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Although recent studies have demonstrated a proinflammatory effect of

extracellular histones in sepsis via endothelial cytotoxicity, little is known

about their contribution to autoimmune arthritis. Therefore, we investigated

the role of extracellular histones in autoimmune arthritis and their cytotoxic

effect on synoviocytes and macrophages. We measured histones in the

synovial fluid of patients with rheumatoid arthritis (RA) and evaluated arthritis

severity in a serum-transfer arthritis (STA) mouse model with intraperitoneal

histone injection. Histone-induced cytotoxicity was measured using SYTOX

green staining in the synoviocyte cell line MH7A and macrophages

differentiated from the monocytic cell line THP-1, and the production of

damage-associated molecular patterns (DAMPs) was measured by HMGB1

and ATP. Furthermore, we performed RNA-seq analysis of THP-1 cells

stimulated with H2B-a1 peptide or with its citrullinated form. The levels of

histones were elevated in RA synovial fluid, and histones aggravated arthritis in

the STA model. Histones induced cytotoxicity and DAMP production in

synoviocytes and macrophages. Chondroitin sulfate reduced histone-

induced cytotoxicity, while lipopolysaccharides aggravated cytotoxicity.

Moreover, the cytotoxicity decreased when the arginines in H2B-a1 were

replaced with citrullines, which demonstrated its electrostatic nature. In

transcriptome analysis, H2B-a1 changed the gene expression pattern of

THP-1 cells involving chemokines, interleukin-1, -4, -10, -13, and toll-like
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receptor (TLR) signaling pathways. Extracellular histones were increased in RA

synovial fluid and aggravated synovitis in STA. They induced lytic cell death

through electrostatic interaction with synoviocytes and macrophages, leading

to the secretion of DAMPs. These findings suggest that histones play a central

role in autoimmune arthritis.
KEYWORDS

histone, cytotoxicity , DAMP, chemokine, synoviocyte, macrophage,
inflammation, arthritis
Introduction

Histones are DNA-binding proteins that constitute

nucleosomes, the basic subunits of chromatin. The four classes

of core histones (H2A, H2B, H3, and H4) have similar

structures, with a preserved histone fold domain and an

unstructured amino acid tail (1). Positively charged histones

and negatively charged phosphate groups of DNA combine to

form a stable structure (2). In addition to their function in the

nucleus, studies have highlighted that DNA–histone complexes

are released into the extracellular space during cell death

processes like necrosis and NETosis (3, 4).

NETosis is one of the lytic forms of cell death that releases

neutrophil extracellular traps (NETs) that can capture and kill

pathogens (5). The immune response against DNA, histones,

and other proteins associated with NETs can be induced to form

autoantibodies (6–8), and these intracellular components can

induce inflammatory responses (9, 10). Histones, which

comprise 70% of the protein components of NETs (9), cause

cell injury and death in endothelial cells (11) and organ failure

when released into the extracellular space (12). Proinflammatory

properties of extracellular histone have been demonstrated in

sepsis (4), chronic obstructive pulmonary disease (COPD) (13),

systemic lupus erythematosus (14), disseminated intravascular

coagulation (DIC) (15), and malignancies (16, 17), but the

molecular mechanisms have not been well understood.

Rheumatoid arthritis (RA) is characterized by chronic

synovial inflammation with the detection of autoantibodies

that recognize citrullinated proteins (18). Recent studies have

shown the role of citrullinated histones as autoantigens in RA

(19). Activation of PAD4 gives rise to citrullinated histones,

making NETosis a key driver of autoantigen production in RA

(20, 21). However, the role of extracellular histones in RA

remains largely unexplored. In this study, we investigated the

influence of histones released from synovial cells during cell

death processes on synovial inflammation.
02
Materials and methods

Determination of extracellular histones in
synovial fluid samples

Human synovial fluid samples were obtained under a protocol

for discarded specimens approved by the Stanford University School

of Medicine Institutional Review Boards that does not require

consent. The samples were stored frozen at -80 °C until the time

of analysis. Patients with RA that met the American College of

Rheumatology criteria for the disease were included in the study

(22). The sample donors were patients with knee osteoarthritis (OA)

and over 45 years of age with radiographic Kellgren/Lawrence grade

≥ 3 changes (23). The levels of H2A, H2B, H3, and H4 were

determined using the enzyme-linked immunosorbent assay (ELISA)

kit for each histone (antibodies-online, Aachen, Germany)

according to the manufacturer’s protocol.
K/BxN serum-transfer arthritis (STA)
mouse model

