
novel training strategies, tailored to genomics sequence data. To dissect how architectural and 
training choices impact performance, we developed the Prix Fixe framework to divide any given 
model into logically equivalent building blocks. We tested all possible combinations for the top 
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three models and observed performance improvements for each. The DREAM Challenge models 
not only achieved state-of-the-art results on our comprehensive yeast dataset but also 
consistently surpassed existing benchmarks on Drosophila and human genomic datasets. 
Overall, we demonstrate that high-quality gold-standard genomics datasets can drive significant 
progress in model development. 

Introduction 
In eukaryotes, transcription factors (TFs) play a crucial role in regulating gene expression and are 
critical components of the cis-regulatory mechanism (1–6). TFs compete with nucleosomes and 
each other for DNA binding and can enhance each other’s binding through biochemical 
cooperativity and mutual competition with nucleosomes (7–10). While the field has made 
substantial progress in characterizing regulatory mechanisms (11–19), a quantitative 
understanding of cis-regulation remains a major challenge. Cis-regulatory complexity grows with 
the square of the number of TFs involved due to the number of potential pairwise interactions 
between TFs (6). For example, since the yeast Saccharomyces cerevisiae has about 8.5x fewer 
TFs than humans (~200 vs. ~1,700) (1,20), its cis-regulatory code is theoretically about ~72x less 
complex, making it an ideal system to test our understanding of eukaryotic cis-regulation. 

Neural Networks (NNs) have shown immense potential in modeling and predicting gene 
regulation. While different network architectures, such as convolutional neural networks (CNNs) 
(11,12,14,19,21), recurrent neural networks (RNNs) (22), and transformers (15,17,18,23), have 
been used to create genomics models, there is limited research on how NN architectures and 
training strategies affect their performance for genomics applications. Standard datasets provide 
a common benchmark to evaluate and compare algorithms, leading to improved performance and 
continued progress in the field (24). For instance, the computer vision and natural language 
processing (NLP) fields have seen an ongoing improvement of NNs facilitated by gold-standard 
datasets, such as the ImageNet data (24), MS COCO (25), etc. In contrast, because genomics 
models are often created ad hoc for analyzing a specific dataset, it often remains unclear whether 
a model’s improved performance results from improved model architecture or better training data. 
In many cases, the models created are not directly comparable to previous models due to 
substantial differences in the underlying data used to train and test them. 

To address the lack of standardized evaluation and continual improvement of genomics models, 
we organized the Random Promoter DREAM Challenge (26). Here, we asked the participants to 
design sequence-to-expression models and train them on expression measurements of 
promoters with random DNA sequences. The models would receive regulatory DNA sequence as 
input and use it to predict the corresponding gene expression value. We designed a separate set 
of sequences to test the limits of the models and provide insight into model performance. The top-
performing solutions in the challenge exceeded performance of all previous state-of-the-art 
models for similar data. Our evaluation across various benchmarks revealed that, for some 
sequence types, model performances are approaching the previously-estimated inter-replicate 
experimental reproducibility for this datatype (13), while considerable improvement remains 
necessary for others. The top-performing models included features inspired by the nature of the 
experiment and the state-of-the-art models from computer vision and NLP, while incorporating 
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novel training strategies that are better suited to genomics sequence data. To determine how 
individual design choices affect performance, we created a Prix Fixe framework that enables 
modular testing of individual model components, revealing further performance gains. Finally, we 
benchmarked the top-performing DREAM models on Drosophila and human datasets, including 
predicting expression and open chromatin from DNA sequence, where they consistently 
surpassed existing state-of-the-art performances. Recognizing the potential of these models to 
further the field, we are making all DREAM Challenge models available in an accessible format.  

Results 

The Random Promoter DREAM challenge and dataset  
To generate the competition training data, we conducted a high-throughput experiment to 
measure the regulatory effect of millions of random DNA sequences (Methods). Prior research 
has shown that random DNA can display activity levels akin to genomic regulatory DNA, due to 
the incidental occurrence of numerous TF binding sites (13,23,27). Here, we cloned 80 bp random 
DNA sequences into a promoter-like context upstream of a yellow fluorescent protein (YFP), 
transformed the resulting library into yeast, grew the yeast in chardonnay grape must, and 
measured expression by fluorescent activated cell sorting (FACS) and sequencing, as previously 
described (13,28,29) (Methods). This resulted in a training dataset of 6,739,258 random promoter 
sequences and their corresponding mean expression values. 

We provided these data to the competitors, who could use them to train their model, with two key 
restrictions. First, competitors were not allowed to use external datasets in any form to ensure 
that all models are trained on the same dataset. Second, ensemble predictions were also 
disallowed as they would almost certainly provide a boost in performance but without providing 
any insight into the best model types and training strategies. 

We evaluated the models on a set of “test” sequences designed to probe the predictive ability of 
the models in different ways. The measured expression levels driven by these sequences were 
quantified in the same way as the training data but in a separate experiment with more cells sorted 
per sequence (~100), yielding more accurate estimated expression levels compared to the 
training data measurements, and providing higher confidence in the challenge evaluation. The 
test set consisted of 71,103 sequences from several promoter sequence types. We included both 
random sequences and sequences from the yeast genome to get an estimate of performance 
difference between the random sequences in the training domain and naturally evolved 
sequences. We also included sequences designed to capture known limitations of previous 
models trained on similar data, namely sequences at the high and low expression extremes and 
sequences designed to maximize the disagreement between the predictions of a previously 
developed CNN and a physics-informed neural network (“biochemical model”) (13,23). We 
previously found that predicting changes in expression between closely related sequences (i.e., 
nearly identical DNA sequences) is substantially more challenging, and so we included subsets 
where models had to predict changes that result from single nucleotide variants (SNVs), 
perturbations of specific TF binding sites, and tiling of TF binding sites across background 
sequences (13,23). Each test subset was given a different weight when scoring the submissions, 
proportional to the number of sequences in the set and how important we considered it to be 
(Table 2). For instance, predicting the effects of SNVs on gene expression is a critical challenge 
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for the field due to its relevance to complex trait genetics (30). Accordingly, a substantial number 
of SNV sequence pairs were included in the test set, and SNVs were given the highest weight. 
Within each sequence subset, we determined model performance using Pearson 𝑟𝑟2 and 
Spearman ρ, which captured the linear correlation and monotonic relationship between the 
predicted and measured expression levels (or expression differences), respectively. The 
weighted sum of each performance metric across test subsets yielded our two final performance 
measurements, which we call Pearson Score and Spearman Score. 