Eight-week-old male C57BL/6 mice (Koatech, Pyeongtaek,

Korea) were housed under controlled conditions at 23 ± 2°C and

50 ± 10% humidity on a 12 h light/dark cycle and had free access to

a standard chow diet and water. STA was induced via

intraperitoneal injection of 150 mL of K/BxN serum into C57BL/6

mice on day 0 and day 2. The mice were intraperitoneally injected

with 200 mg of calf histone (Roche, Basel, Switzerland) or

phosphate-buffered saline on day 1 and day 3. We used native

histones purified by calf thymus. It is a mixture of histones H1,

H2A, H2B, H3, and H4, and we used it as it is without any

additional procedures. The histone treatment dose for

intraperitoneal injection was determined based on the previously

published method in a sepsis model, which demonstrated that the

intravenously injected calf thymus histones were lethal at a
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concentration of 75-100 mg/kg and sublethal at 50 mg/kg in

C57BL/6 mice (12). To investigate the effect of histones in

arthritis, we injected 200 mg of calf thymus histones (equivalent

to 10 mg/kg) intraperitoneally into each mouse based on our

preliminary dose titration study (data not shown). The clinical

arthritis score was determined as previously described (19): 0, no

swelling or erythema; 1, mild swelling and erythema or digit

inflammation; 2, moderate swelling and erythema confined to the

region distal to the mid-paw; 3, pronounced swelling and erythema

with extension to the ankle; and 4, severe swelling, erythema, and

joint rigidity of the ankle, foot, and digits. The severity of arthritis in

each limb was graded on a scale of 0–4 (a maximum possible score

of 16 for each mouse) by a nonblinded examiner. Hind paw

thickness was measured with a dial thickness gauge. The mouse

joint tissues were fixed with 10% formalin, decalcified in 5% formic

acid, and embedded in paraffin. Sections of the paraffin-embedded

tissue were stained with hematoxylin and eosin (H&E), and scored

by a blinded examiner for synovitis, pannus formation, and erosion

of bone and/or cartilage based on a previously described scoring

system (24). For each experimental condition, the joints of ten mice

were evaluated and scored. The sample size was determined based

on our pilot experiments. Mice were assigned to each group at

random, and the order of treatments was randomized. All mice

were included in the analysis. All animal experiments and protocols

were approved by the Institutional Animal Care and Use

Committee at Pusan National University (Miryang, Korea) and

performed in accordance with the institutional and national

guidelines for the care and use of laboratory animals.
Cell culture and reagents

Human synovial fibroblast cell line MH7A was cultured in

RPMI-1640 (Hyclone, Logan, UT, USA) containing 25 mM HEPES

and L-glutamine (Hyclone), supplemented with heat-inactivated

10% fetal bovine serum (FBS; Hyclone), 100 units/mL penicillin

(Hyclone), and 100 mg/mL streptomycin (Hyclone). THP1-

HMGB1-Lucia cells (THP-1 cells, InvivoGen, San Diego, CA,

USA) were cultured in RPMI-1640, supplemented with 25 mM

HEPES, L-glutamate, heat-activated 10% FBS, 100 units/mL

penicillin, 100 mg/mL streptomycin, and 100 mg/mL Normocin

(InvivoGen). For all assays, THP-1 cells were seeded at a density

of 1 × 105 cells/well in 96-well plates and differentiated into adherent

macrophages with 25 ng/mL phorbol 12-myristate 13-acetate (PMA,

Sigma-Aldrich, MO, USA) overnight. Cells were treated with calf

thymus histones (Abnova, Taipei, Taiwan) or recombinant histones,

H2A, H2B, H3, and H4 (New England BioLabs, Cambridge, MA,

USA) or histone peptides (Peptron, Daejeon, Korea, Table 1).
Frontiers in Immunology 03
Lactate dehydrogenase (LDH)
release assay

The level of LDH released into the medium from cells was

measured using an LDH assay kit (DoGenBio, Seoul, Korea). This

kit measures the amount of a water-soluble tetrazolium salt

(WST) to determine the cytotoxicity of cells. Cells were seeded

onto 96-well plates at a density of 1 × 105 cells/well in serum-free

media. After incubation with different concentrations of histones,

10 mL supernatant of each sample and 100 mL LDH Reaction Mix

(WST substrate mix, LDH assay buffer) were incubated at 25°C in

the dark for 30 min, and the optical density of soluble WST was

then measured at 450 nm using FlexStation3 microplate reader

(Molecular Devices, San Jose, CA, USA).
Fluorescence imaging using SYTOX
Green dead cell stain

MH7A cells and THP-1 cells were placed at a density of 1 ×

105 cells/well and 5 × 105 cells/well, respectively. The cells were

treated with 5 mM Hoechst 33342 stain (ThermoFisher Scientific,

Waltham, MA, USA) for 1 h, then treated with various

concentrations of histones and/or lipopolysaccharide (LPS,

Sigma-Aldrich) and stained with a plasma membrane-

impermeable DNA-binding dye, SYTOX Green (Invitrogen),

according to the manufacturer’s protocol, in a serum-free

condition. Before histone addition, the cells were treated with or

without 10 mM sodium perchlorate (Sigma-Aldrich) for 24 h. The

live images of the cells were obtained under a fluorescence

microscope (Eclipse Ti2, Nikon Instruments, Tokyo, Japan) or

by an automatic cell imaging system (Operetta CLS™,

PerkinElmer, Waltham, MA, USA). For images obtained from

the Operetta cell imaging system, image analysis and cell counting

were performed according to the manufacturer’s assay protocol

using Harmony® software (Version 4.9, PerkinElmer).
TABLE 1 Sequences of histone peptides.

Histone
peptides

Sequence

H2A-a1 KTRSSRAGLQFPVGRVHRLLRKGNYSERVGAGAP

H2B-a1 QKKDGKKRKRSRKESYSIYVYKVLKQVHPDTGIS

cit-H2B-a1 QKKDGKK-Cit-K-Cit-S-Cit-
KESYSIYVYKVLKQVHPDTGIS

H3-a1 LIRKLPFQRLVREIAQDFKTDLRFQ

H4-a1 RHRKVLRDNIQGITKPAIRRLARRGGVKRISGLI
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Quantification of HMGB1 via
luciferase assay

The level of HMGB1::Lucia luciferase released from THP-1

cells was measured with a luminometer (FlexStation3) using

luciferin. A sample from each well was mixed with QUANTI-

Luc (InvivoGen) according to the manufacturer’s instructions,

and the luciferase reading was measured.
Adenosine triphosphate (ATP)-
monitoring luminescence assay

ATPlite (PerkinElmer) is a luciferase-based assay used for

the quantitative evaluation of cell proliferation and cytotoxicity.

For this assay, cells were seeded onto a 96-well plate at a density

of 5 × 105 cells/well. The cells were treated with different

concentrations of histones for 1 h. Then, the ATPlite buffer

and the lyophilized substrate solution were mixed. Finally, cells

in each well were incubated with 50 mL of this mixture for

10 min, followed by a luminescence measurement.
Fluorescence imaging to measure
poly-L-lysine

?A3B2 tlsb .2pt?>To measure the cellular binding of FITC

labeled poly-L-lysine (Sigma-Aldrich), THP-1 cells were seeded

at a density of 2 × 105 cells/well and treated with 100 ng/mL LPS

for 24 h. Then, 10 mg/mL poly-L-lysine-FITC was added to the

cells and incubated for 30 min at 4°C. Cells were observed under

a fluorescence microscope (Eclipse Ti2) to obtain fluorescence

images. Quantification of fluorescence intensity of images was

performed using ImageJ (https://imagej.nih.gov).
Flow cytometry to measure cell viability
using 7-aminoactinomycin D (7-AAD)