Our DREAM Challenge ran for 12 weeks in the summer of 2022 and included two evaluation 
stages: the public leaderboard phase and the private evaluation phase (Fig. 1A). The leaderboard 
opened six weeks into the competition and allowed teams to submit up to 20 predictions on the 
test data per week. At this stage, we used 13% of the test data for leaderboard evaluation and 
displayed only the overall Pearson 𝑟𝑟2, Spearman ρ, Pearson Score, and Spearman Score to the 
participants, while keeping the performance on the promoter subsets and the specific sequences 
used for the evaluation hidden. The participating teams achieved increasing performance each 
week (Supplementary Fig. 1), showcasing the effectiveness of such challenges in motivating the 
development of better machine learning models. Over 110 teams across the globe competed in 
this stage. At the end of the challenge, 28 teams submitted their models for final evaluation. We 
used the rest of the test data (~87%) for the final evaluation (Fig. 1B,C; Supplementary Fig. 2).  
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Figure 1: Overview of the challenge. (A) Competitors received a training dataset of random 
promoters and corresponding expression values (left). They continually refined their models and 
competed for dominance in a public leaderboard (middle). At the end of the challenge, they 
submitted a final model for evaluation (right) using a test dataset consisting of eight sequence 
types: (i) high expression, (ii) low expression, (iii) native, (iv) random, (v) challenging, (vi) SNVs, 
(vii) motif perturbation, and (viii) motif tiling. (B, C) Bootstrapping provides a robust comparison 
of the model predictions. Distribution of ranks in 𝑛𝑛=10,000 samples from the test dataset (y-axes) 
for the top-performing teams (x-axes), for (B) Pearson Score and (C) Spearman Score. (D,E) 
Performance of the top-performing teams in each test data subset. Model performance (colour 
and numerical values) of each team (y-axes) in each test subset (x-axes), for (D) Pearson 𝑟𝑟2 and 
(E) Spearman ⍴. Heatmap colour palettes are min-max normalized column-wise. (F,G) 
Performance disparities observed between the best and worst models (x-axes) in different test 
subsets (y-axes) for (F) Pearson 𝑟𝑟2 and (G) Spearman ⍴. The calculation of the percentage 
difference is relative to the best model performance for each test subset. 

Innovative model designs surpass the state-of-the-art 
We retrained the transformer model architecture of Vaishnav et al. (12), the previous best-
performing model for this type of data, on the challenge data and used as a reference in the 
leaderboard (“reference model”). The overall performance of top submissions, all NNs, was 
substantially better than the reference model. Despite recent prominence of attention-based 
architectures (23), only one of the top five submissions in the challenge used transformers, 
placing 3rd. The best-performing submissions were dominated by fully convolutional NNs, with 1st, 
4th, and 5th places taken by them. The best-performing solution was based on the EfficientNetV2 
architecture (31,32), and the 4th and 5th solutions were based on the ResNet architecture (33). 
Moreover, all teams used convolutional layers as the starting point in their model design. A 
recurrent neural network (RNN) with bidirectional long-short-term memory (Bi-LSTM) layers 
(34,35) placed 2nd. While the teams broadly converged on many similar training strategies (e.g., 
using Adam (36) or AdamW (37) optimizers), they also had substantial differences (Table 1). 

The competing teams introduced several innovative approaches to solve the expression 
prediction problem. Autosome.org, the best-performing team, transformed the task into a soft-
classification problem by training their network to predict a vector of expression bin probabilities, 
which was then averaged to yield an estimated expression level, effectively recreating how the 
data were generated in the experiment. They also used a distinct data encoding method by adding 
channels to the traditional 4-channel one-hot encoding (OHE) of the DNA sequence used by most 
teams. The two additional channels indicated (i) whether the sequence provided as input was 
likely measured in only one cell (which results in an integer expression value), and (ii) whether 
the input sequence is being provided in the reverse complement orientation. Furthermore, 
Autosome.org's model, with only two million parameters, challenged the current trend of designing 
deep NNs with increasingly numerous parameters, demonstrating that efficient design 
considerably reduces the necessary number of parameters. Autosome.org and BHI were distinct 
in training their final model on the entirety of the provided training data (i.e., no sequences withheld 
for validation) for a prespecified number of epochs (determined previously using cross-validation 
using validation subsets). Unlock_DNA, the 3rd team, took a novel approach by randomly masking 
5% of the input DNA sequence and having the model predict both the masked nucleotides and 
gene expression. This approach used the masked nucleotide predictions as a regularizer, adding 
a reconstruction loss to the model loss function, which stabilized the training of their large NN. 
BUGF, the 9th team, used a somewhat similar strategy where they randomly mutated 15% of the 
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sequence and calculated an additional binary cross-entropy loss predicting whether any bp in the 
sequence had been mutated. The 5th team, NAD, employed GloVe (38) to generate embedding 
vectors for each base position and used these vectors as inputs for their NN, whereas the other 
teams utilized traditional one-hot encoded DNA sequences. Two teams, SYSU-SAIL-2022 (11th) 
and Davuluri lab (16th), attempted to train DNA language models (39) on the challenge data, by 
pretraining a BERT language model (40) on the challenge data and subsequently using the BERT 
embeddings to train an expression predictor.  

Table 1: Breakdown of the top-performing models into key components 
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+CNN [6:bases/ 
N*/P*] 

parameter 
sharing) (41) 

CoD # 

*NC: If the sequence was present in more than one cell, 0 for all bases, otherwise 1; RC: If the sequence is reverse-
complemented, 1 for all bases, otherwise 0; N: If a base is unknown, 1 for that base, otherwise 0; P: If a base has been 
padded to maintain fixed input length, 1 for that base, otherwise 0; M: If a base is masked 1 for that base otherwise 0. 

#These teams employed the metrics in a cross-validation setting to determine the optimal number of epochs for their 
models and ultimately saved the model weights after running for the n epochs, without relying on validation metric 
scores. In contrast, other teams utilized validation metric scores to select the best-performing model. 

Test sequence subsets reveal model disparities 
Analysis of model performance on the different test subsets revealed distinct and shared 
challenges for the different models. The top two models were ranked 1st and 2nd (sometimes with 
ties) for each test subset regardless of score metric, showcasing that their superior performance 
cannot be attributed to any single test subset (Fig. 1D,E). Further, the rankings within each test 
subset sometimes differed between Pearson Score and Spearman Score, reinforcing that these 
two measures capture performance in distinct ways (Fig. 1D,E). 

While the ranking of models was similar for both random and native sequences, the differences 
in model performance were greater for native yeast sequences than random sequences. 
Specifically, performance differed between models by as much as 17.6% for native sequences, 
but only 5% for random sequences (Pearson r2, Fig. 1F; Similarly 9.6% (native) vs. 2.7% (random) 
for Spearman ⍴; Fig. 1G). This suggests that top models have learned more of the regulatory 
grammar that evolution has produced. Further, the substantial discrepancy between performance 
on native and random sequences suggests that there is yet more regulatory logic to learn 
(although the native DNA have lower sequence coverage, presumably due to their higher repeat 
content, likely reducing quality data; Supplementary Fig. 3). 

Models were also highly variable in their ability to accurately predict variation within the extremes 
of gene expression. The cell sorter has a reduced signal-to-noise ratio at the lowest expression 
levels, and the sorting bin placement can truncate the tails of the expression distribution (6,12). 
Overall, model performance was most variable across teams in these subsets,  suggesting that 
the challenge models were able to overcome these issues to varying degrees. For example, the 
median difference in Pearson 𝑟𝑟2 between highest and lowest performance was ~48% for high 
and low test subsets and 16% for the others (Fig. 1F,G). 

The models also varied in their ability to predict expression differences between closely related 
sequences (Fig. 1D,E; “SNVs”,  Supplementary Fig. 4; Supplementary Fig. 5), with more 
substantial differences in model performance for subtler changes. Specifically, the % difference 
between best and worst in Pearson r2 and Spearman ⍴ were respectively, 6.5% and 4% for Motif 
Perturbation, 17.7% and 7% for Motif Tiling, and 14.6% and 9.6% for SNVs, suggesting that the 
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top-performing models better captured the subtleties of cis-regulation. This is consistent with our 
understanding of the subtlety of the impact: perturbing TFBSs (“Motif Peturbations” where we 
mutate sequences strongly matching the cognate motif for an important TF or vary the number of 
binding sites) is a comparatively large perturbation and could be predicted with simple models 
that capture the binding of these TFs and can count TFBS instances. However, when TFBSs are 
tiled across a background sequence, the same TFBS is present in every sequence, and the model 
must have learned how its position affects its activity, as well as capturing all the secondary 
TFBSs that are created or destroyed as the motif is tiled (13). Finally, SNVs are even harder to 
predict because nearly everything about the sequence is identical but for a single nucleotide that 
may affect the binding of multiple TFs in potentially subtle ways. 

Prix Fixe framework reveals optimal model configurations 
The top three solutions from the DREAM Challenge were distinguished both by their substantial 
improvement in performance compared to other models and their distinct approaches to data 
handling, preprocessing, loss calculations, and diverse neural network layers—encompassing 
convolutional, recurrent, and self-attention mechanisms. To identify the factors underlying their 
performances, we developed a Prix Fixe framework that breaks down each solution into distinct 
modules and, by selecting one of each module type, tests arbitrary combinations of the modules 
from each solution (Fig. 2A). We re-implemented the top three solutions within this framework 
and found that 45 out of 81 possible combinations were compatible. We removed specific test-
time processing steps unique to each solution that were not comparable across solutions. Finally, 
we retrained all compatible combinations using the same training and validation data, addressing 
the issue that some original solutions had used the entire dataset for training. Our approach 
facilitated a systematic and fair comparison of the individual contributions of different components 
to overall performance. 

Our analysis revealed both the source of Autosome.org’s exceptional performance as well as the 
interplay of different model components and their potential for further optimization. ’The BHI and 
UnlockDNA NNs saw significant improvement in performance when retrained using 
Autosome.org’s soft-classification paradigm (Fig. 2B,C; Supplementary Fig. 6; Supplementary 
Fig. 7). Moreover, each team’s model architecture could be optimized further, resulting in models 
that achieved better performance (Fig. 2C) using the same core blocks but with similar or fewer 
parameters (Fig. 2D). However, except for Autosome.org’s DataProcessor and Trainer module, 
no other module component dominated the others and their performance appeared to depend on 
what other modules they were combined with (Supplementary Fig. 8). For each of 
Autosome.org, BHI, and UnlockDNA’s core blocks, we named the optimal Prix Fixe model as 
DREAM-CNN, DREAM-RNN, and DREAM-Attn, respectively. 
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Figure 2: Dissecting the optimal model configurations through a Prix Fixe framework. (A) 
The framework deconstructs each team's solution into modules, enabling modules from different 
solutions to be combined. (B) Performance in Pearson Score from the Prix Fixe runs for all 
combinations of modules from the top three DREAM Challenge solutions. Each cell represents 
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the performance obtained from a unique combination of Core Layers Block (major rows, left), 
DataProcessor and Trainer (major columns, top), First Layers Block (minor rows, right), and 
Final Layers Block (minor columns, bottom) modules. Grey cells denote combinations that were 
either incompatible or did not converge during training. (C) Performance (Pearson Score; y-axis) 
of the three DataProcessor and Trainer modules (x-axis and colours) for each Prix Fixe model 
including the respective module (individual points). Original model combinations are indicated 
by white points, while all other combinations are in black. (D) Number of parameters (x-axis) for 
the top three DREAM Challenge models-Autosome.org, BHI, and UnlockDNA-along with their 
best-performing counterparts (based on Core Layers Block): DREAM-CNN, DREAM-RNN, and 
DREAM-Attn in the Prix Fixe runs (y-axis). (E) As in D, but showing each model’s Pearson 
Score (x-axis). 

Optimized models outperform state-of-the-art for other species and data types 
To determine whether the model architectures and training strategies we optimized on yeast data 
would generalize to other species, we next applied them to Drosophila melanogaster and human 
datasets on a diverse set of tasks. First, we tested their ability to predict gene regulatory activity 
measured in D. melagnogaster (in the context of a developmental and a housekeeping promoter) 
in a STARR-seq MPRA. This fundamentally represents the same sequence-to-expression 
problem the models were designed to solve, despite the different organism (Drosophila vs. yeast), 
experimental measurement approach (RNA-seq vs. cell sorting), longer sequence (249 bp vs. 
150 bp), smaller datasets (~500k thousand vs. 6.7 million), and the transition from a single-task 
to a multi-task framework (two promoter types). We compared the DREAM-optimized models to 
DeepSTARR (48), a state-of-the-art CNN model based on the Basset (21) architecture and 
specially developed for predicting the data we are using in this benchmark (UMI-STARR-seq (49) 
in D. melanogaster S2 cells (48,50)). For a robust comparison, we trained the models using cross 
validation and always evaluated on the same held-out test data (Methods). Our models 
consistently outperformed DeepSTARR across both developmental and housekeeping 
transcriptional programs (Fig. 3A), with the DREAM-RNN model surpassing the performance of 
DREAM-CNN and DREAM-Attn. 