To detect cell membrane damage in flow cytometry, a

DNA-staining fluorescent marker 7-AAD (Invitrogen) was

used. MH7A and THP-1 cells were seeded at a density of 5 ×

105 cells/well and treated with various concentrations of

histones for 1 h. Subsequently, 1 mg/mL 7-AAD was added to

the cells and incubated for 30 min. Cells were analyzed on BD

LSRII SORP (BD Biosciences, San Jose, CA, USA) to detect

7-AAD.
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ELISA for Interleukin-1b (IL-1b), tumor
necrosis factor-alpha (TNF-a), and C-C
motif chemokine ligand 4 (CCL4)

IL-1b (eBioscience, San Diego, CA, USA), TNF-a
(Invitrogen, San Diego, CA, USA), and CCL4 (R&D Systems,

Minneapolis, MN, USA) levels were measured using ELISA kits

as per the manufacturer’s instructions.
RNA-seq and analysis of differentially
expressed genes (DEGs)

Total RNA was isolated from THP-1 cells treated with H2B-

a1 peptide or cit-H2B-a1 peptide, using TRIzol reagent

(Invitrogen). Samples of 3 mg of total RNA were prepared

from each condition with three experimental replicates, and

gene expression profiling was performed using the QuantSeq 3′
mRNA-Seq service (Ebiogen, Seoul, Korea). After quality checks

using Bioanalyzer 2100 system (Agilent, Santa Clara, CA, USA),

an oligo-dT primer set containing Illumina-compatible

sequences at its 5′ end was hybridized to the prepared RNA,

and reverse transcription was performed. High-throughput

sequencing was performed as single-end sequencing using

Illumina NextSeq 500 (San Diego, CA, USA). The resulting

reads were aligned using Bowtie2 (http://bowtie-bio.sourceforge.

net/bowtie2) with the human reference genome hg19 (25). The

DEGs were determined based on the counts from alignments

using coverage in Bedtools (https://bedtools.readthedocs.io).

The read count data were processed based on the quantile

normalization method using EdgeR (https://bioconductor.org).

Gene enrichment analysis was performed by MATLAB

(MathWorks, Natick, MA, USA) using the Reactome pathway

database (https://reactome.org) and Gene Ontology Consortium

database (http://geneontology.org).
Statistical analysis

Statistical analysis was performed using Prism 9 software

(GraphPad, San Diego, CA, USA). Data are presented as mean ±

standard error of the mean or median ± interquartile range. In

addition, we performed an unpaired t-test or Mann–Whitney

test to analyze the statistical differences between the two groups.

One-way or two-way ANOVA with Tukey–Kramer multiple

comparison tests were used for comparisons between multiple

groups. Statistical significance level was set at P < 0.05.
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Results

Histones are increased in RA synovial
fluid and aggravate arthritis in STA mice

The levels of histones H2A, H2B, H3, and H4 were higher in

RA compared to those in OA synovial fluid samples, though the

difference in H2B was not statistically significant (Figure 1A). We

tested whether extracellular histones could aggravate inflammatory

arthritis. When mice were induced for STA, co-injection of histone

aggravated arthritis (Figure 1B). Histopathological analyses also

showed that histones increased synovitis, pannus formation, and

erosion of bone and cartilage (Figures 1C, D). These results showed

that histones have a deleterious effect on arthritis.
Histones induce cytotoxicity in
synoviocytes and macrophages

We investigated if the extracellular histones could induce cell

injury and death in synoviocytes and macrophages. We observed
Frontiers in Immunology 05
that histones increased cytotoxicity in MH7A (synoviocytes) and

PMA-differentiated THP-1 (macrophages) cells, as visualized by

SYTOX Green dead cell staining (Figures 2A, B; Supplementary

Movies 1A and B). Notably, histone-induced lytic cell death was

more rapid and prominent in THP-1 cells than in MH7A cells

(Supplementary Figures S1, S2).
Histones induce the release of DAMPs
and cytokines

Synovial macrophages are one of the most abundant

inflammatory cell types in the synovium of RA patients, and

activated macrophages produce various cytokines and

chemokines to recruit immune cells (26, 27). To investigate

the mechanism of histone-induced cytotoxicity and its

consequence in inflamed joints, we determined the level of

ATP, one of the molecules released in cell damage.

Extracellular ATP, which can act as a DAMP, was increased

by histones in both MH7A cells and THP-1 cells (Figure 2C). In
A B

DC

FIGURE 1

Histones are increased in RA synovial fluid and aggravate arthritis in STA mice. (A) Levels of histones (H2A, H2B, H3, and H4) in synovial fluid
from osteoarthritis (OA; n = 13) and rheumatoid arthritis (RA; n = 19) patients. (B) Serum-transfer arthritis (STA) severity and paw thickness in
mice (n = 10 per group) with intraperitoneal histone or phosphate-buffered saline (PBS) injection. K/BxN serum was given on days 0 and 2, and
200 mg of histone or PBS was given on days 1 and 3. (C) Representative images of hematoxylin and eosin (H&E) stained sections of ankle joints
(×20 magnification). (D) Histologic scores of synovitis, pannus formation, and erosions of ankle joints. Data are shown as the median ±
interquartile range (A) or the mean ± standard error of the mean (B and D). The P-values were calculated by Mann–Whitney tests (A) or
unpaired t-tests (B, D). *P < 0.05, **P < 0.01, and ***P < 0.001. ns, not significant..
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A

B

DC

E
F

FIGURE 2

Histones induce cytotoxicity and the release of damage-associated molecular patterns (DAMPs). (A) Histone-induced cytotoxicity in MH7A and
THP-1 cells detected by SYTOX Green. Representative fluorescence microscopy images of MH7A (left) and THP-1 cells (right) with 100 mg/mL of
histones. See also Supplement Movies 1A, B (B) Time-course plot of dead cells detected by SYTOX green with the Operetta cell imaging system,
MH7A (left) and THP-1 cells (right). (C) Levels of extracellular ATP from MH7A and THP-1 cells treated with histones for 1 h. (D) Levels of
extracellular IL-1b from MH7A and THP-1 cells treated with histones for 1 h. (E) Levels of HMGB1 from THP-1 cells treated with histones for 3 h
or 24 h. (F) Levels of TNF-a from THP-1 cells treated with histones and/or lipopolysaccharides (LPS; 10 ng/mL) for 24 h. Data are expressed as
the mean ± standard error of the mean. ANOVA with Tukey–Kramer multiple comparison tests were conducted. *P < 0.05, **P < 0.01, and
***P < 0.001. The experiments were performed with technical replicates of three wells per condition.
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contrast, IL-1b was induced by histones only in THP-1 cells, not

in MH7A cells (Figure 2D). The level of HMGB1, a well-studied

DAMP, was also increased by histones in THP-1 cells

(Figure 2E). We also measured the level of TNF-a when THP-

1 cells were treated by histones with or without LPS. The

increased level of TNF-a under histone-treatment

demonstrated that histones cause a pro-inflammatory effect

that is additive with LPS (Figure 2F).
Chondroitin sulfate inhibits histone-
induced cytotoxicity

Histones exhibit cytotoxicity by binding to cells through

their strong positive charge (28). Since anionic polysaccharides

and peptides neutralize the cytotoxicity of histones (29), we

tested if chondroitin sulfate, one of the charged molecules in

synovial fluid, could attenuate histone-induced cytotoxicity.

Histone-induced cytotoxicity and HMGB1 production were

strongly inhibited by chondroitin sulfate (Figures 3A, B).
LPS increases the ability of histones to
induce cytotoxicity

We also analyzed the effect of histones on cells treated with

LPS. SYTOX Green staining of THP-1 cells revealed that

histone-induced cytotoxicity increased when cells were treated

with LPS and histones than with histones alone (Figure 3C). To

verify the electrostatic interaction during the inflammatory

process of THP-1 cells, we evaluated the binding of positively

charged poly-L-lysine to cells when they were stimulated by LPS.