To further validate the generalizability of our models, we next trained the DREAM-optimized 
models on lentivirus-based massively parallel reporter assays (lentiMPRAs) that tested cis 
regulatory elements (CREs) across three human cell types: hepatocytes (HepG2), lymphoblasts 
(K562), and induced pluripotent stem cells (iPSCs; WTC11) (51). Here, our models had to capture 
more complex regulatory activity from vastly smaller datasets (~56-226 thousand vs. 6.7 million). 
We compared the models against MPRAnn (51), a CNN model optimized for these specific 
datasets (Methods). All the models were trained using cross validation and evaluated on held-
out test data in the same way MPRAnn was originally trained (51). The DREAM-optimized models 
substantially outperformed MPRAnn, with the performance difference widening with more training 
data (Fig. 3B). The only exception was DREAM-Attn, which did not outperform MPRAnn on the 
smallest dataset (WTC11; 56k sequences). Again, DREAM-RNN demonstrated the best 
performance among our models, especially for larger datasets. 
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Figure 3: DREAM Challenge models beat existing benchmarks on Drosophila and human 
datasets. (A) D. melanogaster STARR-seq (48) prediction. Pearson correlation for predicted vs. 
actual enhancer activity for held out data (y-axis) for two different transcriptional programs (x-axis) 
for each model (colours). (B) Human MPRA (51) prediction. Pearson correlation for predicted vs. 
actual expression for held out data (y-axis) for MPRA datasets from three distinct human cell 
types (x-axis) for each model (colours). (C, D) Human accessibility (bulk K562 ATAC-seq) (52,53) 
prediction. For each model (x-axis and colours), model performance (y-axes) in shown in terms 
of both (C) Pearson correlation for predicted vs. actual read counts per element and (D) 1- median 
Jensen-Shannon distance for predicted vs. actual chromatin accessibility profiles across each 
element. In A-D, points represent folds of cross validation, performance is evaluated on held-out 
test data, and p-values representing t-tests (paired, two-sided) comparing the previous state-of-
the-art model to the optimized models are shown atop model performance distributions. (E) 
Comparison of number of parameters (x-axis) for different models used in chromatin accessibility 
prediction task.  

To evaluate the models on a distinct prediction task that still relates to CRE function, we evaluated 
our optimized models on the task of predicting open chromatin. Specifically, we compared our 
optimized models to ChromBPNet (53–55), a BPNet-based (16) model that predicts ATAC-seq 
signals across open chromatin regions. Here, the input DNA sequences were ~14 times longer 
than the yeast promoters on which the DREAM models were optimized (2,114 vs 150 bp), and 
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the models were now tasked with simultaneously predicting the overall accessibility (read counts) 
and accessibility profile (read distribution) for a central 1,000 bp section, rather than predicting a 
single expression value. While DREAM-Attn could not be trained because the memory 
requirement for the attention block became too large with such a long input sequence, we trained 
and evaluated the other DREAM-optimized models and ChromBPNet on K562 bulk ATAC-seq 
data (52) (Methods). DREAM-RNN outperformed ChromBPNet substantially in both read counts 
prediction and chromatin accessibility predictions (Fig. 3C,D), highlighting the adaptability of our 
models even on significantly different cis-regulatory data types. DREAM-CNN, on the other hand, 
performed on par with ChromBPNet (53) in read count predictions (Fig. 3C) but was less effective 
in predicting chromatin accessibility profiles (Fig. 3D).  

Notably, the architectures and training paradigms of the DREAM-optimized models were changed 
minimally for these evaluations, and the only modifications made were required for the prediction 
head (e.g. because the model outputs differed) or to adapt to the smaller number of training 
sequences compared to the DREAM dataset (reducing the batch size and/or maximum learning 
rate; Methods). Importantly, DREAM-RNN outperformed the other Prix Fixe optimized models in 
all of these secondary benchmarks (Fig. 3A-D), highlighting its excellent generalizability. 

Discussion 
The random promoter DREAM Challenge 2022 presented a unique opportunity for participants to 
propose novel model architectures and training strategies for modeling regulatory sequences. 
The participants trained sequence-to-expression models on millions of random regulatory DNA 
sequences and their corresponding expression measurements. A separate set of designed 
sequences were used to evaluate these models and test their limits. Remarkably, 19 models from 
the DREAM Challenge outperformed the previous state-of-the-art (23) (Supplementary Fig. 4), 
with the majority employing unique architectures and training strategies. To systematically 
analyze how model design choices impact their performance, we developed the Prix Fixe 
framework, where models were abstracted to modular parts, enabling us to combine modules 
from different submissions to identify the key contributors to model performance. We applied the 
Prix Fixe framework to the top three models from the challenge that varied significantly in their 
NN architectures (CNN, RNN, self-attention) and training strategies, and were able to construct 
improved models in each case.  

The training strategies for NNs had as significant an impact on model performance as the network 
architectures themselves (Fig. 2C; Supplementary Fig. 8). In the Prix Fixe runs, training the 
network to predict expression as distributions using soft-classification rather than as precise 
values helped models capture more of cis-regulation. These findings argue for a balanced focus 
not only on network architectures but also on the optimization of training procedures and 
redefinition of prediction tasks.  

Notably, the top-performing models from the DREAM Challenge demonstrated that simpler neural 
network architectures with fewer parameters, if optimized well, can effectively capture most of cis-
regulation, challenging the current trend towards increasingly complex NNs. For instance, three 
of the top five submissions did not use transformers, including the best-performing team (which 
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also had the fewest parameters of the top 10). Also, by employing our Prix Fixe framework, we 
successfully designed models that not only consisted of similar or fewer parameters but also 
achieved superior performance compared to their counterparts (Fig. 2D,E). Further, these 
DREAM-optimized models consistently outperformed previous state-of-the-art models on other 
cis-regulatory tasks, despite having comparable (and often fewer) parameters (Fig. 1D, Fig. 3E, 
Supplementary Fig. 9). These results indicate that in genomics applications, building better 
models does not necessarily require increased complexity, but rather depends on efficient and 
effective optimization.  

In the DREAM challenge, we observed varied results across test subsets that illustrate the 
complexity in evaluating cis-regulatory models effectively. For instance, performance on random 
sequences, which are in the same domain as the training data (also random sequences), was 
relatively uniform (Fig. 1D,E). Conversely, shifting the domain to native sequences highlights the 
disparities between models, as the relative frequencies of various regulatory mechanisms likely 
differ, a consequence of their evolutionary origin (Fig. 1D,E). This indicates that a model that 
excels in modeling overall cis-regulation may still perform poorly for sequences involving certain 
regulatory mechanisms that are difficult to learn from the training data, leading to incorrect 
predictions of biochemical mechanisms and variant effects for sequences that use these 
mechanisms. This emphasizes the importance of multifaceted evaluation of genomics models 
(56), and designing specific datasets that test the limits of these models. 

To continually improve genomics models, there is a need for standardized, robust benchmarking 
datasets. The DREAM Challenge dataset addresses this need and the impact such standardized 
datasets can have is demonstrated by the DREAM-optimized models’ generalizability across 
different Drosophila and human datasets and tasks without additional model tuning. Our dataset 
accompanied by the Prix Fixe framework stand as valuable resources for the continued 
exploration and development of innovative neural network architectures and training 
methodologies specifically crafted for DNA sequences. Further, the modular nature and proven 
generalizability of the DREAM-optimized models will enable other researchers to easily apply 
them to other genomics problems.  

Data availability 
Data is available at NCBI’s GEO: GSE254493. 