When treated with LPS, increased poly-L-lysine binding was

observed (Figure 3D), and treatment with sodium perchlorate, a

sulfation inhibitor, reduced the cytotoxicity (Figure 3C).
H2B-a1 peptide induces cytotoxicity

We investigated the classes of histones to reveal those that

induce cytotoxicity. When THP-1 cells were treated with each

histone, all histones induced cytotoxicity (Figure 4A), and all

significantly increased HMGB1 production except for H4

(Figure 4B). As the recombinant histones were purified from

E. coli, the levels of LPS in histones were measured and a

significant amount of LPS was detected in H2B and H3

(Supplementary Figure S3). Since the LPS content of each

histone was not proportional to the levels of LDH or HMGB1,

LPS is not the major source of the cytotoxicity of the histones.

However, the additive effect of the contaminated LPS in varying

amounts should be considered. Referring to the previously

studied histone structure (30, 31), we tested the cytotoxicity of

a1 domain of each protein, H2A, H2B, H3, and H4 (Table 1). It
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has been suggested that histones bind to phospholipid-

phosphodiester bonds using their DNA-binding a1 helices

(32). When cells were treated with the a1 domain peptide of

each histone, H2B-a1 peptide strongly induced cytotoxicity and

HMGB1 production in THP-1 cells (Figures 4C, D). Since the

binding of histones can be altered by modification of their

positive charge, we replaced the positively charged arginines in

H2B-a1 with citrullines (Table 1). Citrullination of H2B-a1
inhibited H2B-a1-induced cytotoxicity and HMGB1 production

(Figures 4E, F).
H2B-a1 peptide induces chemokine
activation and citrullination alleviates
the process

To examine the cellular effects of histones, we analyzed the

RNA-seq data of THP-1 cells treated with native or citrullinated

H2B-a1 peptide. The clustergram representing the normalized

expression of DEGs is shown (Figure 5A). Compared to THP-1

cells treated with H2B-a1 peptide, the transcriptome of the cells

treated with citrullinated H2B-a1 peptide did not shift

considerably from the expression pattern of the non-treated

control cells. Applying principal component analysis (PCA) on

1420 DEGs, we verified two principal components, PC1 and

PC2, explaining 76.9% and 14.5% of the variances, respectively

(Figure 5B). In the two-dimensional PC space, representations of

three replicates of each treatment group were exclusively

distributed and completely separated. Transcriptome data was

summarized as a Venn diagram (Figure 5C).

Gene ontology and pathway analysis were performed to

examine the molecular pathways related to the effect of native

histones. The most enriched Reactome pathways are listed in

Figure 5D, and for each pathway, the top DEGs are shown based

on the false discovery rate (FDR) and expression fold change

(Figure 5E and Supplementary Figures S4A–K) (33). H2B-a1
peptide stimulation changed the gene expression pattern of

THP-1 cells involving chemokines, IL-1, -4, -10, -13 signaling,

and TLR signaling pathways. Citrullination of positively charged

arginines of cytotoxic H2B-a1 peptide decreased histone-

induced proinflammatory gene expression. The histone-

induced expression of CCL4, one of the DEGs with the largest

fold change, was demonstrated in THP-1 cells (Figure 5F). This

result showed that histone toxicity was related to inflammatory

and apoptosis pathways and that arginine residues in the H2B-

a1 peptide play an important role in histone toxicity.
Discussion

Extracellular histones are major components of NETs, and

their pro-inflammatory effect is known in various inflammatory

processes (11, 12, 34, 35); however, the role of extracellular
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histones in synovial inflammation remains to be elucidated. In

this study, we showed that there is an increase in the levels of

histones in the synovial fluid of patients with RA compared to

those in patients with OA. Previously, it has been demonstrated

that the synovial fluid of patients with RA contains a large

number of activated neutrophils and macrophages involved in

synovial inflammation (26, 27, 36). In a sepsis model, histones

released by NETosis trigger innate immune cells, and histones

bound to endothelial cells cause endothelial injury (37). Based on
Frontiers in Immunology 08
the inflammatory nature of NETosis and its resulting

extracellular histones, histones from neutrophils in RA

synovial fluid would interact with other cells in the joint space,

including macrophages and synoviocytes. To validate the pro-

inflammatory effect of extracellular histones in arthritis, we

demonstrated that intraperitoneal injection of histones

aggravated arthritis severity in the STA mouse model.