Code availability 
Open source code for our models is available at https://github.com/de-Boer-Lab/random-
promoter-dream-challenge-2022 

Methods 

Designing the test sequences 
High- and low-expression sequences were designed as described in Vaishnav et al. (23). Native 
test subset sequences were designed by sectioning native yeast promoters into 80 bp fragments 
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(13). Random sequences were sampled from a previous experiment where the tested DNA was 
synthesized randomly (as in the training data) and quantified (13). Challenging sequences were 
designed by maximizing the difference between the expressions predicted by a convolutional 
neural network model (23) and a biochemical model (a type of physics-informed neural network) 
(13); these sequences represented the pareto front of the differences in expression between 
models when optimizing populations of 100 sequences at a time for 100 generations using a 
genetic algorithm with a per-base mutation rate of 0.02 and recombination rate of 0.5 using DEAP 
(57) and a custom script (github.com/de-Boer-Lab/CRM2.0/blob/master/GASeqDesign.py). Most 
of the SNVs represent sequence trajectories from Vaishnav et al. (23), but also include random 
mutations added to random, designed, and native promoter sequences. Motif Perturbation 
included Reb1 and Hsf1 perturbations. Sequences with perturbed Reb1 binding sites were 
created by inserting Reb1 consensus binding sites (strong or medium affinity; sense and reverse 
complement orientations), and then adding between 1 and 3 SNVs to each possible location of 
each motif occurrence and inserting canonical and mutated motif occurrence into 10 randomly 
generated sequences at position 20/80. Sequences with Hsf1 motif occurrence were designed by 
tiling random background sequences with between 1 and 10 Hsf1 monomeric consensus sites 
(ATGGAACA), added sequentially from both the right and left of the random starting sequences, 
or added individually within each of the possible 8 positions, or similarly tiling/inserting between 
1-5 trimeric Hsf1 consensus sites (TTCTAGAANNTTCT). The Motif Tiling test subset sequences 
were designed by embedding a single consensus for each motif (poly-A: AAAAA, Skn7: 
GTCTGGCCC, Mga1: TTCT, Ume6: AGCCGCC, Mot3: GCAGGCACG, and Azf1: TAAAAGAAA) 
at every possible position (with the motif contained completely within the 80-bp variable region) 
and orientation for three background sequences as described in de Boer et al. (13).  

Table 2: Summary of the test subsets 

Subset no. of 
sequences 

Weight in 
evaluation metric 

Description 

All sequences 71103 1 All sequences in the test data. 

High  968 0.3 Sequences designed to have high 
expression. 

Low  997 0.3 Sequences designed to have low 
expression.  

Native 997 0.3 Sequences that are present in the 
yeast genome. 

Random 6349 0.3 Random DNA sequences. 

Challenging 1953 0.5 Sequences designed to maximize the 
differences between a convolutional 
model and a biochemical model 
trained on the same data. 

SNVs 44340 pairs 1.25 Two sequences that differ by only a 
single base. 
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Motif Perturbation 
(Reb1+Hsf1) 

3287 pairs 0.3 Two sequences that differ due to 
perturbations to specific known TF 
binding site. 

Motif tiling 2624 pairs 0.4 Two sequences that differ due to tiling 
known TF binding sites across 
random sequences. 

Quantifying promoter expression 
High complexity random DNA libraries that comprised the training data were created as described 
previously (13), with the following modifications. The random promoter library in E. coli 
theoretically contained about 74 million random promoters and was transformed into S288c (delta 
URA3) yeast yielding 200 million transformants, which were selected in SD-Ura media. 1 L of 
chardonnay grape must (filtered) was inoculated with the pool to an initiate OD600 of 0.05 and 
grown at room temperature without continual shaking, with the culture diluted as needed with 
fresh chardonnay grape must to maintain OD below 0.4, for a total growth time of 48 hours and 
having undergone >5 generations. Prior to each OD, the culture was gently agitated to 
decarbonate it, waiting for the resulting foam to die down before agitating again, and continuing 
until no more bubbles were released. Yeast were then sorted and sequencing libraries prepared 
as described previously (13), with sequencing libraries pooled and sequenced on an Illumina 
NextSeq. 

Data processing for both N80 (training) and designed (test) libraries were done as described 
before (13), except that the expression levels of the designed library sequences were estimated 
using MAUDE (58), using the read abundance in each sorting bin as input, and estimating the 
initial abundance of each sequence as the average relative abundance of that sequence across 
all bins.  

Competition rules 
1. Only the provided training data could be used to train models. Models had to train from scratch 
without any pre-training on external datasets to avoid overfitting to sequences present in the test 
data (e.g., some sequences in the test data are derived from extant yeast promoters). 

2. Reproducibility was a prerequisite for all submissions. The participants had to provide the code 
and instructions to reproduce their models. We retrained the top-performing solutions to validate 
their performance.  

3. Augmenting the provided training data was allowed. Pseudo-labeling the provided test data 
was not allowed. Using the test data for any purpose during training was not allowed. 

4. Ensembles were not allowed. 

For detailed information on the competition and its guidelines, please visit the DREAM Challenge 
webpage (https://www.synapse.org/#!Synapse:syn28469146/wiki/617075). 
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Performance evaluation metric 
We calculated the Pearson r2 and Spearman ⍴ between predictions and measurements for each 
sequence subset. Pearson r captures the linear correlation between predictions and measured 
expression levels while being robust to the scaling differences that occur between training and 
test sequences; the training and the test data are not on the same scale but are linearly related 
by, 𝑦𝑦 =  𝑚𝑚𝑚𝑚 + 𝑏𝑏, where 𝑚𝑚 and 𝑏𝑏 are constants that are affected by sorting bin placement during 
the experiment. We also used Spearman ⍴, which captures the monotonic relation between 
predictions and measured expression levels while being robust to outliers. The weighted sum of 
each performance metric across promoter types yielded our two final performance 
measurements, which we call Pearson Score and Spearman Score. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑛𝑛 𝑆𝑆𝑆𝑆𝑃𝑃𝑟𝑟𝑃𝑃 = ∑ 𝑤𝑤𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖 = 0  ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑛𝑛𝑅𝑅2𝑖𝑖  / ∑ 𝑤𝑤𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖 = 0  

𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑟𝑟𝑚𝑚𝑃𝑃𝑛𝑛 𝑆𝑆𝑆𝑆𝑃𝑃𝑟𝑟𝑃𝑃 =  ∑ 𝑤𝑤𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖 = 0 ∗ 𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑟𝑟𝑚𝑚𝑃𝑃𝑛𝑛𝑖𝑖  / ∑ 𝑤𝑤𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖 = 0  

Here, 𝑤𝑤𝑖𝑖 is the weight used for the 𝑖𝑖-th test subset (Table 2). 𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑛𝑛𝑅𝑅2𝑖𝑖 and  𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑟𝑟𝑚𝑚𝑃𝑃𝑛𝑛𝑖𝑖 are, 
respectively, the square of Pearson coefficient and the Spearman coefficient for sequences in 𝑖𝑖-
th subset. 