To confirm the histone-induced cytotoxicity in cells in

synovitis, we showed histone-induced cell death in synoviocytes
A B

DC

FIGURE 3

Chondroitin sulfate and lipopolysaccharides (LPS) regulate histone-induced cytotoxicity. (A) Lactate dehydrogenase (LDH) release assay using
THP-1 cells to monitor histone-induced cytotoxicity for 24 h with chondroitin sulfate. (B) Levels of HMGB1 from THP-1 cells to monitor
histone-induced cytotoxicity for 24 h with chondroitin sulfate. (C) Time-course plot of dead cells stained with SYTOX green evaluated by the
Operetta cell imaging system after treatment with histone (100 mg/mL) and LPS (200 ng/mL) with sodium perchlorate (10 mM). (D) Poly-L-lysine
binding to LPS-stimulated THP-1 cells. Data are expressed as the mean ± standard error of the mean. An unpaired t-test or a one-way ANOVA
(A, B) or a two-way ANOVA (C, D) with Tukey–Kramer multiple comparison tests were conducted. *P < 0.05, **P < 0.01, and ***P < 0.001. ##P
< 0.01, and ###P < 0.001. Different statistical tests were presented with different symbols.. The experiments were performed with technical
replicates of three wells per condition.
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FIGURE 4

H2B-a1 peptide induces cytotoxicity in macrophage. (A), (B) Histone-induced cytotoxicity (3 h) with each class of recombinant histone proteins
(4 mM). (C), (D) Histone-induced cytotoxicity (24 h) with each class of histone a1 peptides. (E), (F) Histone-induced cytotoxicity (24 h) with native
or citrullinated (cit) H2B-a1 peptide (50 mM). Cytotoxicity levels were measured by lactate dehydrogenase (LDH) release assay (A, C, E), and
HMGB1 release was measured by luciferase assay (B, D, F). Data are expressed as the mean ± standard error of the mean. ANOVA with Tukey–
Kramer multiple comparison tests were conducted. *P < 0.05, **P < 0.01, and ***P < 0.001. ns, not significant.. The experiments were
performed with technical replicates of three wells per condition. See table 1 for sequences of peptides.
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and macrophages through direct treatment of the cells with

histones. The results suggested that histones might contribute to

synovial inflammation by inducing lytic cell death of synoviocytes

and macrophages. Interestingly, time-course dead cell stain

images indicated that THP-1 cells are more susceptible to

histone-induced cytotoxicity than MH7A cells. Consistent with

previous findings, our study demonstrated that histones induce

the production of DAMPs, including ATP, HMGB1, and IL-1b,
Frontiers in Immunology 10
and increase the secretion of TNF-a (38–40). Extracellular ATP

released from damaged cells is known to recruit macrophages and

promote the secretion of IL-1b by dendritic cells, accelerating the

inflammatory process (41). Histone-induced TNF-a production

was further augmented by LPS. Therefore, it may have an

augmented pro-inflammatory effect in patients with RA.

In addition, we verified that histone-induced cytotoxicity is

regulated by electrostatic interaction. It is known that positively
A B

D

E F

C

FIGURE 5

Transcriptome analysis of THP-1 cells with H2B-a1 peptide. (A) Expression clustering of RNA-seq data of THP-1 cells treated with H2B-a1
peptide or cit-H2B-a1 peptide for 3 h. (B) Principal component analysis of differentially expressed genes (DEGs). (C) Venn diagram of DEGs. (D)
Significant gene ontology pathways from DEGs. (E) Top DEGs in chemokine pathway. (F) Levels of CCL4 with histone stimulation on THP-1
cells. Data in (F) are expressed as the mean ± standard error of the mean. ANOVA with Tukey–Kramer multiple comparison tests were
conducted. *P < 0.05 and ***P < 0.001. The experiments were performed with technical replicates of three wells per condition.
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charged histones react with the negatively charged cell membrane,

thereby causing cytotoxicity (42). Further, pro-inflammatory

cytokines such as TNF-a are known to increase surface anionic

molecules (43). In our study, LPS increased the binding of

positively charged poly-L-lysine on cell surfaces. Furthermore,

we found that anionic molecules such as chondroitin sulfate in the

synovial fluid could inhibit histone-induced cytotoxicity. In

addition, histone-induced cytotoxicity could be mitigated by

adding sodium perchlorate, a sulfation inhibitor (44, 45).