Bootstrapping analysis of model performance 
In order to determine the relative performance of the models, we performed a bootstrapping 
analysis. Here, we sampled 10% of the test data 10,000 times and, for each sample, calculated 
the performance of each model and the rankings of the models for both Pearson and Spearman 
Scores. We averaged the ranks from both metrics to decide their final ranks. Teams 
Autosome.org and BHI robustly outperformed the others, coming in 1st and 2nd place, respectively, 
with Autosome.org coming second to BHI in only 0.1% and 2.25% of the time for Pearson Score 
and Spearman Score, respectively. In none of the bootstraps did another team outperform 
Autosome.org or BHI. Interestingly, Pearson Score and Spearman Score do not agree after the 
top two teams, indicating that they capture performance in distinct ways. For instance, 
Unlock_DNA, the 3rd-place team, substantially outperformed 4th-place Camformers by Pearson 
Score, but performed slightly worse than Camformers by Spearman Score. We consider 5th-place 
to be a tie between NAD and wztr as their mean ranks (5.81105 and 5.8152, respectively) were 
very close. 

Description of the approaches used by the participants 
In this section, we present an overview of the approaches employed by the participants in the 
challenge. For the top-performing teams, we provide a detailed description of their methodologies, 
while for the remaining teams, we offer a concise overview without repeating any details that have 
already been discussed for other teams. The performance of each approach is illustrated in 
Supplementary Fig. 4 for easier comparison. 

Autosome.org: The team reformulated the initial regression task as a soft-classification problem 
by replacing the initial target expression value with a vector of 18 probabilities corresponding to 
individual bins, assuming that they can be deduced from the normal distribution with mean and 
variance equal to (expression + 0.5) and 0.5, respectively. To obtain a predicted expression value 
for a sequence during the validation step, the predicted probabilities were multiplied by their bin 
numbers. They used one-hot encoding for the promoter sequences, where they added a separate 
binary channel explicitly marking the objects with integer (and thus likely imprecise) expression 
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measurements. They also augmented the dataset with the reverse complementary sequences 
and added a separate binary channel to denote the supplied strand explicitly (forward or reverse 
complementary). The team also highlighted the impact of the training regime on the final 
performance, specifically, the advantage of using the OneCycleLR scheduler coupled with the 
AdamW optimizer. The proposed model was based on a fully-convolutional network inspired by 
EfficientNetV2 (32). The following architectural choices were used in the final model: (i) grouped 
convolution (59) instead of the depthwise convolution of the original EfficientNetV2, (ii) the 
standard residual blocks were substituted with residual channel-wise concatenations, (iii) a 
bilinear layer was inserted in the middle of the EfficientNetV2 SE-block. A detailed study on this 
architecture is presented in (60). 

BHI: Their approach adopts a “sandwich” architecture consisting of a one-dimensional 
convolutional layer, a bidirectional long-short-term memory (Bi-LSTM) layer, and another 
convolutional layer. Each convolutional layer used different kernel sizes. Besides the model 
architecture, the team found that training details specialized for DNA sequence-based deep 
learning models were highly important for the overall performance. Among them, the most crucial 
was to use a ‘post-hoc conjoined’ setting (41), which imposes a reverse-complement equivariance 
to the model. Test-time augmentation was also effective. Predictions were made for an original 
sequence, its four shifted variants (generated by -2bp, -1bp, +1bp, and +2bp shifting), and their 
reverse-complement sequences, then those 10 predictions were averaged to make a final 
prediction. While training sequences over 110bp were trimmed to the right, sequences shorter 
than 110bp were randomly padded with the original vector sequences on both sides. This 
informative padding gave a nonnegligible performance boost. Finally, to be as unbiased as 
possible for the distribution of the test set, predictions were quantile-transformed using the 
distribution of expression levels in training data as post-processing. 

Unlock_DNA: The team used an end-to-end Macaron-like Transformer encoder architecture with 
two half-step feed-forward (FFN) layers at the beginning and end of each encoder block. A 
separable 1D convolution layer was inserted after the first FFN layer and in front of the multi-head 
attention layer. The sliding k-mers from one-hot encoded sequences were mapped onto a 
continuous embedding, combined with the learned positional embedding and strand embedding 
(forward strand vs. reverse complement strand) as the sequence input. Along with the sequence 
input, several positions (32 in the final model) of "pseudo" expression values were added as the 
input, where all input expression values were zeros. The model predicted one expression value 
for each "pseudo" expression position and used the mean of the prediction of all positions as the 
final predicted expression value. A detailed study on this solution is presented on (61). 

Camformers: This team used a CNN with residual connections. The model included six 
convolutional layers with three residual connections allowing the model to bypass every other 
layer. After the penultimate convolutional layer, a max pooling operation was added to reduce the 
model size and improve generalization. The output of the final convolutional layer was flattened 
and fed into a block of two dense layers, followed by a final dense layer outputting the predicted 
expression level. All layers except the last used a rectified linear unit activation. 

NAD: The approach has two stages: (i) generating the embedding vectors for each base position 
using GloVe (38) and (ii) using the embedding vectors as input of neural networks to predict the 
gene expression level. The proposed model combines a convolutional neural network for feature 
extraction and a transformer for prediction. 

WZTR: The team used a fully CNN-based architecture. The model begins with two convolutional 
layers, and six convolution blocks follow these layers. Each convolution block is constructed of 3 
convolutional layers and an average pooling at the end. Each convolutional layer consists of a 
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hybrid convolution (62), batch normalization, ReLU activation, and residual connection. Each 
hybrid convolution takes in a list of dilation values [1,2,4,6], with 4 convolutions processing the 
input in parallel. Finally, there are three fully connected layers and an output layer. A linear 
combination of 256 features extracted from all the previous operations on the sequence is used 
to generate the predicted expression. 

High Schoolers Are All You Need (High Schoolers): This team used a mix of CNN and 
transformer architectures, where the CNN was based on Residualbind's (63) design, with a 
convolutional layer (with exponential activations) followed by a residual block comprised of a 
series of dilated convolutional layers with increasing dilation rates. It was followed by attention 
pooling, a transformer layer with relative positional encodings, and a standard MLP block. 

BioNML: The underlying neural network was configured to have a relatively larger set of 
convolutional kernels and extra dictionaries of short k-mers for spotting potential enriched DNA 
sequence patterns. Strand-specific streams of these patterns were normalized and consolidated 
with Swish activation’s (64) fully learnable thresholding. The encoded patterns were fed into a ViT 
(44) like block but with transformer decoder type of connections and SwiGLU (65) activations for 
modeling any sequential interdependence. A set of suppressed signals of the encoded sequence-
based patterns as queries for the transformer decoder blocks to respond to.  

BUGF: A transformer model was used to predict the expression bin classes, as opposed to 
treating the problem as a regression problem. Random mutations were added to the sequence 
as an data augmentation strategy and the model was trained to predict where the mutations had 
been made to the input sequence. An auxiliary loss was calculated based on this prediction, which 
helped reduce overfitting. 

mt: The approach uses GRU and CNNs to regress the strength of the targeted promoters using 
information encoded in the forward and reverse DNA strands. 

SYSU-SAIL-2022: The team first trained a 3-layer BERT (40) using the top 20% of sequences in 
terms of expression. Then, the BERT embedding was used to train an expression predictor. 

Wen Group: A deep neural network that adopted concepts of U-Net (66), Transformer, and 
Squeeze & Excitation blocks (67) was trained from end to end without any data augmentation. 

Yuanfang Guan: A neural network that consisted of LSTM layers followed by attention layers 
was used to predict expression.  

Metformin-121: A neural network based on bidirectional GRU was used to predict gene 
expression. 

NGT4: A neural network based on XceptionNet (68) was used to predict gene expression. During 
training, the expression values were transformed evenly in the range of i – 0.5 < x < i + 0.5 (here, 
i is the integer expression) maintaining the ranking of sequences that was produced by a trained 
model. 

Davuluri lab: The team utilized a transformer-based representation model named DNABERT 
(39) for predicting gene expression.  

*DNABERT was pretrained on human genome, which violated the competition rules. However, 
we consider this to be an important benchmark that shows the limitation of DNA language models. 

Wan&Barton_BBK: The team designed a model based on Temporal Convolutional Networks 
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(69) to predict expression. 

Peppa: The team designed a model based on the Enformer (15) that took 110 bp as input 
(compared to 200 kbp in the original) and included only 2M parameters (compared to ~200M 
parameters of the original). 

The Dream Team: A neural network was used that incorporated convolutional, multihead 
attention, and LSTM layers. During training, the integer expression values were transformed by 
replacing them with Normal(i,0.3) distribution, where i represents the expression. 

Noisy-Chardonnay: A model composed of convolutional layers followed by BiLSTM layers was 
trained without any data augmentation to predict expression levels. 

KircherLab: The team trained a simple convolutional neural network with a GC correction step 
on the training data to help the model focus its decisions on motifs within the sequence rather 
than the general nucleotide composition.  

MadLab: The model is composed of three building blocks, namely a convolutional network, a 
transformer and a recurrent network. 

Auth: A simple hybrid architecture combining a convolutional layer and a BiLSTM layer followed 
by two fully connected layers was used to predict expression. 

UTKbioinformatics: A neural network based on BERT was used to predict expression. 

DrAshokAndFriends: An attention based ConvLSTM (70) model was used for prediction. 

QUT_seq2exp: A sequence embedding model, dna2vec (71), was applied on the promoter 
sequences (in a running manner on short k-mers), which are then subsequently used as features 
for a transformer-based deep neural network model. 

Zeta: A transformer model was used for predicting expression. 

Prix Fixe Framework 
The Prix Fixe framework, implemented in Pytorch, facilitates the design and training of NNs by 
modularizing the entire process, from data-preprocessing to prediction, enforcing specific formats 
for module inputs and outputs to allow integration of components from different approaches. The 
different modules in the Prix fixe framework are as follows: 

DataProcessor and Trainer: This DataProcessor class is dedicated to transforming raw DNA 
sequence data into a usable format for subsequent NN training. The DataProcessor can produce 
an iterable object, delivering a dictionary containing, a feature matrix 'x' (input to the NN) and a 
target vector 'y' (expected output). Additional keys can be included to support extended 
functionalities. Moreover, the DataProcessor can provide essential parameters to initiate NN 
blocks, such as determining the number of channels in the first layer. 

The Trainer class manages the training of the NN. It processes batches of data from the 
DataProcessor and feeds them into the NN. It computes auxiliary losses, if necessary, alongside 
the main losses from the NN, facilitating complex loss calculation during training. 

Prix Fixe Net: This module embodies the entirety of the NN architecture: 
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(i) First Layers Block: These are the primordial layers of the network. They may include initial 
convolutional layers or facilitate specific encoding mechanisms like k-mer encoding for the input. 

(ii) Core Layers Block: This represents the central architecture components, housing elements 
like residual connections, LSTM mechanisms, and self-attention. The modular construction of this 
block also allows for versatile combinations, such as stacking a residual CNN block with a self-
attention block. 

(iii) Final Layers Block: This phase narrows the latent space to produce the final prediction, using 
layers like pooling, flattening, and dense layers. It computes the prediction and outputs it 
alongside the loss. 

For all three blocks, the standard input format is (batch, channels, seqLen). The first two blocks 
yield an output in a consistent format (batch, channels, seqLen), whereas the last block delivers 
the predicted expression values. Each block can propagate their own loss. The whole framework 
is implemented in PyTorch. 

To ensure fair comparison across solutions in the Prix Fixe framework, we removed specific test-
time processing steps that were unique to each solution. We divided the DREAM Challenge 
dataset into two segments, allocating 90% sequences for training and 10% for validation. Using 
these data, we retrained all combinations that were compatible within the framework. Out of the 
81 potential combinations, we identified 45 as compatible, and 41 of these successfully converged 
during training. Due to GPU memory constraints, we adjusted the batch sizes for certain 
combinations. 

DREAM-optimized models from Prix Fixe runs 
DataProcessor and Trainer: Promoter sequences were extended at the 5' end using constant 
segments from the plasmids to standardize to a length of 150 bp. These sequences underwent 
one-hot encoding into four-dimensional vectors. 'Singleton' promoters, observed only once across 
all bins, were categorized with integer expression estimates. Considering the potential variability 
in these singleton expression estimates, a binary 'is_singleton' channel was incorporated, marked 
as 1 for singletons and 0 otherwise. To account for the diverse behavior of regulatory elements 
based on their strand orientation relative to transcription start sites, each sequence in the training 
set was provided in both its original and reverse complementary forms, identified using the 
'is_reverse' channel (0 for original, 1 for reverse complementary). Consequently, the input 
dimensions were set at (batch, 6, 150). 

The model's training utilized the AdamW optimizer, set with a weight_decay of 0.01. The 
maximum learning rate of 0.005 was chosen for most blocks, while a conservative rate of 0.001 
was applied to attention blocks due to the inherent sensitivity of self-attention mechanisms to 
higher rates. This learning rate was scheduled by the One Cycle Learning Rate Policy 
(OneCycleLR) (72), which featured two phases and employs the cosine annealing strategy. 
Training data was segmented into batches of size 1024, with the entire training procedure 
spanning 80 epochs. Model performance and selection were based on the highest Pearson r 
value observed in the validation dataset. 
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During prediction, the data processing mirrored the DataProcessor apart from setting 
'is_singleton' to 0. Predictions for both the original and reverse complementary sequences were 
then averaged. 

Prix Fixe Net:  

(i) DREAM-CNN:  

First Layers Block: One-hot encoded input is processed through a 1D-CNN. Drawing inspiration 
from DeepFam (73), convolutional layers with kernel sizes of 9 and 15 are used, which mirror 
common motif lengths as identified by ProSampler (74). Each layer has a channel size of 256, 
uses ReLU activation, and incorporates a dropout rate of 0.2. The outputs of the two layers are 
concatenated along the channel dimension.  

Core Layers Block: This segment contains six convolution blocks whose structure is influenced 
by the EfficientNet architecture. It contains modifications like replacing depthwise convolution with 
grouped convolution, using Squeeze and Excitation (SE) blocks (67), and adopting channel-wise 
concatenation for residual connections. The channel configuration starts with 256 channels for 
the initial block, followed by 128, 128, 64, 64, 64, and 64 channels (60). 