Considering that sulfation amplifies the anionic nature of

proteins, these results suggested that electrostatic conditions of

cell surface could regulate histone toxicity by inhibiting or

enhancing the binding of histones. To further verify the

electrostatic nature of the cytotoxicity of extracellular histones,

we modified the cytotoxic a1 peptide of H2B by citrullinating its

positively charged arginine residues. The citrullinated H2B-a1
peptide was less cytotoxic to THP-1 cells.

We found that all four classes of recombinant histone proteins

induced cell death as the concentration increased, with H2A and

H2B being the most cytotoxic. We also showed that H2B-a1
peptide was the most cytotoxic among histone a1 helix peptides

from the four classes of histones. This is consistent with previous

findings, which showed that H2B derived from frogs have

bactericidal properties due to disruption of the bacterial

membrane by the cationic nature of its N-terminal region (46, 47).

Using RNA-seq, we have shown that histones changed the

expression of specific signaling pathways in THP-1 cells,

including IL-1, 4, 10, 13 signaling, chemokines, TLR, and

NOD-like receptor (NLR) signaling pathways. The chemokine

signaling pathway had several DEGs with the highest degree of

fold change, such as CCL4 and CXCL2. It is also known that

expression of CCL3, CCL4, CXCL2, and CXCL8 is increased in

RA synovial fluid, and that these chemokines are suggested to

help neutrophils become resident within the joint in RA (48).

It has been known that NETosis is increased in RA

synovium, which induces citrullination of histones by PADs

(20, 21). However, there are citrullinated and uncitrullinated

parts in extracellular histones derived from the synovial fluids of

RA patients (9, 20). Although the hypercitrullinated milieu in

RA might reduce the histone-mediated cellular injury

(cytotoxicity, DAMP release, chemotaxis), which makes

translating our observations into RA pathogenesis less

interesting, there are several possibilities that uncitrullinated

parts of extracellular histones are relevant to current

understanding of RA pathogenesis. First, they might be

involved in the breaking of immune tolerance on citrullinated

histone during a very early stage of RA. Although citrullination

occurs during physiological processes such as apoptosis and

NETosis, autoantibody reactivity toward citrullinated antigens is

an unusual pathologic process for which the molecular

mechanism is unknown. Uncitrullinated parts of extracellular

histones may play a role as an adjuvant. Second, they might be

involved in local joint inflammation during the established stage
Frontiers in Immunology 11
of RA. Because there is no association between the ACPA titer

and disease activity, the amount of citrullinated antigen is not

associated with disease activity. Uncitrullinated parts of

extracellular histones may play a role during an acute flare of

arthritis. Third, they might be involved in seronegative RA.

Seronegative RA patients displayed elevated IgG reactivity to

native histone H2B compared to controls, but no citrulline-

specific reactivity (49).

The limitations of this study include that the effects of post-

translational modification of histones in RA were not fully

investigated. Additionally, the influence of anionic proteins

such as chondroitin sulfate in synovial fluid that binds to

histones and mitigates their cytotoxic effects must be

considered in future research. Another limitation is the lack of

research into the association between extracellular histones and

the formation of anti-citrullinated protein antibodies. Although

we established the cytotoxicity and induction of DAMPs by

extracellular histones, further research is needed to determine

the net effects of extracellular histones on the development of

autoimmunity in RA.

In conclusion, our study demonstrated that extracellular

histones induce the production of DAMPs, such as ATP,

HMGB1, and IL-1b, by causing lytic cell death of synoviocytes

and macrophages. Our findings suggest a novel mechanism for

the pathogenesis of RA in which extracellular histones play a

proinflammatory role in synovitis. Furthermore, our results

from charge-altering experiments imply that targeting the

electrostatic effect of extracellular histones may be a possible

therapeutic option for RA.
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