Final Layers Block: The final block consists of a single point-wise convolutional layer followed by 
channel-wise Global Average Pooling and SoftMax activation. 

(ii) DREAM-RNN:  

First Layers Block: same as DREAM-CNN. 

Core Layers Block: The core utilizes a Bi-LSTM, designed to capture motif dependencies. The 
LSTM's hidden states have dimensions of 320 each, resulting in 640 dimensions after 
concatenation. A subsequent CNN block, similar to the First Layer block, is incorporated. 

Final Layers Block: same as DREAM-CNN. 

(iii) DREAM-Attn:  

First Layers Block: It is a standard convolution with kernel size 7, followed by BatchNorm (75) and 
SiLU activation (76). 

Core Layers Block: This block uses the Proformer (61), a Macaron-like Transformer encoder 
architecture, which employs a two half-step feed forward network (FFN) layers at the start and 
end of the encoder block. Additionally, a separable 1D convolution layer is integrated after the 
initial FFN layer and prior to the multi-head attention layer. 

Final Layers Block: same as DREAM-CNN and DREAM-RNN. 

Human MPRA models 
Within each of the three large-scale MPRA libraries, every sequence and its corresponding 
reverse complement are grouped together and these pairs were then distributed into ten distinct 
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cross-validation folds to ensure both the forward and reverse sequences resided within the same 
fold. DREAM-CNN, DREAM-RNN, DREAM-Attn, and MPRAnn were trained using nine out of 
these ten folds, reserving one fold to evaluate the model's performance. For every held-out test 
fold, nine models were trained, with one fold being dedicated for validation purposes while the 
remaining eight acted as training folds. Subsequent predictions from these nine models were 
aggregated, with the average being used as the final prediction for the held-out test data.  

The training specifics of MPRAnn were followed as described in (51). For DREAM-CNN, DREAM-
RNN, and DREAM-Attn, components that could not accommodate Agarwal  et al. data were 
discarded. For instance, the ‘is_singleton’ channel is not relevant for MPRA data, loss calculation 
was done using mean squared error in place of KL divergence due to the infeasibility of 
transitioning the problem to soft classification. MPRAnn used a much smaller batch size than our 
DREAM-optimized Trainer (32 vs 1024), and so we reduced it to be the same as MPRAnn. No 
other alterations were made to either the model's structure or the training paradigm. 

Drosophila UMI-STARRSeq models 
The training specifics (model architecture and trainer) of DeepSTARR were followed as described 
(48). For DREAM-CNN, DREAM-RNN, and DREAM-Attn we used the exact setting as our runs 
in human MPRA datasets.  

Only the five largest Drosophila chromosomes (Chr2L, Chr2R, Chr3L, Chr3R, ChrX) were used 
as test data. For every held-out test chromosome, the rest of the sequences were distributed into 
ten distinct train-validation folds, and DREAM-CNN, DREAM-RNN, DREAM-Attn, and 
DeepSTARR models (ten of each) were trained. Subsequent predictions from these ten models 
were aggregated, with the average being used as the final prediction for the held-out test 
chromosome. 

Human Chromatin accessibility models 
We used five separate train-validation-test splits as proposed in (53) for ATAC-seq experiments 
on the human cell line K562 (52). For each of these partitions, we first trained five different bias 
models, one per fold, which are designed to capture enzyme-driven biases present in ATAC-seq 
profiles. Subsequently, ChromBPNet, DREAM-CNN, and DREAM-RNN models were trained for 
each fold, using the same bias models. For DREAM-CNN and DREAM-RNN, the prediction head 
from ChromBPNet (1-d convolution, cropping layer, average pooling layer, and a dense layer) 
was used in the Final Layers Block to make accessibility profile and read counts prediction. We 
modified the DREAM-optimized Trainer in this case to use the same batch size as ChromBPNet  
(from 1024 to 64), and a reduced maximum learning rate (from 5 x 10-4 to 5 x 10-3). No other 
alterations were made to either the model's structure or the training paradigm. 

For this task, we reimplemented DREAM-CNN and DREAM-RNN architectures in Tensorflow to 
ensure all models have same bias models. This methodological choice came at the cost of having 
to leave some components (input encoding, AdamW optimizer, etc.) out of the DREAM-optimized 
DataProcessor and Trainer. However, it ensured uniformity across models, leading to an 
unbiased comparison across the different architectures. 
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Supplementary Figures 

 

Supplementary Figure 1: Progression of the top-performing teams’ performance in the 
DREAM Challenge public leaderboard. (A,B) Performance (y-axes) in (A) Pearson Score and 
(B) Spearman Score achieved by the participating teams (colours) each week (x-axes), 
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showcasing the effectiveness of such challenges in motivating the development of better machine 
learning models. 

 

Supplementary Figure 2: Bootstrapping provides a robust comparison of the model 
predictions. (A,B,C) Frequency (y-axes) of ranks (x-axes) in (A) Pearson Score, (B) Spearman 
Score and combined frequency (sum of Pearson Score rank and Spearman Score rank) of ranks 
for 𝑛𝑛=10,000 samples from the test dataset for the top-performing teams.  
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Supplementary Figure 3: Library coverage differs between sequence subsets and is lowest 
for native sequences. Cumulative proportion (y-axis) of the number of reads per sequence (x-
axis) for different sequence types (colours). 

 
Supplementary Figure 4: Performance of the teams in each test data subset. (A,B) Model 
performance (colour and numerical values) of each team (y-axes) in each test subset (x-axes), 
for (A) Pearson r2 and (B) Spearman ⍴. Heatmap colour palettes are min-max normalized column-
wise. 
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Supplementary Figure 5: Expression changes (y-axis) are biggest for motif perturbation, 
smallest for SNVs, and intermediate for motif tiling. 
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Supplementary Figure 6: Performance in Spearman Score from the Prix Fixe runs for 
different possible combinations of the top three DREAM Challenge models. Modules are 
indicated on the axes, with Data Processor and Trainer models on the top x axis, Final Layer 
Block on the bottom x axis, Core Layers Block on the left y axis, and First Layers Block on the 
right y axis. Incompatible combinations and combinations that did not converge during training 
have been greyed out. 
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Supplementary Figure 7: Performance (x-axes) of the top three DREAM Challenge models 
(y-axes) Autosome.org, BHI, and UnlockDNA-along with their best-performing 
counterparts (based on Core Layers Block) for different test subsets.  
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Supplementary Figure 8: No clear winners in other module blocks. Performance of the 
different modules in Pearson Score (y-axis) for the different (A) First Layer, (B) Core Layers, and 
(C) Final Layers  modules (x-axes and colours).   

 

Supplementary Figure 9: DREAM Optimized models have similar or fewer parameters than 
MPRAnn. Comparison of number of parameters (x-axis) for different models (y-axis) used in 
human MPRA prediction task (51).  
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